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Abstract. Computational reconstruction of clonal evolution in cancers
has become a crucial tool for understanding how tumors initiate and
progress and how this process varies across patients. The field still strug-
gles, however, with special challenges of applying phylogenetic methods
to cancers, such as the prevalence and importance of copy number al-
teration (CNA) and structural variation (SV) events in tumor evolution,
which are difficult to profile accurately by prevailing sequencing methods
in such a way that subsequent reconstruction by phylogenetic inference
algorithms is accurate. In the present work, we develop computational
methods to combine sequencing with multiplex interphase fluorescence
in situ hybridization (miFISH) to exploit the complementary advantages
of each technology in inferring accurate models of clonal CNA evolu-
tion accounting for both focal changes and aneuploidy at whole-genome
scales. We demonstrate on simulated data that incorporation of FISH
data substantially improves accurate inference of focal CNA and ploidy
changes in clonal evolution from deconvolving bulk sequence data. Anal-
ysis of real glioblastoma data for which FISH, bulk sequence, and single
cell sequence are all available confirms the power of FISH to enhance
accurate reconstruction of clonal copy number evolution in conjunction
with bulk and optionally single-cell sequence data.

Availability: jgithub.com/CMUSchwartzLab/FISH_deconvolution
Contact: russells@andrew.cmu.edu

1 Introduction
Cancer progression has long been understood to be driven by clonal evolu-
tion [25], but our understanding of the mechanisms and implications of that
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observation are currently undergoing a dramatic revision. This growing insight
has been driven largely by two key innovations: the advance of high-throughput
sequencing methods to characterize tumor genomics with ever-finer precision
and accuracy [23] and the concurrent advance of computational biology meth-
ods that have made it possible to interpret those sequencing data to tell coherent
stories about how individual cancers or the space of all cancers collectively de-
velop [3]. A crucial component of those latter advances has been the development
of the field of tumor phylogenetics [28], which develops computational methods
to construct models of evolution in cancers from tumor genomic data.

Methods for clonal phylogenetics have attracted great interest in computa-
tional biology circles, especially as the field has come to a greater understanding
of the complexity of tumor evolution mechanisms and the algorithmic challenges
of reconstructing them from available genomic data. A particular area of recent
interest in this regard has been development of better methods for resolving evo-
lution by copy number alterations (CNAs) and the structural variations (SVs)
that produce them. While the importance of CNAs and SVs in cancer has long
been known [37] and some of the first methods for clonal lineage reconstruc-
tion focused on CNA-driven evolution [27], much of the tumor phylogeny field
has focused historically on single nucleotide variants (SNVs), with CNAs omit-
ted (e.g., [34]) or treated largely as a confounding factor for inferring SNV-
driven evolution (e.g.,[T6]). Relatively few computational methods have been
created to date for the purpose of inferring tumor evolution by CNAs, either
singly [B329/T7IT5] or jointly with SNVs [20], and it is only recently that meth-
ods have begun to appear for capturing evolution by SVs more broadly [14]. Yet
the biological evidence over the same time has strongly indicated that CNVs,
and the SVs producing them, outperform SNVs and other focal changes in pre-
dicting treatment response [30] and are likely the dominant mechanism by which
tumors develop and functionally adapt to escape controls on cell growth [37].

CNA-driven evolution creates substantial complications relative to SNV-
driven evolution. In part, modeling CNAs is a challenge because it is a less com-
monly studied kind of mechanism in phylogenetics in general and thus requires
algorithmic innovations. In part, the challenge is inherent to the problem. CNAs
create particular complications because they can occur on multiple scales with
sometimes overlapping variations that can be difficult to resolve. CNAs are also
particularly challenging for deconvolutional approaches to phylogenetics [2] —
which involve computationally separating mixtures of clones from bulk sequence
data and which remain a necessity for the field due to the scarsity of large co-
horts with single-cell data — because the basic deconvolution problem on CNAs
is underdetermined without additional data or problem constraints. CNA meth-
ods also have particular difficulty dealing with ploidy changes, particularly via
whole-genome duplication (WGD), because ploidy is difficult to infer accurately
from sequence data alone. While recent methods have shown it to be possible
to perform accurate CNA construction using multi-region bulk sequencing [35]
or single-cell sequencing [36], these methods require limiting assumptions, e.g.,
that WGD can occur only once in a tumor’s history. Furthermore, large cohorts
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with multi-region bulk or single-cell sequencing are still lacking and it remains
an open question how best to perform large-scale tumor genomic studies that
will be informative for clonal CNA evolution.

The problem of accurately reconstructing the process of ploidy change in
tumor evolution is concerning, partly because WGD is now recognized as a sta-
tistical marker of aggressive cancers [26/4] but this observation lacks a clear bio-
logical mechanism. Earlier models of WGD in tumor evolution, which proposed
a single early WGD event as a prerequisite for tumorigenesis in chromosomally
instable cancers [13], are now known to be as excessively simplistic, as WGD is
neither necessary nor necessarily a one-time event in a cancer’s evolution [26].
Rather, WGD can be seen to be one of many mutation types active to different
degrees in different cancers, shaping the likely trajectory and patient-specific
risk of diverse progression processes [6].

The present work develops methods for improving our ability to resolve CNA-
driven evolution in cancers, following a strategy of multi-omic data integration.
Malicik et al. demonstrated the power of integrating bulk and single-cell se-
quencing data [22] for improving SNV evolution models, a strategy we previously
demonstrated successful for CNA-driven evolution as well [21]. Here, we explore
the potential of bringing in an additional form of data, multiplex interphase flu-
orescence in situ hybridization (miFISH), which provides a way to profile tumor
evolution in single cells at small numbers of probes [I8] without normalization
artifacts that make ploidy a challenge for purely sequence-based studies. While
miFISH limits one to just a few copy number markers per cell, its easy scalability
to large numbers of cells has made it powerful tool for CNV tumor phylogenetics
in its own right especially when the FISH probes are placed strategically at loci
that are recurrently amplified in the tumor type of interest [27JT0IRI9I38].

Here, we develop a new method for integrating bulk sequence with single-
cell sequence (SCS) and/or miFISH in order to combine advantages of each
technology for improved reconstruction of copy number evolution at the single
cell level. We show with semi-simulated data that these two kinds of data each
contribute in distinct and synergistic ways to more accurate inference of CNA-
driven evolution, especially in aneuploid tumors, and demonstrate their practical
value on a study of glioblastoma profiled by bulk, SCS, and miFISH. Together,
the work demonstrates the value of bringing miFISH or related methods for
cytometric analysis into sequence-based tumor phylogeny studies if we are to
accurately reconstruct mechanisms of CNA-driven evolution in cancers.

2 Methods

2.1 Objective function

While the mixed membership model in our previous work [21] is still suitable to
describe our problem, the previous objective function is too simple for our new
problem, since it does not include FISH data. The FISH data is relevant only
at a few loci, but with an appropriate objective function allows us to estimate
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the genome-wide ploidy and thereby to inform the analysis of unnormalized
copy number at all loci. We therefore designed a new objective function for
the problem intended to capture information from bulk copy numbers, miFISH
copy numbers, and single cell sequencing (SCS) data, as well as phylogenetic
constraints:

min (||B — CPF||;
C,F,S,P

+ay - ||F - F'|ly
+op-J(S,C,C
+ oy || XTCP - H'||))

where the desired outputs are a matrix of inferred normalized copy numbers
C of probes across the genome, a diagonal matrix P with the inferred ploidy
divided by 2 for each in the diagonal, and an inferred clonal frequency matrix
F. CP, then transforms the normalized cells with mean copy number two to
unnormalized cells with putative absolute copy numbers. As explained below,
we require C' to be integral, but not C’.

The potential inputs are F’, a matrix of reference mixture fraction infor-
mation derived from miFISH data; C’, an optional matrix of normalized copy
numbers of input SCS data; H’, the reference copy numbers from miFISH data
for the genomic regions covered by FISH probes; and X, a 0-1 matrix identifying
copy number segments of the genome covered by each FISH probe. S is a phy-
logeny inferred in the process of computing the objective function. ||B—CPF||;
is the deviation between true and inferred mixed copy number in the bulk tu-
mor. ||F'—F”||; describes the deviation between inferred fraction F and reference
fraction F, J(S,C,C") is the cost of the phylogeny that is built on inferred cell
clones C' and reference cell clones C’. X is a sparse matrix such that X;; =1
if ¢ is the index FISH probe in the genomic position of single-cell data and
i = Index[j], where each element in Index is the index of one FISH probe on
the genomic axis of the SCS data. The product X7 C represents a subset of
genomic position that contains only the copy number information for segments
covered by FISH probes and zeros elsewhere. Then || X7 CP — H’||; describes
the deviation between inferred and reference copy number at loci where FISH
probes are located. af, ay and ay are regularization parameters to allow for
the balance between deconvolution quality and quality of fit of the inferences to
reference mixture fractions, miFISH copy numbers, SCS copy numbers, and a
minimum evolution model.

We elaborate in the following subsections on specific constraints involving
the terms of the objective function.
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2.2 Estimating F
2.2.1 ||B — CPF)||; constraints
We define the L1 distance of ||B — CPF||; as:

|IB-CPF|i =Y bas; (2)

i=1 j=1

with constraints:

k
bA,i,j Z b?,,_] - Zci,r *DPrg fT‘,jaVi S {15 "'am}a
r=1

jed{l,..,n}
k
ba,ij = —bij+ Zcim “Pry o frg, Vi€ {1, ...,m}, )
r=1
jed{l,..,n}.

where m is the number of total genomic loci, n is the number of bulk tumor
samples, and k is the number of cells.
2.2.2 F constraints

Since F' is a weighted matrix, each column of F' should add up to be 1 and
all entries are non-negative. All the entries in C represent the (average) copy
number of a certain interval. As currently implemented, the entries should be
non-negative integers, but this is not inherent because the integral copy numbers
across the interval may vary leading to a non-integral average copy number.

0< fr; <L Vre{l,..k}je{l, .. ,n} (5)

S fi=1Yie{l,..,n} (6)
r=1

2.2.3 ||F — F’||; constraints
We apply L1 distance on ||[F — F’||;:

kK n
IF=F'i =) far (7)

r=1j=1

with constraints:

fA,r,j Z fﬁj - quvj,Vr S {1, ) k},j € {1, ,n} (8)
fA,r,j > _fr,j +fr/7_j7vr S {L?k}vj € {1,,7’?,} (9)
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In summary, when we estimate F', we optimize:

min (||[B — CPF|[ + ay - [|F - F'[|1)

with constraints (3)-(9).

2.3 Estimating S

2.3.1 J(S,C,C’) constraints

The term J(S,C,C") includes a phylogenetic relationship on the inferred cell
data C and the reference cell data C’, we define a phylogenetic structure with
a K x K directed adjacent matrix S, where K = 2k + 1, the first £ columns
indicate C, the next k£ columns indicate C’ and the last column indicates a
root with normalized copy numbers all-2 (diploid). We introduce a vertex set
T ={1,...,2k+ 1} that represents the set of all cells in S. Let r be the unique,
predetermined, root of T'. For ¢, u,v € T, we introduced the binary variables gfw
representing the amount of flow along edge (u,v) with destination ¢t € T. Then
the full constraints are:

flow conservation on the Steiner vertices:

D =D G VueTuz tuzkr (10)
inflow /outflow constraints on terminals in T
ngw:ZgzU, VueT,u#tu#r (11)
g =1, VteT t#r (12)
g, =0, Vv (13)

> =0 g, =1, VteT (14)

positive flow on an edge iff the edge is selected:
0<g., < Sy VEET (15)
no self loop:
Suu = 0, Yu (16)
binary variable for g, and s, ,:

gLy Suv € {0,1} (17)
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2.3.2 Phylogenetic cost

We then define the measurement for evolutionary distance across each edge (u,v)
in the tree as L1 distance of the copy number profiles of the edge endpoints(l¥, I%)
and introduce a minimum evolution model defined by S to estimate the phylo-
genetic cost:
E* R
J(S,C,.C) =" sun-llc; — cilu- (18)

u=1v=1

We define the phylogeny objective to be derived from normalized copy num-
bers, effectively ignoring ploidy changes in the evolution objective and measuring
distance from localized focal copy number variations only. One might plausibly
improve on this model by accounting for ploidy changes separately as evolu-
tionary events [8/9] or adopting a more nuanced general model of copy number
change, such as the MEDICC model [29]. The L1 distance of normalized copy
numbers is used as a heuristic because of the difficulty of incorporating these
other model types into the ILP framework.

2.4 Estimating C

2.4.1 C constraints

We impose some basic constraints on C': (1) all copy numbers are no larger than
a certain maximum number ¢p,q., which is set at 10 in our tests; (2) all copy
numbers must be integers.

Cir < Cmaz, Vi € {1,....m},r € {1,....k} (19)
cir €No,Vie{l,...om},re{l,....k} (20)

2.4.2 ||C — C’||; constraints

The ||C—C"||; term is not explicitly expressed in the objective function. Instead,
it exists in the J(S,C,C’) term since we apply L; distance between two nodes
in S as the edge weight (Eq. [I8). Then we redefine:

WA, = ||¢] 0 — €l (21)

with constraints:
WA uw,i = Ciay = Cia Vi € {1,...,2k+ 1} (22)
WA, > c;v — cf’u,W e{l,....2k+1} (23)

Wy = ZwA,u,v,i. (24)
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2.4.3 || XTCP — H'||; constraints

FISH probes each cover a genomic interval spanned by SCS data, so || XTCP —
H'||; provides a way to favor consistency between FISH and SCS data over
these intervals in the coordinate descent optimization. We note that one might
optionally weight this objective term to account for varying clonal frequencies
of the FISH cells, although we do not do so here. In this step, the known H’,
which represents the unnormalized FISH probes, provides additional constraints
on copy number in C'. To get these constraints, first of all, we define an array
Index describing mapping of FISH probe regions to SCS copy number regions,
where each item indicates the index of FISH probe in the single-cell data, and
we define X as follows:

X — 1,if i € Index and i = Index|j]
77710, otherwise

for Vi € {1,...,m}, and Vj € {1, ..., Index.Jength}
Then we impose L1 distance on || XTCP — H’|| and redefine it as:

s k
IXTCP—H'|[1 =) > zap. (25)

p=1r=1

with constraints:

m
li
ZA,p,r 2 pr,i . Ci,r *Pror — hpm,v]? € {L sy S}a
=1

(26)
re{l,.. k}

m
ZAp,r 2 - pr,i *Cir  Pror + h;,ravp S {17 "'78}7
i=1

red{l, ..k}

where s is the number of FISH probes, & is the number of cells.

2.5 Estimating P
2.5.1 P constraints

P is the diagonal matrix whose diagonal elements are the half ploidies (re-
scaling factors) to transform the normalized copy numbers to unnormalized copy
numbers. We also set lower (pm,) and upper (pmq,) bounds for p;;, and these
are set at 0 and 8 respectively in our tests below. The complete constraints are
then:
Di,j S pmax7Vi7j S {17 s k}
pi,j Z pmlnavza] S {1a cery k;}
pi,j € R+5Viaj € {15 ceey k}
Dij = O,VZ 75 j,i,j S {1, ,k}
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2.5.2 || XTCP — H'||; constraints

Unlike in in this step, C' is known from the computation in previous step
to update C, and we would like to update P. Indez is defined such that X7T
represents the normalized FISH probes, which we can compute after update C,
then X7 C can be redefined as Y. Then Y P is the unnormalized FISH probes.
We still impose L1 distance between Y P and H’ and redefine it as:

S

k
IYP—H'|li =33 haps (32)

p=1r=1
with constraints:
hA,p,r > Yp,r * Pror — h;),ravp € {17 (S S}7T € {L ey k} (33)
hapr > —Ypr * Drr + h;m,Vp e{1,...s},re{1,....k} (34)

where s is the number of FISH probes, k is the number of cells.

2.6 Glioblastoma data

We apply the method to SCS and copy number data from two glioblastoma
(GBM) patients (GBMO07, GBM33) previously described in [2I] for which we
have samples from 3 tumor regions per patient. In addition, we have FISH
data from cells in each region for 8 gene locus probes: PDGFRA(4q), APC(5q),
EGFR(Tp), MET(7q), MYC(8q), CCNDI1(11q), CHEKI1(11q), and ERG(21q),
several of which were selected because they are sites of recurrent amplifications
in GBM [32]. Indeed, both patients have copy numbers over 10 at several loci
and patient GBMO7 has an extreme amplification with copy numbers possi-
bly over 50, at PDGFRA. We continue our practice of setting an upper-bound
MAX_COPY=10 and modifying all observed copy numbers > MAX_COPY to
be equal to MAX_COPY=10 [2I]. The methods for designing FISH probes and
counting FISH copy numbers have been previously described [I8T9126].

2.7 Simulated data

We further rely on simulated data for validation due to the unavailability of real
data with known ground truth. We thus generate synthetic data for which all
ground truth properties are known, but with the goal of approximating as well
as possible characteristics of the true GBM data described in Sec. [2.6] For this
purpose, we generate six data structures per synthetic data set:

1. C: a matrix of normalized copy number profiles of all selected clones, used
to compose bulk tumor data
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2. C: a matrix of normalized copy number profiles of major clones in C, used
to evaluate the performance

P: a diagonal matrix of half ploidies of all selected clones

P: a diagonal matrix of half ploidies of major clones

F: a matrix of mixture fractions of all selected clones in each region

F: a matrix of mixture fractions of major clones in each region

S Ot w

We use a sample of true single-cell data from the GBMO07 dataset as sources of
realistic genome-wide normalized copy number vectors, representing SCS data
for a set of clones of unknown ploidym then artificially assign ploidies to the data.
We perform two versions of this assignment, one with ploidy fixed to diploid for
all clones and the other with ploidies sampled randomly to produce 60% diploid
clones, 30% tetraploid clones, and equal probability of all other integer ploidies
from 1 to 8. We then assign clones to tumor regions, with each region assigned
uniformly at random two “major” clones, two “minor” clones, and 23 “tiny”
clones, with individual cells sampled from Dirichlet distributions weighted by
clone type in the proportions 100:1:0.01. We sample artificial SCS data from
these clonal frequencies and optionally add noise in the form of perturbations
of copy numbers by +1 with frequency 10%. We then simulate FISH data from
these clones by taking the copy numbers of the two major clones for each region
and restricting them to locations where FISH probes appear in the real data. We
then extract the six major clones as the reference FISH data and corresponding
reference fractions for the optimization. Additional details on the generation of
simulated data are omitted here due to space constraints but are provided as
supplementary material.

3 Results

3.1 Evaluation on Simulated Data

3.1.1 No ploidy change

We first evaluate the method on simulated data with no ploidy changes, i.e.,
all diploid data, to provide a basis for comparison with pure deconvolution and
with our previous work [21], which did not explicitly model ploidy. Each test
makes use of bulk data and the ||B — CPF|| deconvolution objective, but we
vary tests by whether or not we use each of the other objective terms — || F —
F'||, J(S,C,C’) and || XTCP — H’|| — to determine how they contribute
individually or in combination to overall accuracy. As shown in Fig. [1] solving
the pure deconvolution problem alone yields poor average accuracy (top right,
red bar, Fig. , although the results improve substantially when we use true
SCS data to initialize the method (top left, blue bar, Fig. [1)). This observation is
consistent with our prior work [21], although the absolute accuracy of these two
variants is worse than in our prior work, perhaps because the current method
reduced the maximum number of iterations for the Gurobi solver from 100 to
10.
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Including the term J(S, C, C’) has a large positive effect on the copy number
inference but little impact on the mixture fraction inference (center left, blue
bar, Fig. . However, adding ||F — F’|| to the objective function, and thus
using FISH to correct inferred clonal mixture fractions, substantially improves
the inference accuracy for both mixture fractions and copy numbers (top left,
center left, green bar, Fig. We further found that the combination of the two
terms above (ay = 0.2,a1 = 0.2,a2 = 0.0) further improves the performance
in both copy number inference and mixture fraction inference (top left, center
left, cyan bar, Fig. , showing these two components of the objective act in a
complementary fashion.

The inclusion of || XTCP — H'|| alone (af = 0.0,a; = 0.0, a2 = 0.2), with
[|F — F'|| (afy =0.2,0q = 0.0,a0 = 0.2), or with J(S,C,C’) (ay = 0.0,y =
0.2, = 0.2) yields further improvement (top, violet, grey and orange bars,
Fig. |1)) in copy number and mixture fraction inference. Including the combina-
tion of || XTCP — H'|| and J(S,C,C’) (af = 0.0,a; = 0.2,as = 0.2) also
substantially improves mixture fraction inference (center left, blue and orange
bars, Fig. [1)) compared to J(S,C,C") (ay = 0.0,a; = 0.2, a3 = 0.0). These re-
sults show that the improvements from each objective component and from FISH
and SCS data are cumulative. Furthermore, the model with all three penalties
(af =0.2,01 = 0.2,2 = 0.2) yields the best results for mixture fraction infer-
ence and both normalized and unnormalized copy number inference (top left and
right, center left, and bottom left coral bar, Fig. , although it is marginally
worse than (ay =0.2,a; = 0, a2 = 0.2) for ploidy inference.

We then examine the robustness of the model to noise. As described in
Sec. we optionally introduced 10% noise to the reference data. The results
are similar to those ones without noise and yield qualitatively similar conclu-
sions, although the improvement in the copy number accuracy in the complete
model (ay = 0.2,a1 = 0.2, a = 0.2) is slightly worse than the model only incor-
porating FISH and SCS (ay = 0.2,aq7 = 0,a2 = 0). Although the model loses
some accuracy, it is fairly robust to moderate noise with the current parameters

(Fig. [2).

3.1.2 With ploidy change

We next examine performance when samples can have variable ploidies. We
observe overall lower accuracy of inference across tests when ploidy is variable,
although a qualitatively similar profile to the diploid case in Sec. in how dif-
ferent combinations of objective function terms contribution to accuracy. Pure
deconvolution without any information performs much worse without the as-
sumption of diploidy (top left, red bar, Fig. [3). Combining the J(S,C,C’) and
|| XTCP — H'|| terms, ie., (ay = 0.0,a7 = 0.2,a2 = 0.2), yields much more
obvious improvement when ploidy is variable (top left, blue and orange bar,
Fig. , though the standard error becomes larger. Furthermore, the model with
all three terms yields the best accuracy by all of the measures considered (coral
bar, Fig. [3)) and in every case, adding in a term of the objective leads to im-
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Fig. 1. Average accuracy and RMSD of the deconvolution without noise and without
ploidy change (n=10). Each bar with different color represents a deconvolution model
with different information. In the label table at the bottom right, the numbers represent
the value of ay, a1, as, which are regularization terms for ||F — F'||, J(S,C,C"’) and
[|XTCP — H’||, respectively. 0.0 means the corresponding term is not included in
the model. The number in parenthesis indicates the standard error of each model, the
number under the bar indicate the mean of each model.
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Fig. 2. Average accuracy and RMSD of the deconvolution with 10% noise and without
ploidy change (n=10). Each bar with different color represents a deconvolution model
with different information. In the label table at the bottom right, the numbers represent
the value of ay, a1, as, which are regularization terms for ||F — F’||, J(S,C,C"’) and
[|XTCP — H’||, respectively. 0.0 means the corresponding term is not included in
the model. The number in parenthesis indicates the standard error of each model, the
number under the bar indicate the mean of each model.
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Fig. 3. Average accuracy and RMSD of the deconvolution without noise and with
ploidy change (n=10). Each bar with different color represents a deconvolution model
with different information. In the label table at the bottom right, the numbers represent
the value of ay, a1, as, which are regularization terms for ||F — F’||, J(S,C,C"’) and
[|XTCP — H’||, respectively. 0.0 means the corresponding term is not included in
the model. The number in parenthesis indicates the standard error of each model, the
number under the bar indicate the mean of each model.
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provement by each measure, showing that each term contributes synergistically
to overall accuracy when ploidy is variable.

When we introduced 10% noise to the data, the conclusion is qualitatively
similar (Fig. . The complete model (ay = 0.2,y = 0.2,a2 = 0.2) again
performs the best by all evaluation measurements.

3.1.3 Phylogenetic output

Finally, we compare the phylogenetic outputs of the current models. Since the
phylogenetic results from the experiments with no ploidy change are trivial (all
the ploidies are around 2), we only consider the models with ploidy changes
here. We choose the case with the highest overall accuracy of copy number as
representatives and plot the phylogenetic trees of three different models that
introduce the J(S,C,C’) term, J(S,C,C’) term, and || XTCP — H’|| term,
and all three terms, respectively (Fig. . In each case, nodes 0-5 represent the
reference cells we observed from the available SCS data, nodes 6-11 represent the
inferred cell components constructed by the algorithm, and node 12 represents
the assumed diploid root. In each node, we use the notation Nodeldz;Ploidy to
denote the index of a cell component (cell subclone) and its corresponding ploidy.
For example, 12;2 represents the 12* cell component (root) and the ploidy of
this cell component is 2.

When we only include the J(S,C,C") term ((ay = 0.0,a1 = 0.2, a2 = 0.0)),
most of the inferred cell components yield unrealistically large copy numbers
of 8.0, and the observed and inferred cell components tend to cluster together
(Fig. [5] (a)). This may be due to a model tendency to enlarge the ploidy of each
inferred cell component to compensate for the deviation between copy number
vectors in observed cell components.

When we additionally add the || XTCP — H’|| term to update the model
((af =0.0,a1 = 0.2, a0 = 0.2)), the ploidy of inferred cell component becomes
more realistic, and the inferred and observed cell components show less obvious
partitioning (Fig. [5| (b)). We observe that the diploid cell components tend to
cluster together (e.g., node 2—node 8) and tetraploid components tend to clus-
ter together (e.g., node 6—mnode 3). We infer potential WGD events between
diploid and tetraploid cell components (e.g. node 5—node 6). This again sug-
gests that the ploidy information from FISH data helps to correct for inferences
difficult to make from sequence alone and restore a meaningful phylogenetic
structure with ploidy inference among the cell components. The result of intro-
ducing ||F — F’|| and J(S,C,C’) together yields a similar pattern (data not
shown), suggesting as we might expect that more accurate frequencies can also
correct for the ambiguity in inference of F' and C' simultaneously that makes the
pure copy number deconvolution problem challenging. When we use the complete
the model ((ay = 0.2,a1 = 0.2, a2 = 0.2)), the phylogenetic tree becomes more
branched, and the diploid and tetraploid cell components are perfectly divided
into different branches (node 0—node 7, root—node 10 and root—mnode 11).
Also, the potential WGD events are inferred to happen earlier in the progres-
sion (root—mnode 10 and node 5—mnode 0). Furthermore, unlike in the previous
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Fig. 4. Average accuracy and RMSD of the deconvolution with 10% noise and with
ploidy change (n=10). Each bar with different color represents a deconvolution model
with different information. In the label table at the bottom right, the numbers represent
the value of ay, a1, as, which are regularization terms for ||F — F'||, J(S,C,C"’) and
[|XTCP — H’||, respectively. 0.0 means the corresponding term is not included in
the model. The number in parenthesis indicates the standard error of each model, the
number under the bar indicate the mean of each model.


https://doi.org/10.1101/2020.02.29.970392
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.29.970392; this version posted March 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Sequencing and FISH Copy Number Deconvolution 17

Qinferred cell components

(Q observed cell components

Fig. 5. Phylogenetic tree for observed and inferred cell components. The yellow node
represents a diploid root cell, the pink nodes are observed cell components and the light
blue nodes are inferred cell components. The number pair inside each node provides
Nodelndex; Ploidy. (a) is the result from the model only including the J(S,C,C")
term, (b) from the model including J(S,C,C’) and || XTCP — H’||, and (c) from the
complete model.
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trees (e.g., node 10—node 2 in Fig. [5[ (b)), we see no biologically implausible
reversion of WGD events. In addition, although most simulated ploidies in the
representative data are tetraploidy, the model is still able to infer a triploidy
case (node 9—node 3). All these observations again confirm that the complete
model ((ay = 0.2,a; = 0.2,a2 = 0.2)) not only restores the heterogeneity with
best accuracy and performance but also provides the most plausible phylogenetic
structure for all the cell components.

3.2 Real GBM Data

Finally, we apply the complete model with predefineded parameters ((ay =
0.2,1 = 0.2, a2 = 0.2)) on the real glioblastoma cases GBM07 and GBM33. The
data include unnormalized copy numbers of bulk sequencing, normalized copy
numbers of single-cell sequencing, and unnormalized copy numbers of FISH with
estimated ploidies. We apply the k-median clustering method on SCS samples
and FISH samples to choose k = 6 clusters as the reference cells and reference
FISH. The copy numbers of bulk samples, profiles of copy number (SCS and
FISH) of the cluster centers and profiles of ploidy (FISH) of the cluster centers
are the inputs to our the model. We run the method multiple times with different
randomly selected real reference data.

Fig. [6] shows typical representative solutions for each case. Since in the real
SCS samples, we do not have the true ploidy information, we use “?” to label
the ploidy in observed cell components ((c) and (f) in Fig. [6). We first focus on
GBMO7 case (Fig.[6] (a)-(c)). We observe a pattern of focal CNAs consistent with
those described previously in [21] based only on bulk and SCS data. Previous
work showed that glioblastomas tend to display at least some chromosome-scale
CNAs, such as chromosome 7 gain, chromosome 9p loss and chromosome 10
loss [TTMI2/T]. The inferred cell components here all show gain of chromosome
7 and loss of chromosome 9p, suggesting these are early events in the tumor’s
evolution. Four of the inferred components also show loss of chromosome 10
(Fig. [6] (a)). In addition to the frequent aberrations in chromosome 7, 9 and
10, other chromosomes also display gain (e.g., chromosome 1, 3, 19, 20) and loss
(e.g., chromosome 6, 11, 13, 14). There is, however, some notable clonal hetero-
geneity, similar to inter-tumor heterogeneity observed in systematic studies of
GBM [11/24].

Several studies have shown that WGD occurs in about 25% of glioblamstoma
cases [7/45] and have suggested that it is an early event when it occurs. Our
model for the GMBO07 tumor supports an inference of two distinct WGD events
on distinct cell lineages: an early WGS in the transition from components 12
to 2 and a late WGD event in in the transition from component 0 to 3. This
inference that there are multiple WGD events depends on having both sequence
data supporting the tree topology and FISH data supporting the specific ploidy
changes and therefore supports the value of the miFISH analysis in providing
more direct measurements of ploidy and allowing sampling of larger numbers
of cells, and thus better detection of rarer clones. Although we do not have
information about the ploidy for the observed cell components, we may infer
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Fig. 6. Application on real GBMO7 ((a)-(c)) and GBM33 ((d)-(f)) cases . (a)(d) The
copy number of each chromosome in inferred cell component CO (top) to C5 (bottom),
axis indicate the chromosome, 1-22 represent autosome, 23 represents X chromosome
and 24 represents Y chromosome . (b)(e) The corresponding fraction of each inferred
cell component. (¢)(f) The phylogenetic relationship among the observed cell compo-
nents (pink) and inferred cell components (light blue).
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them based on the fact that the components with similar ploidy tend to occur
in the same branches on the tree (Fig. 5| (¢)). A manual maximum parsimony
imputation of WGD events suggests that observed component 6 is most likely
tetraploid and all other observed components are most likely diploid.

Prior pan-cancer studies have suggested that WGD often touches off a cas-
cade of more localized CNA losses, with particular marked chromosome losses [37].
Pronounced focal CNA is evident in all of our inferred components. For example,
we find that component 1 exhibits widespread CNA events with losses occur-
ring in chromosome 9p,while component 2 and 5 exhibit more obvious losses in

chromosome 9p and 10 after WGD (Fig. [6] (a); node 1, 2, 5 in (c)).

Studying mixture fractions of the inferred clones provides additional insight
into likely GBM progression. We found that component 4 (blue bar in Fig. |§| (b))
has a relatively large proportion in all three regions, suggesting this might be
closer to an ancestral population from which the tumor as a whole arose. That
is consistent with the finding that chromosome 7 gain and chromosome 9p loss
found in this component are early CNA events in the tumor and perhaps key
drivers of tumorigenesis. Noticeable proportions of components 2, 3, and 5 are
found in at least in one region (pink, grey and orange bars in Fig. [6] (b)) but with
sizable differences by region. This inference is again consistent with the idea the
tumor has been shaped by multiple distinct WGD events, with different regions
of the tumor dominated by cell lineages tracing to different WGD events.

Fig. [6] (d)-(f) show the results for the GBM33 case. Although we observe
some similar events to GBMO7, such as (partial) gain in chromosome 7 and
loss in chromosome 9p and partial loss in chromosome 10, the global pattern
of CNA is quite different. First, GBM33 exhibits a pattern more dominated by
focal CNA rather than chromosome-scale changes. Second, GBM33 shows less
extreme change at sites of high amplification than does GBMO7 even where they
amplify common loci (e.g., large copy numbers in chromosome 4, Fig. |§|, (a),
(¢)). Third, there seems to be less tetraploidy or WGD events in GBM33 ((f)
in Fig. @) A single clone 5 is inferred to be approximately tetraploid and it is
inferred to be ancestral to a single approximately triploid clone 2, consistent with
a recurrent pattern of transition from tetraploid to pseudotriploid observed in
past miFISH study of WGD-prone tumors [26]. We can infer that the observed
single cells are largely diploid, although it would be ambiguous in a maximum
parsimony analysis whether clones 7 and 8 are diploid (corresponding to a single
WGD in the descent from 1 to 7) or tetraploid (corresponding to a single WGD in
the transition from 7 to 5). Fourth, GBM33 overall shows less pronounced clonal
heterogeneity, with the single diploid clone 1 dominant in all three tumor regions.
Notably, the tetraploid clone is inferred to be fairly rare, with the pseudo-triploid
clone slightly more common but still minor. The quite different reconstruction
in the case of GBM33 versus GBMO07 indicates that the method is sensitive to
variations in profiles of CNA tumor-to-tumor.
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4 Conclusions and Discussion

We have extended tumor phylogeny methods to incorporate copy number mea-
surements by DNA-FISH, in addition to bulk and single-cell sequence data, as
a source of more precise measurements of tumor ploidy and clonal frequencies.
The results show that each source of data contributes separately to a more ac-
curate picture of copy number evolution in cancers, with the combination of all
three data types yielding improved accuracy in resolution of whole-genome copy
number profiles. We demonstrate by application to a pair of glioblastoma cases
that the new methods can provide novel insight into the role of copy number evo-
lution in single cancers. The results suggest the value of supplementing sequence
data with additional data sources such as miFISH in accurately reconstructing
evolution by CNA mechanisms in tumors exhibiting chromosome instability.

The work described here suggests a number of avenues for further research.
One limitation of our method is that few tumors currently are studied by the
combinations of technologies examined here. We suggest that it will be enlighten-
ing to conduct further studies where sequence is paired with miFISH, or perhaps
alternative methods providing similar ability to estimate ploidy and/or clonal
frequency more accurately, particularly for understanding evolution in cancer
types prone to chromosome instability and aneuploidy. Second, the present work,
like our prior work [21], suggests the value of an accurate single-cell phyloge-
netic model in improving deconvolution. Accurately reconstructing evolutionary
trees in copy number space, even with known single-cell data, remains a chal-
lenging problem. While there is prior theory for reconstructing copy number
evolution [9/T5], no models are comprehensive for all of the mechanisms of CNA
evolution we know about and developing comprehensive models that are scal-
able to large single-cell, whole genome data remains a challenge. There are also
many other alternative technologies that might be incorporated into the mix of
multi-omic data to improve phylogeny inference (e.g., long read or linked read
sequencing, single-cell RNA-seq and bulk RNA-seq) that have been considered
in other work (e.g., [31]) and might provide other synergistic advantages for the
present problem. In addition, there is likely room for improvement in better
solving the central optimization problem of our work. Additional data (omit-
ted for space) shows that increasing the number of rounds of optimization from
10 to 100 frequently leads to improvement in the objective function, although
this improvement translates into negligible change in mean accuracy and RMSD
measures. This observation suggests potential for improvement in both the def-
inition of the objective function, to better match true solution quality, and in
the algorithms, for efficiently solving for the objective.
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A Supplementary Material

A.1 Supplementary Methods

A.1.1 Coordinate descent for deconvolution

The original deconvolution problem shown in Eq.[l]is non-convex, and it is hard
to derive a closed form for the solution, so we apply a coordinate descent method
to solve F, S, C, P iteratively by following the order of Sec. to Sec. with
the corresponding constraints for each term (Algorithm .

Algorithm 1: Modified Coordinate Descent Algorithm for Deconvolu-
tion

1 =1

H’ = reference copy number at FISH probes;

F’ = reference fractions;

C’ = reference single cell;

c® = diploid initialization;

P® = initial ploidy;

distance = +o0;

dnormg = 0;

while distance > threshold do

F9 « argming(||B - CYPYF|| —a;-||F — F’'||) given constrains
(3)-(9);

S « argming(S - ||C? — C’||) given constrains (10)-(17);

CY «— argming(||B — CPYFY|| — o, - J(8Y,C, C’) given constraints
(19)-(27);

PY « argming(||B - CYOPFY|| -y - || XTCY P — H'||) given
constraints (28)-(34);

dnorm = ||[B — COFW|%,;

distance = ||dnormo-dnorm|[;
dnormg < dnorm;
141+ 1;

if ¢ > Maxiter then
| quit the loop
end

end

A.1.2 Extending the reference FISH matrix

The original Index contains the indices of the 8 original FISH probes that in
the SCS data. However, compared to the 9934 genomic positions in the SCS
data, 8 probes only contribute a very tiny portion to the copy number infer-
ence. Alternately, we find that the genomic positions around the FISH probes
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are highly correlated (Fig. , then we extend the Index by adding to it the
consecutive genomic positions that are highly correlated with the FISH probes
(light blocks in the Fig. threshold=0.95).We use two pointers to make sure
the correlated genomic positions are consecutive to each other and to the FISH
probe (Algorithm, and those positions that may be also highly correlated but
far away in the genomic positions or even in the different chromosomes would
not be considered as correlated.

Algorithm 2: Extend the Index of FISH probes

corrMat < correlation matrix of genomic position in SCS;

Extend Index < empty list ;

for p in Index do

tempArr < empty list;

pointerl, pointer2 = p, p;

while TRUE do

if pointerl >= 0 and corrMat[pointerl, p] >= threshold then
‘ add pointerl to tempArr;

pointerl = pointerl + 1;
else if pointer2 >= 0 and corrMat[pointer2, p] >= threshold then
add pointer2 to tempArr;
‘ pointer2 = pointer2 - 1;
else
‘ quit the loop;
end

end
add every element in tempArr to Fxtend Index;

end
Index < Extend Index

A.1.3 Semi-Synthetic Data Simulation

This section describes our protocol for simulating data to test the algorithms.
The guiding principle of the method is to generate a ground truth dataset,
in which all properties are known and resemble the GBM data, then subsam-
ple artificial bulk, SCS, or FISH data from that single ground truth. We set
NUM_REGIONS=3 and NUM_PROBES=8 and MAX_COPY=10 to match the
GBM data. We define this ground truth in terms of six data structures:

1. C: a matrix of normalized copy number profiles of all selected cells, including
major, minor and tiny clones. Each column of C corresponds to a ground
truth single cell and each row to the mean copy number at a single genomic
locus, where it is assumed the rows collectively span the full genome. We
assume each cell (column) is normalized to mean diploid count.
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Fig. S1. Correlation matrix for genomic positions. The light blocks indicates the
neighbouring genomic position are highly corrleated in positive direction. For each one
of 8 original FISH probe indexes, We search the consecutive genomic positions that
are highly correlated with it and add it to Index, so that we extend the original Index
from length of 8 to the length around 100 (please also refer to Fig. step (9)).
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2. C: a matrix of normalized copy number profiles of major clones in each tumor
region. According to previous description, C was generated by picking the
first two components in C and used to calculate copy number accuracy and
RMSD for performance estimation.

3. P:a diagonal matrix of half ploidies, where each non-zero element p;; pro-
vides a scaling factor to convert the diploid row ¢; to absolute (unnormalized)
copy numbers.

4. P: a diagonal matrix of half ploidies, where each non-zero element p;; pro-
vides a scaling factor to convert the diploid row ¢; to absolute (unnormalized)
copy numbers.

5. F: a matrix of mixture fractions, where each row corresponds to a selected
cell and column defines a probability density describing frequency of occur-
rence of each cell type in the bulk samples.

6. F': a matrix of mixture fractions, where each row corresponds to a major clone
and column defines a probability density describing approximate frequency
of occurrence of each major clone in the bulk samples. F is derived from F,
but column is also normalized to 1.

We first define this ground truth model, then generate simulated data of each
needed type by sampling from the model. These processes are described step-
by-step below.

genomic loci
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Fig. S2. Workflow of the simulation and deconvolution. The figure shows the
process from real SCS data to select SCS clones, sample ploidies, simulate mixture
fractions, simulate FISH and simulate bulk genomic data. We then deconvolve the
bulk data into copy number profiles of a set of inferred clones each with a defined
ploidy and set of mixture fractions across tumor regions, as well as a phylogenetic tree
relating these clones. We then compare these outputs with the ground truth data to
evaluate our model. Further methodological details are provided in the text. Note that
the images in this figure are purely illustrative and do not show true data from any
particular analysis.
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Selecting clones from SCS data We first select copy number vectors to instanti-
ate the normalized copy numbers in C and identify these as clones of the model.
We use the true SCS data for this purpose. We uniformly at random select 25
single cells from each of the NUM_REGIONS regions to have 75 cells in total, of
which the copy number and ploidy make nonzero contribution in the simulated
bulk tumor sample later. The true copy number data of the selected cells define
the columns of C. Of the 25 single cells from each region, we denote the first 2
as major clones or high-frequency clones, and the remaining 23 cells as minor, or
low-frequency, clones for that region. For each region, we model the assumption
that, within the tumor, cells from the other occur but with very small frequency.
Thus for each region, we designate the 50 cells from the other two regions as tiny
clones, which will let these cells effectively serve as noise in the analysis (Fig.
step (1)). The two major clones from each regions to compose C, which has 6
clones in total (Fig. step (2)).

Sampling ploidies Since the real single-cell sequencing data have been normal-
ized, the ploidy profiles for all samples have been set to 2 (diploidy) by default,
and we call them normalized cell. The normalized cells are a standard target
to study tumor evolution, however, the ploidy information is also important dur-
ing tumor evolution [I3/4]. Since we do not know the correspondence between
ploidies and WGS copy number vectors in the ground-truth data, we simulate a
ploidy for each cell. We sample a ploidy independently for each ground truth cell.
We give each ground truth cell ¢ a probability 5, of being diploid, corresponding
to p;; = 1. We give it a probability 2 of tetraploidy, corresponding to p;; = 1.
We then allow a probability f3(= 1 — 51 — 2) of some other ploidy, selected
uniformly from [1, 3,5, 6,7, 8]. Currently, 8; = 60%, 82 = 30%, 83 = 10%. Thus,
at present:

0.3, i=4

P(L=i) =106, i=2
0.1/6,i € {1,3,5,6,7,8}

where L represents the ploidy number for and P(L) is the probability of each
ploidy number, then we have an additional tag of ploidy number for each SCS

sample (Fig. step (3)).

Sitmulating mizture fractions We next assign mixture fractions F to the clones.
We follow our previous work [2I] to use a Dirichlet distribution Dir(7y), to as-
sign multinomial frequencies to clones selected as in ~ is a vector of
concentration parameters that allows different cell components to have different
contributions in the bulk tumor. The vector -~ is generated to model that in the
Dirichlet distribution, all regions have a equal prior probability of contributing
to the bulk tumor. Following our previous work [21], for each region, we set ~
to be 100 for these major clones, 1 for the these minor clones and 0.01 for these
tiny clones. Because there are three regions, we take the sum of the three vectors
v, one for each region, and use the sum as the parameters to the Dirichlet dis-
tribution. Then we retrieve the simulated fractions of major clones to compose
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F, and normalize each column to 1 (Fig. step (4)), this would be used as
fractions RMSD calculation later.

Sitmulating bulk genomic data Once we have defined a ground truth dataset,
we simulate each source of input data for a given problem instance from this
common ground truth. We first simulate bulk data from the reference model by
assuming that each regions samples all clones from their ground truth propor-
tions and with the ground truth copy number vectors and mixture fractions.

That is, we simulate the input bulk matrix B as CPF.

Simulating FISH copy number profiles We next simulate FISH data using the
genomic positions of the same NUM_PROBES loci as in the real data. Because
we require the ground truth mapping of simulated FISH to whole-genome copy
number vectors, we do not use true FISH probe counts or assigned ploidies for
this simulation. We assume known absolute genomic positions of Spegin and Send
of each genomic interval in C and absolute genomic loci Hyegin, and Hepq of all
FISH probes according to the reference genome hgl9. This provides us a way to
retrieve corresponding copy number as the copy number of probes in FISH. We
also save an array Index mapping overlaps of SCS intervals and FISH probes
for later use.

To simulate a FISH cell in a region, we use the two major clones for the region
and restrict their copy numbers to the intervals overlapping the FISH probe. If
the interval for a given FISH probe is included in a given SCS interval, we assign
the FISH probe count to be the copy number of the corresponding SCS interval.
If the FISH probe crosses two SCS intervals, we assign the FISH probe count to
be a weighted average of the copy numbers of the two SCS intervals, weighted
by the length of the FISH probe in each SCS interval (Fig. step (6)). No
FISH probe covers more than two SCS intervals in the real data, so we do not
consider any other cases.

We also optionally randomly perturb copy numbers to simulate errors in
FISH probe counts before transferring them to be unnormalized. This can be
represented in terms of noise parameter ¢y, where with probability gf a probe
count will be increased by 1, with probability g it will be decreased by 1 unless
already zero, and with probability 1 — 2gy it will be unaltered. Both before and
after adding noise, the FISH copy numbers are capped at MAX_COPY.

We repeat this process for 1000 FISH cells in each of NUM_REGIONS tumor
regions to generate a simulated FISH data set (Fig. step (5)).

Simulating FISH frequencies We assume that the FISH data provide an ap-
proximate measure of the distribution of clonal fractions. From the 1000 FISH
cells simulated in [A71.3] we calculate the fraction of each FISH cell for each re-
gion by calculating the proportion of each FISH cell out of the total number of
FISH cells (1000), and then extract the fractions of the first two largest clones
from each region. We combine these fractions and allow the sum of each column
to be less than 1, since in real data, it is possible that there would be a small
proportion of cells that are not represented by the major clones. Then the re-
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sulting fraction matrix F/ represents the fraction of each major clone across the
FISH cells for each region, which can be used as reference for the fractions of
the major clones in SCS data (Fig. step (7)).

Simulating SCS data To simulate a set of SCS data, we select cells indepen-
dently at random from C with probabilities for each cell in each region as defined
in F. The resulting SCS matrix C’ would then consist of normalized single cells,
where each column of C’ initially corresponds to some column of C, allowing for
repetition (Fig. step (8)).

We further allow the data to be perturbed by a noise model with parameter
qs, where with probability ¢s each copy number will be increased by 1, with
probability ¢, it will be decreased by 1 unless already zero, and with probability
1 —2q, it will be unaltered. Also, we would not allow for copy number to exceed
10 after perturbing the noise.

A.2 Supplementary Results
A.2.1 Deconvolution without SCS Data

We initially tested our model in the scenario where we do not have real SCS
data but only have FISH available. To incorporate the tree part of the objective
function, we make an artificial reference cell matrix with all diploid copy number
for every entry. We do the same process as described in Sec. [3] Fig[S3]shows the
average result. From the top to bottom are the results without noise and with-
out ploidy change, with 10% but without ploidy change, without noise but with
ploidy change, with 10% and with ploidy change, respectively. We can find that,
compared to the results in Fig. [1] and [3] the performance was worse for most of
the cases. This observation suggests that the real SCS data plays an important
role in the reference, which is consistent with the conclusion of our previous
work [2I]. However, this loss is not obvious if we do not perturb the ploidy, as
assuming diploid reference cells effectively provides an informative prior proba-
bility for the inference. When we implemented the change of ploidy, the difference
of performance with and without real SCS become evident. Nonetheless, the ad-
dition of FISH data still substantially improves accuracy relative to inference
from bulk sequence data alone.

A.2.2 Deconvolution with different number of iterations

As mentioned in our current model reduced the maximum number of itera-
tions for the Gurobi solver from 100 to 10 relative to our earlier work, as we found
that increasing the number of iterations could greatly increase run time while
generally not significantly improving our quantitative measures of performance.
Here, we evaluate the effects of this change by showing performances with two
different maximum numbers of iterations (Fig. in the case of 10% noise and
with variable ploidy In all cases, optimization can terminate before the
maximum number of iterations based on the convergence test of Algorithm
The cyan box shows the results of maximum iteration = 10 and violet box shows
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Fig. S3. Average accuracy and RMSD of the deconvolution without real
SCS data. From (a) to (d) are the results without noise and without ploidy change,
with 10% noise but without ploidy change, without noise but with ploidy change, and
with 10% and with ploidy change, respectively. In each subplot (a) to (d), the barplot
shows the average accuracy of copy number, average RMSD of copy number, average
RMSD of fraction and average RMSD of ploidy. All the labels are the same and the
numbers represent the value of af, a1, a2, which are regularization terms for ||F — F”||,
J(S,C,C’") and || XTCP — H’||, respectively. 0.0 means the corresponding term is
not included in the model
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the results of maximum iteration = 100. We can see that though there is some
variation between each pair of results, the average values show no consistent
pattern of improvement with increasing numbers of iterations and no significant
difference between the two. While additional rounds of optimization do some-
times lead to better solutions, the results suggest that improvement is generally
small and that further refinement of the objective function does not reliably
translate to better solutions as assessed by our performance measures.

vvvvv 11 RMSD of copy number on overall RMSD of freas overall RMSD o ploidy. .45 overall RMSD of unnormalized copy number

1SD of copy number

ovaat RS f race S 50 ot ity . 888 RUED of unnormalnd copy mbar
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= ==
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Fig. S4. Performance comparison for varying numbers of maximum itera-
tions of optimization. This figure shows differences in performance for 10 versus 100
maximum iterations of optimization in the case of 10% noise and variable ploidy. Cyan
boxes represent results of maximum iterations = 10 and violet boxes represent results
of maximum iterations = 100. From the left to the right, we present the performance
comparison in overall copy number accuracy, overall RMSD of copy number, overall
RMSD of frequency, overall RMSD of ploidy and overall RMSD of unnormalized copy
number, respectively.

A.2.3 Sensitivity to parameters change

In the previous sections, we turned on or off the three parameters (ay, as, az)
by setting them either to 0.2 or 0.0. We chose 0.2 heuristically as a good default
value for similar regularizations in our previous work [2I]. In this section, we
explored the question of sensitivity of the parameters to determine whether the
results would be highly dependent on parameter choices. To evaluate this, we
performed a parameter scan around the value of 0.2 to test different combinations
of the three parameters, focusing specifically on the case of 10% noise and with
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variable ploidy. In the set of parameter combinations, we found that the model is
minimally sensitive to changes of parameters in the measurement of normalized
copy number but somewhat more sensitive to the change of parameters in the
measurement of frequency, ploidy and unnormalized copy number (Fig. [S5). For
example, when we fix as to be 0.1, the average performances in each heatmap
does not change much in copy number inference (1%¢ and 2"? columns in Fig.
but shows a little bit more oscillation in the rest of measurements when we in-
crease ay and\or oy (374, 4" and 5" columns in Fig. . When we fixed oy and
a1, we observed that ploidy inference does not reveal a simple pattern of bet-
ter or worse average performance across different combinations of parameters,
which indicates that the parameters may influence performance in a more com-
plicated way. Further, there is no one ideal parameter set for all measures, but
rather improvement by different measures with different parameter variations.
Nevertheless, the default setting of parameters (ay = 0.2,aq = 0.2,a2 = 0.2)
seems to yield a good consensus that provides a reasonable set of trade-offs in
the performance across all the measurements (3"¢ and 4" rows in Fig. .
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Fig. S5. Model performance for different combinations of parameters. This
figure shows the results of sensitivity tests on semi-simulated data, where we vary the
value of az to be 0.1, 0.18, 0.2, 0.22, 0.3. For each a2 across subfigures, we provide
complete combinations of ay and a; in (0.1, 0.2, 0.3) or (0.18, 0.2, 0.22) in each figure.
From the left to the right, we present the performance in overall copy number accuracy,
overall RMSD of copy number, overall RMSD of frequency, overall RMSD of ploidy and
overall RMSD of unnormalized copy number, respectively. In each case, we model 10%
noise and variable ploidy. The value in each block represents the average performance
of n = 10 experiments.
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