RT Journal Article SR Electronic T1 Intermittent hypoxia enhances the expression of HIF1A by increasing the quantity and catalytic activity of KDM4A-C and demethylating H3K9me3 at the HIF1A locus JF bioRxiv FD Cold Spring Harbor Laboratory SP 2021.07.25.453726 DO 10.1101/2021.07.25.453726 A1 Chloe-Anne Martinez A1 Neha Bal A1 Peter A Cistulli A1 Kristina M Cook YR 2021 UL http://biorxiv.org/content/early/2021/07/26/2021.07.25.453726.abstract AB Cellular oxygen-sensing pathways are primarily regulated by hypoxia inducible factor-1 (HIF-1) in chronic hypoxia and are well studied. Intermittent hypoxia also occurs in many pathological conditions, yet little is known about its biological effects. In this study, we investigated how two proposed cellular oxygen sensing systems, HIF-1 and KDM4A-C, respond to cells exposed to intermittent hypoxia and compared to chronic hypoxia. We found that intermittent hypoxia increases HIF-1 activity through a pathway distinct from chronic hypoxia, involving the KDM4A, -B and -C histone lysine demethylases. Intermittent hypoxia increases the quantity and activity of KDM4A-C resulting in a decrease in H3K9 methylation. This contrasts with chronic hypoxia, which decreases KDM4A-C activity, leading to hypermethylation of H3K9. Demethylation of histones bound to the HIF1A gene in intermittent hypoxia increases HIF1A mRNA expression, which has the downstream effect of increasing overall HIF-1 activity and expression of HIF target genes. This study highlights how multiple oxygen-sensing pathways can interact to regulate and fine tune the cellular hypoxic response depending on the period and length of hypoxia.Competing Interest StatementThe authors have declared no competing interest.