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Abstract 
Recent neuroimaging experiments have defined low-dimensional gradients of 
functional connectivity in the cerebral cortex that subserve a spectrum of capacities 
that span from sensation to cognition. Despite well-known anatomical connections to 
the cortex, the subcortical areas that support cortical functional organization have 
been relatively overlooked. One such structure is the thalamus, which maintains 
extensive anatomical and functional connections with the cerebral cortex across the 
cortical mantle. The thalamus has a heterogeneous cytoarchitecture, with at least two 
distinct cell classes that send differential projections to the cortex: granular-projecting 
‘Core’ cells and supragranular-projecting ‘Matrix’ cells. Here we use high-resolution 
7T resting-state fMRI data and the relative amount of two calcium-binding proteins, 
parvalbumin and calbindin, to infer the relative distribution of these two cell-types 
(Core and Matrix, respectively) in the thalamus. First, we demonstrate that thalamo-
cortical connectivity recapitulates large-scale, low-dimensional connectivity gradients 
within the cerebral cortex. Next, we show that diffusely-projecting Matrix regions 
preferentially correlate with cortical regions with longer intrinsic fMRI timescales. We 
then show that the Core–Matrix architecture of the thalamus is important for 
understanding network topology in a manner that supports dynamic integration of 
signals distributed across the brain. Finally, we replicate our main results in a distinct 
3T resting-state fMRI dataset. Linking molecular and functional neuroimaging data, 
our findings highlight the importance of the thalamic organization for understanding 
low-dimensional gradients of cortical connectivity. 
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Introduction 
Advances in whole-brain neuroimaging have identified low-dimensional gradients in 
the cerebral cortex that interconnect sensorimotor regions with limbic structures 
(Margulies et al., 2016; Mesulam, 1998). Recent work has shown that these same 
gradients are underpinned by structural differences that have long been known to 
comprise the cerebral cortex (García-Cabezas et al., 2019), including circuit complexity 
(Paquola et al., 2019; Vázquez-Rodríguez et al., 2019) and the extent of cortical 
myelination (Burt et al., 2018; Demirtaş et al., 2019). Circuit complexity and 
myelination are presumed to differentially enforce coupling between structure and 
function (Fallon et al., 2020), with granular sensory regions more closely tethered to 
their structural constraints than associative agranular regions (Paquola et al., 2019; 
Vázquez-Rodríguez et al., 2019). The complexity of cortical circuitry has also been 
shown to underpin a gradient of temporal scales across the brain, with associative 
regions fluctuating across relatively longer time scales than sensory regions (Honey 
et al., 2012). Comparable low-dimensional gradients have also been observed in task 
contexts (Shine et al., 2019a) and share similarities with meta-analytic studies of task 
fMRI (Margulies and Smallwood, 2017), suggesting that the low-dimensional 
gradients in the cerebral cortex may be a crucial factor underlying whole-brain 
functional organization. 
 
A phylogenetic perspective on the brain (Cisek, 2019) suggests that the cortex is 
supported by several subcortical structures that shape, constrain, and augment its 
activity on a moment-to-moment basis. One such structure that is crucial for shaping 
whole brain dynamics is the thalamus (Halassa and Sherman, 2019; Jones, 2009; 2001; 
Shine et al., 2019b) (Figure 1). Located in the diencephalon, the thalamus is 
reciprocally connected with the entire cerebral cortex, along with primary sensory 
receptors (such as the retina and dorsal column tract) and numerous other subcortical 
systems (such as the basal ganglia, superior colliculus and cerebellum). These inputs 
innervate distinct, anatomically-segregated sub-nuclei within the thalamus (Figure 1) 
that are surrounded by the shell-like GABAergic reticular nucleus (Jones, 2001). 
Through activity-dependent GABAergic inhibition of cortically- and subcortically-
driven activity, the thalamus likely plays a crucial role in shaping and constraining 
patterns of whole-brain dynamics (Halassa and Sherman, 2019; Jones, 2009; 2001). 
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Figure 1 – The Cytoarchitecture of the Thalamus. A) Matrix (blue) and Core (green) thalamic 
populations have distinct projection patterns: Core cells innervate granular layers of the cerebral cortex 
in a specific fashion, whereas Matrix cells innervate supragranular cortex in a relatively diffuse manner. 
Color intensity denotes the relative expression of CALB1 and PVALB in different thalamic subnuclei 
(Jones, 2009; 2001); B) Axial (upper), coronal (lower left) and sagittal (lower right) loading of calbindin 
values (CALB1; blue) and parvalbumin values (PVALB; green) within the thalamus. 

 
Individual sub-nuclei within the thalamus innervate distinct regions of the cerebral 
cortex (Figure 1A) (Jones, 2009; 2001). In addition, each thalamic sub-nucleus is 
comprised of a mixture of excitatory neurons that project in unique ways to the 
cerebral cortex (Clascá et al., 2012; Jones, 2009). Specifically, Parvalbumin-rich ‘Core’ 
cells (Figure 1B; green), typically dense within sensory thalamic nuclei such as the 
lateral geniculate nucleus, send axonal projections to Layers III and IV of the cerebral 
cortex. These cells are thought to act as ‘drivers’ of feed-forward activity (Jones, 2009; 
2001). In contrast, Calbindin-rich ‘Matrix’ cells (Figure 1; blue), which are more 
prevalent in higher-order thalamic nuclei (Herkenham, 1979; Jones, 2001), 
preferentially target agranular cortices in a more distributed fashion that crosses 
typical cortical receptive fields (Jones, 2009; 2001). Whereas individual thalamic nuclei 
contain a blend of both cell-types, some nuclei are almost exclusively of the ‘Matrix’ 
type (these are known as ‘intralaminar’ nuclei; (Van der Werf et al., 2002). Of note, 
other schemes have been devised to parse the thalamus (Phillips et al., 2019), including 
the class of cortical region proposed to ‘drive’ activity in the glutamatergic relay nuclei 
(Sherman, 2007). However, these proposals are not considered in detail here. 

The densities of Parvalbumin- (Core) and Calbindin- (Matrix) neurons have been used 
to classify the relative proportion of cells within each thalamic nucleus that project to 
either granular or supragranular layers, respectively (Figure 1A) (Jones, 2009; 2001; 
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Münkle et al., 2000). These studies have provided anatomical evidence for the 
presence of an inter-digitated cellular architecture within the thalamus. The presence 
of calcium-binding proteins has also been shown to delineate further levels of 
anatomical specificity in the thalamus, such as the extent and location of laminar 
projections to the cortex (Clascá et al., 2012). However, the importance of this 
anatomical organizing principle for shaping patterns of whole-brain activity and 
connectivity has been less well characterized. 
 

In this work, we leveraged the high spatiotemporal resolution of a 60-subject, 7T 
resting-state fMRI dataset to extract time series from the thalamus to examine the 
relationship between thalamic cell-population densities and whole-brain functional 
connectivity. We first calculated the time-averaged connectivity between each 
thalamic voxel and 400 cortical parcels from the Schaefer atlas (Schaefer et al., 2018). 
We then used the Allen Human Brain Atlas (Gryglewski et al., 2018; Hawrylycz et al., 
2012) to estimate the expression of two calcium-binding proteins – PVALB and CALB1  
– in each thalamic voxel. This allowed us to determine the relative weighting of Core 
versus Matrix cells, respectively (Jones, 2009; 2001; Münkle et al., 2000; Phillips et al., 
2019). These thalamic variations were then compared to fluctuations in the activity of 
parcels within the cerebral cortex, allowing us to quantify the relationship between 
patterns of thalamic activity and emergent patterns of whole-brain functional 
connectivity. 
 
 
Methods 
Participants 
Sixty-five healthy, right-handed adult participants (18–33 years) were recruited, of 
whom 60 were included in the final analysis (28 females). Participants provided 
informed written consent to participate in the study. The research was approved by 
The University of Queensland Human Research Ethics Committee. These data were 
originally described in Hearne et al., 2017. 
 
Neuroimaging Acquisition 
1050 (~10 minutes) whole-brain 7T resting state fMRI echo planar images were 
acquired using a multiband sequence (acceleration factor = 5; 2 mm3 voxels; 586 ms 
TR; 23 ms TE; 400 flip angle; 208 mm FOV; 55 slices). Structural images were also 
collected to assist functional data pre-processing (MP2RAGE sequence – 0.75 mm3 
voxels 4,300 ms TR; 3.44 ms TE; 256 slices). 
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Data Pre-processing 
DICOM images were first converted to NIfTI format and realigned. T1 images were 
reoriented, skull-stripped (FSL BET), and co-registered to the NIfTI functional images 
using statistical parametric mapping functions. Segmentation and the DARTEL 
algorithm were used to improve the estimation of non-neural signal in subject space 
and the spatial normalization. From each gray-matter voxel, the following signals 
were regressed: linear trends, signals from the six head-motion parameters (three 
translation, three rotation) and their temporal derivatives, white matter, and CSF 
(estimated from single-subject masks of white matter and CSF). The aCompCor 
method (Behzadi et al., 2007) was used to regress out residual signal unrelated to 
neural activity (i.e., five principal components derived from noise regions- of-interest 
in which the time series data were unlikely to be modulated by neural activity). 
Participants with head displacement > 3 mm in > 5% of volumes in any one scan were 
excluded (n = 5). A temporal band pass filter (0.071 < f < 0.125 Hz) was applied to the 
data. Following pre-processing, the mean time series was extracted from 400 pre-
defined cortical parcels using the Schaefer atlas (Schaefer et al., 2018). 
 
Relative Expression of Calbindin and Parvalbumin in the Thalamus 
We co-registered the thalamic Morel atlas (Niemann et al., 2000) to MNI152 space and 
then identified 2305 voxels across both hemispheres that were inclusive to the 
thalamic mask. We then used this volume as a mask to extract the mRNA level 
provided by the Allen Human Brain Atlas (Hawrylycz et al., 2012). Prior to extraction, 
data were smoothed using variogram modelling (Gryglewski et al., 2018). We 
extracted spatial maps of estimated mRNA levels for two genes that are known to 
express distinct calcium-binding proteins: Calbindin (CALB1) and Parvalbumin 
(PVALB). These proteins have been previously shown to delineate two distinct sub-
populations of thalamic projection cells (Matrix and Core, respectively) with distinct 
anatomical connectivity profiles. Note that there are other calcium binding proteins 
(notably, Calretinin) with substantial expression in the thalamus (Münkle et al., 2000; 
Phillips et al., 2019), however these patterns are not considered here. 
 
To create a realistic estimate of the relative weighting of each thalamic sub-population, 
these values were first normalized (z-score) across all voxels within the thalamic mask 
before creating the difference between the normalized Calbindin and Parvalbumin 
values (Figure 1B). We denote this measure CPT: positive values reflect voxels with 
higher CALB1 values, negative values reflect voxels with higher PVALB values and 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.28.970350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.970350
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

values of zero denote a balance between the two populations. To further validate the 
measure, the mean CPT value was calculated for each of 31 pre-defined thalamic sub-
nuclei (Table 1) and compared qualitatively to results obtained from direct histological 
(Münkle et al., 2000) and immunohistochemistry (Arai et al., 1994) analyses. We 
observed a positive correlation between these direct measurements and our gene-
expression based proxy, CPT (r = 0.550; p = 0.003; Figure S1). 
 
Thalamo-Cortical Connectivity Patterns 
Following the creation of the CPT spatial map, Pearson’s correlations were calculated 
between each thalamic voxel and the mean timeseries of the 400 cortical parcels for all 
60 subjects. For each cortical parcel, we then correlated its functional connectivity to 
each voxel within the thalamic mask with CPT. This allowed us to quantify, with a 
single value (CPC), the relative connectivity between each of the 400 cortical parcels 
and either the Matrix or Core thalamic population activity. As CPT represents the 
relative expression of CALB1 (Matrix-rich) versus PVALB (Core-rich), positive 
correlations (i.e., CPC > 0) were interpreted as preferential functional coupling with 
Matrix thalamic populations and negative correlations (i.e., CPC < 0) were taken to be 
indicative of preferential coupling to Core populations. To aid interpretation, CPT was 
projected onto a thalamic volume (Figure 1), CPC was projected onto the cortical 
surface (Figure 2), and the mean correlation value within each of 17 pre-defined 
resting-state networks was calculated (Schaefer et al., 2018). 
 
Relationship with Low-Dimensional Cortical Gradients 
Given the known diverse connectivity of the thalamus with the cerebral cortex, we 
predicted that known anatomical gradients in the thalamus should relate to low-
dimensional patterns of functional connectivity in the cortex. To test this hypothesis,  
we compared the Core–Matrix organization with the low-dimensional cortical 
gradients obtained by applying diffusion embedding analyses to resting-state fMRI 
data from a large cohort of subjects (Margulies et al., 2016). Un-thresholded 
volumetric maps representing the top 5 low-dimensional cortical gradients were 
downloaded from NeuroVault (Gorgolewski et al., 2015). These maps were then down 
sampled into the 400 cortical parcel space by calculating the mean expression of each 
gradient within each cortical parcel. We then compared the CPC connectivity pattern 
to each of the top five diffusion embedding components using Pearson’s correlations 
(statistical testing utilized parametric, one-sided ‘spin’ tests to control for non-
linearity and spatial autocorrelation, respectively; see below for details). 
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Relationship Between CPC and Intrinsic Timescale 
Different areas of the cerebral cortex are characterized by an intrinsic timescale that 
reflects the length of the time window over which the signals entering each brain 
region are integrated (Mesulam, 1998; Honey et al., 2012). There are two predominant 
methods utilised in fMRI studies for investigating the intrinsic timescale of activity: 
autocorrelation (Murray et al., 2014; Watanabe et al., 2019) and fractal based (He, 2011; 
Churchill et al., 2016) techniques. While both measures identify temporal self-
similarity, autocorrelation techniques typically focus on linear correlations with past 
values of a particular region, whereas in contrast, fractal analysis is used as a measure 
of complexity (Dong et al., 2018) and can be used to discern the significance of 
differing time-scale frequencies. For instance, a purely fractal signal suggests all 
frequencies contain information (Churchill et al., 2016).  

To examine the relationship between Core–Matrix architecture and the intrinsic BOLD 
timescale of cortical parcels, we first performed an autocorrelation analysis (Murray 
et al., 2014). Specifically, to estimate the extent of the autocorrelation, 𝑎𝑐, in each 
region, 𝑟	, we calculate the correlation coefficient between the BOLD activity,	𝑋!(𝑡), at 
times t and t + k with different time lags k = 0, 1, … , kmax. For our analysis kmax = 50 TR, 
however our findings were not sensitive for differences in kmax (from 15 – 1000). The 
autocorrelation for each region is given by 

𝑎𝑐!(𝑘) = ∫ 𝑋!(𝑡 + 𝑘)𝑋!(𝑡)𝑑𝑡
"#$
% ,       [1] 

 
where 𝑇 is the duration of the BOLD activity and the autocorrelation is normalised 
such that the autocorrelation at a lag of zero is unity. As the time lag increases, the 
autocorrelation decays according to the regions’ intrinsic timescale, which is well fit 
to an exponential decay, 𝑁! with an offset given by 
 

𝑁! = 𝑎 1𝑒#
!"#
$% + 𝑏4,       [2] 

 
where 𝜏! is the intrinsic timescale, 𝑎 and 𝑏 are the scaling and offset constants, 
respectively, 𝑘 is the lag, and Δ𝑇 is the time resolution (i.e., the length of the TR). We 
fit the exponential decay at a population level, where the autocorrelation is averaged 
across time, in order to obtain a population level statistic for each region in our dataset. 
The curve parameters were estimated using a Levenberg-Marquardt nonlinear least-
squares fitting algorithm. It should be noted that our method is identical to the method 
adopted by (Murray et al., 2014), who also fit an exponential decay with a baseline 
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constant. Another proportional method is to calculate the area under the normalized 
autocorrelation curve (Gollo, 2019; Watanabe et al., 2019). In practice, we found our 
method was more flexible for fitting rapidly decaying BOLD signals.  
 
To further relate the thalamocortical properties with resulting temporal dynamics, we 
calculated the fractal nature of the timeseries of each cortical region across all subjects. 
To do so, we employed a detrended fluctuation analysis (DFA) to BOLD activity at 
each region (Peng et al., 1995). DFA is an efficient fractal measure to estimate the Hurst 
exponent of a signal that is intrinsically robust to signal non-stationarity, which may 
be present in BOLD activity. To calculate the DFA, we first computed the integrated 
time-series 𝑦!(𝑡) = 	∑ (𝑋!(𝑖)−< 𝑋! >&

'() ), where < 𝑋! > is the average BOLD activity. 
We then subdivided 𝑦!(𝑡) into windows of equal length 𝑛 and estimated a linear 
regression per subdivision, 𝑤*(𝑡). We then computed the root-mean-square 
magnitude of fluctuations, 𝐹(𝑛), on the detrended data: 
 

𝐹(𝑛) = @)
"
∑ A𝑦!(𝑡) − 𝑤*(𝑡)B

+"
&() 	.     [3] 

 
Finally, we calculated the RMS fluctuation for varying window sizes and calculated 
the slope of 𝐹(𝑛) vs 𝑛 plotted on a logarithmic scale, again using a Levenberg-
Marquardt nonlinear least-squares fitting algorithm. The slope of log-log plot 
corresponds to the Hurst exponent, H, where H = 0.5 corresponds to Brownian motion 
(Beran, 1992; Munn et al., 2020). As H increases, the level of positive long-range 
temporal correlation in the signal increases. That is, an increase in BOLD activity is 
typically followed by another increase, and a reduction is typically followed by 
further reduction. As such, larger values of H indicate longer time scales of activity 
within individual regions. In our analysis, we calculated the Hurst exponent over 
window ranges from 5-60 TRs, sampled in logarithmically uniformly window sizes. 
The window range avoids zero residuals across the shortest intervals and low-
frequency confounds identified in the power-spectral density across the long 
intervals. Consistent with (Churchill et al., 2016; He, 2011), we observed a crossover 
between two fractal ranges, consisting of an initial large increase of 𝐹(𝑛) and large H 
for small window lengths due to serial autocorrelations which decay rapidly 
transitioning to smaller H values. 
 
Network Topology 
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To embed the CPC results within the context of the broader cortical network, we 
estimated time-averaged functional connectivity in all 60 subjects and then subjected 
the weighted, un-thresholded connectivity matrices to topological analysis. This 
involved using a weighted- and signed- version of the Louvain modularity algorithm 
from the Brain Connectivity Toolbox (Rubinov and Sporns, 2010). The Louvain 
algorithm iteratively maximizes the modularity statistic, Q, for different community 
assignments until the maximum possible score of Q has been obtained (Equation 4). 
The modularity estimate for a given network is, therefore, quantification of the extent 
to which the network may be subdivided into communities with stronger within-
module than between-module connections. 
 
  𝑄" =

)
𝓋&
∑ A𝑤'-. − 𝑒'-.B𝛿/'/('- − )

𝓋&.𝓋)
∑ A𝑤'-# − 𝑒'-#B𝛿/'/('-   [4] 

 
where v is the total weight of the network (sum of all negative and positive 
connections), wij is the weighted and signed connection between regions i and j, eij is 
the strength of a connection divided by the total weight of the network, and δMiMj is set 
to 1 when regions are in the same community and 0 otherwise. ‘+’ and ‘–‘ superscripts 
denote all positive and negative connections, respectively. In our experiment, the γ 
parameter was set to 1.1 (tested within a range of 0.5–2.0 for consistency across 100 
iterations). 
 
The participation coefficient quantifies the extent to which a region connects across all 
modules. This measure has previously been used to characterize diversely connected 
hub regions within cortical brain networks (e.g., see Power et al., 2013). Here, the 
Participation Coefficient (BiT) was calculated for each of the 400 cortical parcels for 
each subject, where κisT is the strength of the positive connections of region i to regions 
in module s, and κiT is the sum of strengths of all positive connections of region i. The 
participation coefficient of a region is therefore close to 1 if its connections are 
uniformly distributed among all the modules and 0 if all of its links are within its own 
module: 
 

     𝐵'" = 1 − ∑ H0'*#
0'#
I
+*+

1()     [5] 

 
To investigate the topological relationships between the Core and Matrix populations 
and network topology, we classified cortical regions into three distinct groups: Core 
(CPC < –0.1), Matrix (CPC > 0.1) and participatory (parcels with participation greater 
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than 0.5). We observed no overlap between these three groups and tested the 
significance of this null relationship using a permutation test (5,000 permutations, p < 
0.001). For interpretation, we also plotted these three populations onto a force-directed 
graph (Figure 5). 
 
Time-varying Topological Dynamics 
To quantify the relationship between CPC and time-varying network topology, we 
used a sliding-window Pearson’s correlation design to estimate windowed patterns 
of undirected functional connectivity between all 400 cerebral cortical. In contrast to 
typical sliding-window approaches (Lurie et al., 2020), we split regional time series 
data into 20 non-overlapping windows (each of 50 TRs). This approach was adopted 
so as to avoid artificial smoothing that occurs with strongly overlapping windows. 
After averaging across multiple jitters of this tensor (+/- 5-20 TRs), we next calculated 
the mean of the temporal standard deviation of the results 3d tensor. The resultant 
vector allowed us to quantify the variability of functional connectivity measures at the 
regional level. We then correlated this measure with the CPC vector to test the 
hypothesis that Matrix-supported cortical regions demonstrated a greater diversity of 
connectivity patterns than Core-supported cortical regions.  
 
Statistical Approach 
We used non-parametric testing to determine statistical significance of the 
relationships identified across our study (Nichols and Holmes, 2002). A distribution 
of 5,000 Pearson’s correlations was calculated for each comparison, against which the 
original correlation was compared. Using this approach, pRAW was calculated as the 
proportion of the null distribution that was less extreme than the original correlation 
value. 
 
We also conducted a separate set of statistical tests in an attempt to control for the 
prominent spatial autocorrelation associated with low-dimensional gradients in the 
brain. Specifically, for each correlation, the gradients were projected back into 
FreeSurfer space, and the cortical parcels were rotated around the sphere (i.e., 
preserving spatial autocorrelation) by creating a random starting point (i.e., a value 
between 1 – 32,492) and re-orienting the data to this location (Reardon et al., 2018). 
The mean value of each of the randomly rotated values was then calculated for each 
parcel and used to estimate a null distribution of correlations. A distribution of 1,000 
Pearson’s correlations was calculated for each comparison, against which the original 
correlation was compared. This statistical test was denoted as pSPIN, and was calculated 
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as the proportion of the null distribution that was less extreme than the original 
correlation value. 
 
Reproducibility 
To test the reproducibility of our results, we performed a separate replication analysis 
on 3T resting state fMRI data from the Human Connectome Project (100 subjects). 
Information regarding the specific imaging parameters from this data is presented 
elsewhere (Glasser et al., 2013). Data were pre-processed in the same fashion as the 
above analysis. Due to the fact that the comparisons were purely for replication 
purposes, statistical analyses were limited to traditional permutation tests (i.e., pRAW).   
 
 
Results 
Thalamic Sub-populations are Differentially Correlated with the Cerebral Cortex 
We observed differential functional coupling between thalamic populations, 
dissociated based on gene expression, and the cortex, CPC (Figure 2). Matrix regions 
of thalamus, which have higher expression of CALB1 (Figure 1B), showed a strong 
preference for connectivity within trans-modal cortices, incorporating Default, 
Control, Limbic, and Ventral Attention sub-networks (Fig. 2A, blue). In contrast, the 
PVALB-rich Core cells showed preferential coupling to primary somatosensory 
cortices, as evidenced by their stronger correlations with parcels from the Visual, 
Somatomotor, Dorsal-Attention and Temporo-Parietal networks (Figure 2B, green). 
Figure 2C highlights the difference between Matrix (blue) and Core (green) 
connectivity patterns.  

 
Figure 2. Correlations between Matrix-Core thalamic regions and cortical parcels, CPC. A) 
standardized correlation between Matrix thalamus (CALB1 levels) and cortical parcels; B) standardized 
correlation between Core thalamus (PVALB levels) and cortical parcels; C) relative difference between 
Matrix and Core populations relationship with cortical parcels. Colour bars depict the relative strength 
of correlation between each thalamic population at the individual cortical parcels (standardized 
between 0 and 1). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.28.970350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.970350
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

 
Matrix-Core Thalamus Recapitulates Primary Cortical Gradient 
We observed a strong positive correlation between the first diffusion embedding 
gradient estimated from resting state fMRI data (Margulies and Smallwood, 2017) and 
the extent with which cortical parcels were preferentially connected with Matrix vs. 
Core thalamic voxels (r = 0.772, pRAW = 2.48x10-80, pSPIN = 1.0x10-3;  Figure 3; see Figure 
S2 for higher gradients). Consistent with these patterns, we observed a moderate 
negative correlation with t1w:Tt2w ratio (r = –0.319; pRAW = 6.6x10-11, pSPIN = 0.025; 
Figure 3B), which is an indirect proxy for cortical myelination (Glasser et al., 2016) that 
is known to be negatively correlated with the hierarchical level of the cerebral cortex 
(Burt et al., 2018). 
 

 
Figure 3 – Relationship between CPC and low-dimensional cortical gradients. A) Surface plot of the 
first low-dimensional gradient (Margulies and Smallwood, 2017). We observed a positive Pearson’s 
correlation with the CPC (r = 0.772; p = 2.48x10-80); B) Surface plot of the t1w:t2w ratio on the cerebral 
cortex. We observed an inverse correlation with the CPC (r = -0.320; p = 5.8x10-11). 
 
Matrix Thalamus Preferentially Couples to Regions with Slower Timescales 
We observed a significant positive correlation between CPC and both: the intrinsic 
timescale, 𝜏 (mean = 3.52±0.3, r = 0.419, pRAW = 1.9 x 10-18; pSPIN = 1.0x10-3;  Fig 4A/B) and 
regional fractality, H (mean = 0.78±0.03, r = 0.245, pRAW = 7.2x10-7, pSPIN = 0.045;  Fig 
4C/D). Intuitively, we found that regional H and 𝜏 values were strongly positively 
correlated (r = 0.622, pRAW = 4.0 x 10-44, pSPIN = 1.0x10-3), suggesting that regions the 
longer integration windows in associative regions of the cerebral cortex (Honey et al., 
2012) may be due to an increase in regional fractality (i.e., larger H value; Dong et al., 
2018) and the presence of long-range correlations. Both timescale measures were also 
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positively correlated with the first gradient of connectivity present within the cerebral 
cortex (𝜏: r = 0.598, pRAW = 3.61 x 10-40, pSPIN = 1.0 x 10-3; H: r = 0.272, pRAW = 3x10-8; pSPIN = 
0.005). 
 

 
Figure 4 – Relationship between Thalamic Connectivity and Cortical Intrinsic Timescale. A) the 
autocorrelation parameter, 𝜏, plotted onto the cerebral cortex; B) a scatter plot between 𝜏	and CPC (r = 
0.419, pRAW = 1.9 x 10-18; pSPIN = 1.0x10-3); C) the Hurst exponent, H, plotted onto the cerebral cortex; D) a 
scatter plot between 𝜏	and CPC (r = 0.245, pRAW = 7.2 x 10-7; pSPIN = 0.045). 

 
Together, these results suggest that the associative cortical regions preferentially 
supplied by the Matrix thalamus were associated with a longer intrinsic timescale 
when compared to the regions supported by the Core thalamus, at least during the 
relatively quiescent resting state, and may support the notion of quasi-criticality in the 
resting brain (Moretti and Munoz, 2013). Consistent with this hypothesis, we observed 
an inverse correlation between CPC and regional Lempel-Ziv complexity (mean = 
99.24±0.5, r = -0.407, pRAW = 1.9 x 10-17, pSPIN = 0.013). To test whether this relationship 
may be related to the complexity of thalamic timeseries, we related CPT (i.e., 
CALB1:PVALB ratio in thalamic nuclei) to the Hurst exponent calculated on thalamic 
timeseries. The resultant correlation was positive (r = 0.366, p = 0.042), suggesting that 
Matrix thalamic nuclei were active over longer timescales, and hence, were 
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responsible for promoting longer-timescale interactions in associative regions of the 
cerebral cortex. 
 
Relationship between Core and Matrix Thalamic Populations and Network 
Topology 
Based on the known importance of the thalamus for defining whole-brain network 
topological integration (Bell and Shine, 2015; Hwang et al., 2017), we next compared 
CPC values with measures that quantify the topology of the resting brain. We did not 
observe a significant correlation between CPC and BT (r = -0.022; pRAW = 0.663; pSPIN = 
0.603), and although there was a weak inverse correlation with WT (r = -0.164, pRAW = 
0.001, pSPIN = 0.095), it did not survive correction for spatial autocorrelation (i.e, pSPIN > 
0.05). Despite the lack of strong linear relationships between CPC and network 
topology, viewing the data within a force-directed plot highlighted a key topological 
relationship between CPC and BT (Figure 5A). Namely, highly integrative regions (BT 
> 50th percentile; Figure 5A; red) were found to be inter-digitated between the 
populations of cortical parcels that were preferentially connected to either Matrix 
(Figure 5A; blue) or Core (Figure 5A; green) parcels. This suggests that highly 
integrative regions of the cerebral cortex topologically inter-connect regions on either 
end of the Core-Matrix thalamocortical gradient. 
 

 
Figure 5 – Network Topology. A) Top: parcels within the top 100 ranked regions  for each of: Matrix 
(blue), Participation (red) and Core (green) populations; Bottom: a force-directed plot, in which the top 
270 nodes are depicted according to their association with either the Matrix (blue), high Participation 
regions (red) or Core (green) populations (the remaining 100 regions were plotted as small grey nodes), 
and edges represent the top 5% of network connections (resting-state functional connectivity); B) scatter 
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plot between the standard deviation of dynamic function connectivity (σdFC) and CPC (r = 0.409, pRAW = 
1.6 x 10-17; pSPIN = 1.0x10-3). 
 

Based on the observation that Matrix thalamic nuclei and associative cerebral cortical 
regions  were associated with fluctuations at longer time scales than Core thalamic or 
sensory cortical regions (i.e., regions with high CPT/CPC had higher H and v.v.), we 
predicted that regions with high CPC should be associated with more variable 
connectivity dynamics. In essence, the ability to hold information over longer delays 
should afford more opportunities for fostering system-level variability. To test this 
hypothesis, we calculated the variability of windowed time-varying connectivity in 
the cerebral cortex, and then related this variability to the CPC vector. As predicted, 
we observed a significant, positive correlation between connectivity variability and 
CPC (r = 0.409; pRAW = 1.6 x 10-17; pSPIN = 1.0 x 10-3; Figure 5B), suggesting that Matrix-
supported cortical regions were associated with more variable connectivity dynamics 
than the Core-supported cortical regions that are more tethered to sensory inputs 
(Buckner and Krienen, 2015). This measure was also positively correlated with the first 
gradient (r = 0.583, pRAW = 1.0 x 10-37; pSPIN = 1.0x10-3) and both timescale measures (𝜏: r 
= 0.657, pRAW = 5.8 x 10-49; pSPIN = 1.0x10-3; H: r = 0.608, pRAW = 7.5 x 10-42; pSPIN = 1.0x10-3) 
providing further evidence that these features all reflect a low-dimensional organizing 
principle for the thalamocortical system. 
 
Reproducibility 
The major results were replicated in data from the HCP. In this dataset, CPC maps 
were positively correlated (r = 0.445, pRAW = 1.3 x 10-17), and the replicated CPC map 
also correlated with the first diffusion embedding gradient (r = 0.334, pRAW = 4.0x10-10) 
and a longer intrinsic timescale (r = 0.315, pRAW = 4.2 x 10-9), and inversely correlated 
with the t1w:t2w map (r = –0.251, pRAW = 3.5 x 10-6). These results suggest that the 
thalamocortical measures identified in this study were reliable across independent 
datasets collected using different scanners and imaging protocols. 
 
 
Discussion 
In this manuscript, we highlighted a meso-scale organizing principle in the thalamus 
that is related to low-dimensional (Figure 3), temporal (Figure 4), and topological 
(Figure 5) patterns that exist within the cerebral cortex during the resting state. This 
relationship between the cortex and thalamus is consistent with a substantial wealth 
of both empirical (Garrett et al., 2018; Hwang et al., 2017; Olsen et al., 2012; Rikhye et 
al., 2018; Schmitt et al., 2017; Shine et al., 2019b) and theoretical (Bell and Shine, 2016; 
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Halassa and Sherman, 2019; Jones, 2009; Sherman, 2007) research, and suggests that 
an appreciation of subcortical–cortical dynamics is crucial to understanding the 
organization of the human brain and the way it supports cognition and behaviour. 
 
Our results highlight a number of empirical signatures of cerebral cortical dynamics 
that relate directly to the mesoscale organization of the thalamus. There are a number 
of anatomical explanations for these patterns. For one, the thalamus has a vastly lower 
number of cells than the cortex, suggesting that its engagement would likely foster a 
relatively low-dimensional cortical architecture (Jones, 2001). Secondly, the different 
input patterns of the Core and Matrix to the cortex, which project to the granular and 
supragranular regions, would lead to a relatively feed-forward and feed-back mode 
of processing (García-Cabezas et al., 2019). This pattern can potentially explain the 
differences observed in the intrinsic timescales (Figure 4), as feedback processing (via 
infragranular pyramidal cells inputs into supragranular layers of cortex) is known to 
occur on slower timescales than feed-forward processing (Bastos et al., 2012; Fries, 
2005). Interestingly, there is also evidence that low-dimensional gradients in the 
cerebral cortex are associated with distinct electrophysiological signals (Hunt et al., 
2016), suggesting that the patterns observed in this experiment may also exist at faster 
time scales than can be accurately measured with BOLD data. Finally, the thalamus 
represents a major synaptic input to the cortex, and thus likely plays a major role in 
shaping its resting-state network organization (Bell and Shine, 2016; Hwang et al., 
2017; Shine et al., 2019b), both in BOLD data (as presented here) but also in 
electrophysiological data (Gollo, 2019; Watanabe et al., 2019). Together, these lines of 
reasoning suggest a putative mechanism for how functional dynamics within the 
cerebral cortex may be shaped and constrained by activity patterns in the thalamus. 
 
The thalamus has been argued to play a crucial role in shaping brain network topology 
(Bell and Shine, 2016; Hwang et al., 2017; Shine et al., 2019b). By interconnecting the 
cerebral cortex with key structures in the subcortex and brainstem, the thalamus likely 
plays an integrative, hub-like role (Bell and Shine, 2016; Hwang et al., 2017; Shine et 
al., 2019b). However, a closer inspection of thalamic circuitry suggests that the 
topological role of the thalamus may be qualitatively distinct from the hubs that exist 
within the cerebral cortex. For instance, although the thalamus is often identified as a 
hub in topological analyses of functional brain networks, its intrinsic functional 
activity is highly damped by pervasive GABAergic input (Jones, 2001). As such, an 
increase in thalamic activity could promote both integration (by interconnecting 
otherwise distributed regions of the network) and segregation (by only allowing 
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certain channels of activity to be on-line at any one point in time). Our results support 
this notion, as distinct populations of cells within the thalamus were found to inter-
digitate between cortical regions organized into distinct topological zones (Figure 5). 
Further work, particularly in the context of different cognitive tasks (Rikhye et al., 
2018; Schmitt et al., 2017; Shine et al., 2019b), is undoubtedly required before the 
relationships between thalamic sub-populations and cortical network topology can be 
parsed at the functional level. 
 
With these results in mind, an appreciation of the factors that bias activity within the 
thalamus become of prime importance. One obvious difference between the Core and 
Matrix populations is the extent to which they are driven by glutamatergic inputs 
from the sensory apparatuses, with Core neurons receiving a higher proportion of 
inputs when compared to Matrix neurons (Jones, 2009; 2001). Inputs from prominent 
subcortical structures are also known to disproportionately contact the Core and 
Matrix nuclei, with the deep cerebellar nuclei synapsing with the former, and the basal 
ganglia with the latter (Kuramoto et al., 2009). Another factor that is of great 
importance is the neurochemical tone imposed by the ascending arousal system 
(Shine et al., 2016; Shine et al., 2018). It is well known that different neurotransmitters 
differentially effect cell populations in the thalamus, with some boosting and others 
silencing activity within the different nuclei (Llinás and Steriade, 2006; McCormick et 
al., 2015; 1991; Varela, 2014). Future work that maps the relationships between these 
neuromodulatory chemicals and cortico-thalamic connectivity will help to clarify the 
relationships described in this study. The fact that the non-linear intersection between 
the arousal system, the Matrix thalamus and the supragranular layers of the cortex is 
causally related to conscious brain activity (Redinbaugh et al., 2019; Suzuki and 
Larkum, 2020) merely acts to refine the importance of this future work for 
understanding the rules that govern distributed patterns of higher brain function. 
 
Conclusion 
Our results describe relationships between the relative weighting of distinct cell 
populations in the thalamus and low-dimensional spatial, temporal, and topological 
gradients in the cerebral cortex. It is important to note that many other elements 
within the central nervous system are also organized along spatial gradients, 
including the striatum (Stanley et al., 2019), cerebellum (Guell et al., 2018), colliculi 
(Cooper and Rakic, 1981)  and hippocampus (Przeździk et al., 2019), suggesting that 
the interaction between the gradient structure across these diverse systems may 
represent a key organizing principle for the nervous system (Cisek, 2019; 
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Nieuwenhuys, 1999). In addition, our work highlights the value of linking information 
from the cellular scale with whole-brain data to understand fundamental principles 
of brain organization.
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Tables 
 

Nucleus CALB1 PVALB X Y Z 

Anterior Ventral 2.0 1.8 61.2 45.8 42.6 

Lateral Dorsal 8.3 6.2 55.2 46.3 44.8 

Magnocellular Lateral Geniculate 6.5 5.2 50.9 48.6 33.3 

Parvocellular Lateral Geniculate 2.3 1.9 51.7 46.5 34.0 

Medial Geniculate 6.0 3.7 50.4 45.4 34.6 

Anterior Ventral Posterior Lateral 12.2 7.2 54.1 44.5 39.4 

Posterior Ventral Posterior Lateral 11.8 7.3 53.5 45.7 41.0 

Medial Ventral Posterior Lateral 9.7 6.5 54.0 45.5 36.9 

Inferior Ventral Posterior Lateral 9.7 5.6 52.3 45.7 36.2 

Anterior Ventral Lateral 9.0 7.2 58.6 45.9 39.5 

Dorsal Posterior Ventral Lateral 9.4 7.4 57.8 45.7 43.9 

Ventral Posterior Ventral Lateral 10.1 7.6 57.0 45.4 39.6 

Magnocellular Ventral Anterior 1.5 3.1 61.1 46.4 37.9 

Magnocellular Ventral Posterior 2.7 3.1 61.4 45.6 39.9 

Ventral Medial 6.9 7.5 57.7 45.7 36.4 

Magnocellular Mediodorsal 5.4 6.3 57.1 45.6 39.1 

Parvocellular Mediodorsal 8.1 7.5 56.2 45.6 40.1 

Medial Pulvinar 9.2 5.8 49.1 45.7 39.4 

Lateral Pulvinar 3.5 2.0 49.4 46.3 38.7 

Anterior Pulvinar 12.0 7.4 52.2 46.9 39.3 

Limitans 8.7 6.4 50.8 45.8 37.0 

Lateral Posterior 10.4 7.0 51.9 44.1 43.5 

Central Lateral 9.1 7.2 54.9 45.9 41.4 

CentroMedian 2.5 3.5 59.4 45.4 37.1 

Central Median 9.8 7.3 53.7 45.4 37.6 

Parafascicular 6.2 5.2 54.3 45.4 36.1 
 

Table 1 – Thalamic Morel Atlas and Calcium Binding Protein Values. mRNA 
loading of Calbindin (CALB1) and Parvalbumin (PVALB) for each of 31 pre-identified 
thalamic sub-nuclei, along with the X, Y and Z MNI Coordinates for the center of each 
region.
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Supplementary Figures 
 

 
Figure S1 – Correlation between Thalamic Calcium Binding Proteins using Allen Human 
Brain Atlas mRNA and Morel atlas. We observed a positive correspondence between the 
different measures (r = 0.546; p = 0.003). 
 
 

 
Figure S2 – Comparing CPC to higher-dimensional gradients. Surface projections and scatter 
plots relating CPC to gradients 2-5 (Margulies et al., 2016). A) Gradient 2: r = 0.114, pRAW = 0.02, 
pSPIN = 0.188; B) Gradient 3: r = 0.292, pRAW = 2.78 x 10-9, pSPIN = 0.188; C) Gradient 4: r = 0.188, 
pRAW = 2.0 x 10-4, pSPIN = 0.219; D) Gradient 5: r = 0.283, pRAW = 8.03 x 10-9, pSPIN = 0.003. 

-1.0

-0.5

0.0

0.5

1.0

-3 -2 -1 0 1 2 3

M
or

el
 A

tla
s 

C
BP

V
 v

al
ue

s

CBPV mRNA

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.28.970350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.970350
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

Acknowledgements 
JMS was supported by the University of Sydney Robinson Fellowship and NHMRC 
GNT1156536.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.28.970350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.970350
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

References 
 
Arai, R., Jacobowitz, D.M., Deura, S., 1994. Distribution of calretinin, calbindin-D28k, 

and parvalbumin in the rat thalamus. Brain Res. Bull. 33, 595–614. 
doi:10.1016/0361-9230(94)90086-8 

Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., Friston, K.J., 2012. 
Canonical microcircuits for predictive coding. Neuron 76, 695–711. 
doi:10.1016/j.neuron.2012.10.038 

Behzadi, Y., Restom, K., Liau, J., Liu, T.T., 2007. A component based noise correction 
method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37, 90–
101. doi:10.1016/j.neuroimage.2007.04.042 

Bell, P.T., Shine, J.M., 2016. Subcortical contributions to large-scale network 
communication. Neuroscience & Biobehavioral Reviews 71, 313–322. 
doi:10.1016/j.neubiorev.2016.08.036 

Beran, J., 1992. Statistical methods for data with long-range dependence. Statistical 
Science 7, 404-427. doi:10.1214/ss/1177011123 

Buckner, R.L., Krienen, F.M., 2013. The evolution of distributed association networks 
in the human brain. Trends Cognitive Sciences 17, 648-665. 
doi:10.1016/j.tics.2013.09.017 

Burt, J.B., Demirtaş, M., Eckner, W.J., Navejar, N.M., Ji, J.L., Martin, W.J., Bernacchia, 
A., Anticevic, A., Murray, J.D., 2018. Hierarchy of transcriptomic specialization 
across human cortex captured by structural neuroimaging topography. Nat 
Neurosci 21, 1251–1259. doi:10.1038/s41593-018-0195-0 

Churchill, N.W., Spring, R., Grady, C., Cimprich, B., Askren, M.K., Reuter-Lorenz, 
P.A., Jung, M.S., Peltier, S., Strother, S.C., Berman, M.G., 2016. The suppression 
of scale-free fMRI brain dynamics across three different sources of effort: aging, 
task novelty and task difficulty. Scientific Reports 6, 30895. doi: 
10.1038/srep30895. 

Cisek, P., 2019. Resynthesizing behavior through phylogenetic refinement. Atten 
Percept Psychophys 26, 535. doi:10.3758/s13414-019-01760-1 

Clascá, F., Rubio-Garrido, P., Jabaudon, D., 2012. Unveiling the diversity of 
thalamocortical neuron subtypes. Eur. J. Neurosci. 35, 1524–1532. 
doi:10.1111/j.1460-9568.2012.08033.x 

Cooper, M.L., Rakic, P., 1981. Neurogenetic gradients in the superior and inferior 
colliculi of the rhesus monkey. J. Comp. Neurol. 202, 309–334. 
doi:10.1002/cne.902020303 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.28.970350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.970350
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

Demirtaş, M., Burt, J.B., Helmer, M., Ji, J.L., Adkinson, B.D., Glasser, M.F., Van 
Essen, D.C., Sotiropoulos, S.N., Anticevic, A., Murray, J.D., 2019. Hierarchical 
Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics. 
Neuron 101, 1181–1194.e13. doi:10.1016/j.neuron.2019.01.017 

Dong, J., Jing,. B., Ma. X., Liu, H., Mo, X., Li, H., 2018. Hurst Exponent Analysis of 
Resting-State fMRI Signal Complexity across the Adult Lifespan. Frontiers in 
Neuroscience 12, 34. doi:10.3389/fnins.2018.00034. 

Fallon, J., Ward, P., Parkes, L., Oldham, S., Arnatkeviciūte, A., Fornito, A., Fulcher, 
B., 2020. Timescales of spontaneous activity fluctuations relate to structural 
connectivity in the brain bioRxiv 1(4), 655050. doi:10.1101/655050. 

Fries, P., 2005. A mechanism for cognitive dynamics: neuronal communication 
through neuronal coherence. Trends in Cognitive Sciences 9, 474–480. 
doi:10.1016/j.tics.2005.08.011 

García-Cabezas, M.Á., Zikopoulos, B., Barbas, H., 2019. The Structural Model: a 
theory linking connections, plasticity, pathology, development and evolution of 
the cerebral cortex. Brain Struct Funct 72, 429. doi:10.1007/s00429-019-01841-9 

Garrett, D.D., Epp, S.M., Perry, A., Lindenberger, U., 2018. Local temporal variability 
reflects functional integration in the human brain. NeuroImage 183, 776–787. 
doi:10.1016/j.neuroimage.2018.08.019 

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., 2016. A multi-modal 
parcellation of human cerebral cortex. Nature 536, 171–178. doi: 
10.1038/nature18933 

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, 
J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M., 
2013. The minimal preprocessing pipelines for the Human Connectome Project. 
NeuroImage 80, 105–124. doi:10.1016/j.neuroimage.2013.04.127 

Gollo, L.L., 2019. Exploring atypical timescales in the brain. Elife 8, e15252. 
doi:10.7554/eLife.45089 

Gorgolewski, K.J., Varoquaux, G., Rivera, G., Schwartz, Y., Sochat, V.V., Ghosh, S.S., 
Maumet, C., Nichols, T.E., Poline, J.-B., Yarkoni, T., Margulies, D.S., Poldrack, 
R.A., 2015. NeuroVault.org: A repository for sharing unthresholded statistical 
maps, parcellations, and atlases of the human brain. NeuroImage. 
doi:10.1016/j.neuroimage.2015.04.016 

Gryglewski, G., Seiger, R., James, G.M., Godbersen, G.M., Komorowski, A., 
Unterholzner, J., Michenthaler, P., Hahn, A., Wadsak, W., Mitterhauser, M., 
Kasper, S., Lanzenberger, R., 2018. Spatial analysis and high resolution mapping 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.28.970350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.970350
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

of the human whole-brain transcriptome for integrative analysis in 
neuroimaging. NeuroImage 176, 259–267. doi:10.1016/j.neuroimage.2018.04.068 

Guell, X., Schmahmann, J.D., Gabrieli, J.D., Ghosh, S.S., 2018. Functional gradients of 
the cerebellum. Elife 7, 568. doi:10.7554/eLife.36652 

Halassa, M.M., Sherman, S.M., 2019. Thalamocortical Circuit Motifs: A General 
Framework. Neuron 103, 762–770. doi:10.1016/j.neuron.2019.06.005 

Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., Shen, E.H., Ng, L., Miller, J.A., 
van de Lagemaat, L.N., Smith, K.A., Ebbert, A., Riley, Z.L., Abajian, C., 
Beckmann, C.F., Bernard, A., Bertagnolli, D., Boe, A.F., Cartagena, P.M., 
Chakravarty, M.M., Chapin, M., Chong, J., Dalley, R.A., David Daly, B., Dang, 
C., Datta, S., Dee, N., Dolbeare, T.A., Faber, V., Feng, D., Fowler, D.R., Goldy, J., 
Gregor, B.W., Haradon, Z., Haynor, D.R., Hohmann, J.G., Horvath, S., Howard, 
R.E., Jeromin, A., Jochim, J.M., Kinnunen, M., Lau, C., Lazarz, E.T., Lee, C., 
Lemon, T.A., Li, L., Li, Y., Morris, J.A., Overly, C.C., Parker, P.D., Parry, S.E., 
Reding, M., Royall, J.J., Schulkin, J., Sequeira, P.A., Slaughterbeck, C.R., Smith, 
S.C., Sodt, A.J., Sunkin, S.M., Swanson, B.E., Vawter, M.P., Williams, D., 
Wohnoutka, P., Zielke, H.R., Geschwind, D.H., Hof, P.R., Smith, S.M., Koch, C., 
Grant, S.G.N., Jones, A.R., 2012. An anatomically comprehensive atlas of the 
adult human brain transcriptome. Nature 489, 391–399. doi:10.1038/nature11405 

He, J., 2011. A new fractal derivation. Thermal Science 15, S145-147. doi: 
10.2298/tsci11s1145h 

Herkenham, M., 1979. The afferent and efferent connections of the ventromedial 
thalamic nucleus in the rat. J. Comp. Neurol. 183, 487–517. 
doi:10.1002/cne.901830304 

Honey, C.J., Thesen, T., Donner, T.H., Silbert, L.J., Carlson, C.E., Devinsky, O., 
Doyle, W.K., Rubin, N., Heeger, D.J., Hasson, U., 2012. Neuron 76, 423-434. 
doi:10.1016/j.neuron.2012.08.011. 

Hunt, B.A.E., Tewarie, P.K., Mougin, O.E., Geades, N., Jones, D.K., Singh, K.D., 
Morris, P.G., Gowland, P.A., Brookes, M.J., 2016. Relationships between cortical 
myeloarchitecture and electrophysiological networks. PNAS 113, 13510-13515. 
doi:10.1073/pnas.1608587113. 

Hwang, K., Bertolero, M.A., Liu, W.B., D’Esposito, M., 2017. The Human Thalamus 
Is an Integrative Hub for Functional Brain Networks. J. Neurosci. 37, 5594–5607. 
doi:10.1523/jneurosci.0067-17.2017 

Jones, E.G., 2009. Synchrony in the interconnected circuitry of the thalamus and 
cerebral cortex. Annals of the New York Academy of Sciences 1157, 10–23. 
doi:10.1111/j.1749-6632.2009.04534.x 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.28.970350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.970350
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

Jones, E.G., 2001. The thalamic matrix and thalamocortical synchrony. Trends in 
Neurosciences 24, 595–601. doi:10.1016/s0166-2236(00)01922-6 

Kuramoto, E., Futura, T., Nakamura, K.C., Unzai, T., Kioki, H., Kaneko, T., 2009. 
Two types of thalamocortical projections from the motor thalamic nuclei of the 
rat: a single neuron-tracing study using viral vectors. Cerebral Cortex 19, 2065-
2077. doi:10.1093/cercor/bhn231. 

Llinás, R.R., Steriade, M., 2006. Bursting of thalamic neurons and states of vigilance. 
Journal of Neurophysiology 95, 3297–3308. doi:10.1152/jn.00166.2006 

Lurie, D., Kessler, D., Bassett, D.S., Betzel, R.F., Breakspear, M., Kielholz, S., Kuyci, 
A., Liégeois, R., Lindquist, M.A., McIntosh, A.R., Poldrack, R.A., Shine, J.M., 
Thompson, W.H., Bielczyk, N.Z., Douw, L., Kraft, D., Miller, R.L., Muthuramann 
M., Pasquini, L., Razi, A., Viduarre, D., Xie, H., Calhoun, V.D., 2020. Questions 
and controversies in the study of time-varying functional connectivity in resting 
fMRI. Network Neuroscience 4, 30-69. doi:10.1162/netn_a_00116 

Margulies, D.S., Ghosh, S.S., Goulas, A., Falkiewicz, M., Huntenburg, J.M., Langs, G., 
Bezgin, G., Eickhoff, S.B., Castellanos, F.X., Petrides, M., Jefferies, E., Smallwood, 
J., 2016. Situating the default-mode network along a principal gradient of 
macroscale cortical organization. Proc. Natl. Acad. Sci. U.S.A. 113, 12574–12579. 
doi:10.1073/pnas.1608282113 

Margulies, D.S., Smallwood, J., 2017. Converging evidence for the role of transmodal 
cortex in cognition. Proc. Natl. Acad. Sci. U.S.A. 114, 12641–12643. 
doi:10.1073/pnas.1717374114 

McCormick, D.A., McGinley, M.J., Salkoff, D.B., 2015. Brain state dependent activity 
in the cortex and thalamus. Current Opinion in Neurobiology 31, 133–140. 
doi:10.1016/j.conb.2014.10.003 

McCormick, D.A., Pape, H.C., Williamson, A., 1991. Actions of norepinephrine in the 
cerebral cortex and thalamus: implications for function of the central 
noradrenergic system. Prog. Brain Res. 88, 293–305. doi:10.1016/s0079-
6123(08)63817-0 

Mesulam, M.M., 1998. From sensation to cognition. Brain 121 (Pt 6), 1013–1052. 
doi:10.1093/brain/121.6.1013 

Moretti, P., Munoz, M.A., 2013. Griffiths phases and the stretching of criticality in 
brain networks. Nature Communications 4, 2521. doi:10.1038/ncomms3521 

Münkle, M.C., Waldvogel, H.J., Faull, R.L., 2000. The distribution of calbindin, 
calretinin and parvalbumin immunoreactivity in the human thalamus. J. Chem. 
Neuroanat. 19, 155–173. doi:10.1016/s0891-0618(00)00060-0 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.28.970350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.970350
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

Munn, B., Zeater, N., Pietersen, A.N., Solomon, S.G., Cheong, S.K., Martin, P.R., 
Gong, P., 2020. Fractal spike dynamics and neuronal coupling in the primate 
visual system. Journal of Physiology, In Press. doi:10.1113/jp278935 

Murray, J.D., Benacchia, A., Freedman, D.J., Romo, R., Wallis, J.D., Cai, X., Padoa-
Schioppa, C., Pasternak, T., Seo, H., Lee, D. and Wang, X.-J., 2014. A hierarchy of 
intrinsic timescales across primate cortex. Nature Neurosci. 17, 1661-1663. 
doi:10.1038/nn.3862 

Nichols, T.E., Holmes, A.P., 2002. Nonparametric permutation tests for functional 
neuroimaging: a primer with examples. Hum Brain Mapp 15, 1–25. 
10.1002/hbm.1058 

Niemann, K., Mennicken, V.R., Jeanmonod, D., Morel, A., 2000. The Morel 
stereotactic atlas of the human thalamus: atlas-to-MR registration of internally 
consistent canonical model. NeuroImage 12, 601–616. doi:10.1006/nimg.2000.0650 

Nieuwenhuys, R., 1999. The morphological pattern of the vertebrate brain. Eur J 
Morphol 37, 81–84. doi:10.1076/ejom.37.2.81.4746 

Olsen, S.R., Bortone, D.S., Adesnik, H., Scanziani, M., 2012. Gain control by layer six 
in cortical circuits of vision. Nature 483, 47–52. doi:10.1038/nature10835 

Paquola, C., Vos De Wael, R., Wagstyl, K., Bethlehem, R.A.I., Hong, S.-J., Seidlitz, J., 
Bullmore, E.T., Evans, A.C., Mišić, B., Margulies, D.S., Smallwood, J., Bernhardt, 
B.C., 2019. Microstructural and functional gradients are increasingly dissociated 
in transmodal cortices. Plos Biol 17, e3000284. doi:10.1371/journal.pbio.3000284 

Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L., 1995. Quantification of scaling 
exponents and crossover phenomena in nonstationary heartbeat time series. 
Chaos 5, 82-87. doi:10.1063/1.166141. 

Phillips, J.W., Schulmann, A., Hara, E., Winnubst, J., Liu, C., Valakh, V., Wang, L., 
Shields, B.C., Korff, W., Chandrashekar, J., Lemire, A.L., Mensh, B., Dudman, 
J.T., Nelson, S.B., Hantman, A.W., 2019. A repeated molecular architecture across 
thalamic pathways. Nat Neurosci 22, 1925–1935. doi:10.1038/s41593-019-0483-3 

Power, J.D., Schlaggar, B.L., Lessov-Schlaggar, C.N., Petersen, S.E., 2013. Evidence 
for hubs in human functional brain networks. Neuron 79, 798–813. 
doi:10.1016/j.neuron.2013.07.035 

Przeździk, I., Faber, M., Fernández, G., Beckmann, C.F., Haak, K.V., 2019. The 
functional organisation of the hippocampus along its long axis is gradual and 
predicts recollection. Cortex 119, 324–335. doi:10.1016/j.cortex.2019.04.015 

Reardon, P.K., Seidlitz, J., Vandekar, S., Liu, S., Patel, R., Park, M.T.M., Alexander-
Bloch, A., Clasen, L.S., Blumenthal, J.D., Lalonde, F.M., Giedd, J.N., Gur, R.C., 
Gur, R.E., Lerch, J.P., Chakravarty, M.M., Satterthwaite, T.D., Shinohara, R.T., 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.28.970350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.970350
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

Raznahan, A., 2018. Normative brain size variation and brain shape diversity in 
humans. Science 360, 1222–1227. doi:10.1126/science.aar2578 

Redinbaugh, M.J., Phillips, J.M., Kambi, N.A., Mohanta, S., Andryk, S., Dooley, G.L., 
Afrasiabi, M., Raz, A., Saalman, Y., 2020. Thalamus Modulates Consciousness 
Via Layer-Specific Control of Cortex. Neuron, In Press. 
doi:10.1016/j.neuron.2020.01.005. 

Rikhye, R.V., Gilra, A., Halassa, M.M., 2018. Thalamic regulation of switching 
between cortical representations enables cognitive flexibility. Nat Neurosci 21, 
1753–1763. doi:10.1038/s41593-018-0269-z 

Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: 
Uses and interpretations. NeuroImage 52, 1059–1069. 
doi:10.1016/j.neuroimage.2009.10.003 

Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, X.-N., Holmes, A.J., 
Eickhoff, S.B., Yeo, B.T.T., 2018. Local-Global Parcellation of the Human Cerebral 
Cortex from Intrinsic Functional Connectivity MRI. Cereb. Cortex 28, 3095–3114. 
doi:10.1093/cercor/bhx179 

Schmitt, L.I., Wimmer, R.D., Nakajima, M., Happ, M., Mofakham, S., Halassa, M.M., 
2017. Thalamic amplification of cortical connectivity sustains attentional control. 
Nature 545, 219–223. doi:10.1038/nature22073 

Sherman, S.M., 2007. The thalamus is more than just a relay. Current Opinion in 
Neurobiology 17, 417–422.doi:10.1016/j.conb.2007.07.003 

Shine, J.M., Aburn, M.J., Breakspear, M., Poldrack, R.A., 2018. The modulation of 
neural gain facilitates a transition between functional segregation and 
integration in the brain. eLife 7, e31130. doi:10.7554/eLife.31130.001. 

Shine, J.M., Bissett, P.G., Bell, P.T., Koyejo, O., Balsters, J.H., Gorgolewski, K.J., 
Moodie, C.A., Poldrack, R.A., 2016. The Dynamics of Functional Brain Networks: 
Integrated Network States during Cognitive Task Performance. Neuron 92, 544–
554. doi:10.1016/j.neuron.2016.09.018 

Shine, J.M., Breakspear, M., Bell, P.T., Ehgoetz Martens, K.A., Koyejo, O., Shine, R., 
Sporns, O., Poldrack, R.A., 2019a. Human cognition involves the dynamic 
integration of neural activity and neuromodulatory systems. Nat Neurosci 28, 
289-296. doi:10.1038/s41593-018-0312-0 

Shine, J.M., Hearne, L.J., Breakspear, M., Hwang, K., Müller, E.J., Sporns, O., 
Poldrack, R.A., Mattingley, J.B., Cocchi, L., 2019b. The Low-Dimensional Neural 
Architecture of Cognitive Complexity Is Related to Activity in Medial Thalamic 
Nuclei. Neuron 104, 849-855. doi:10.1016/j.neuron.2019.09.002 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.28.970350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.970350
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

Stanley, G., Gokce, O., Malenka, R.C., Südhof, T.C., Quake, S.R., 2019. Continuous 
and Discrete Neuron Types of the Adult Murine Striatum. Neuron 105, 688-699. 
doi:10.1016/j.neuron.2019.11.004 

Suzuki, M., Larkum, M.E., 2020. General Anesthesia Decouples Cortical Pyramidal 
Neurons. Cell, 180, 666-676. doi:10.1016/j.cell.2020.01.024. 

Van der Werf, Y.D., Witter, M.P., Groenewegen, H.J., 2002. The intralaminar and 
midline nuclei of the thalamus. Anatomical and functional evidence for 
participation in processes of arousal and awareness. Brain Research Reviews 39, 
107–140. doi:10.1016/S0165-0173(02)00181-9 

Varela, C., 2014. Thalamic neuromodulation and its implications for executive 
networks. Front Neural Circuits 8, 69. doi:10.3389/fncir.2014.00069 

Vázquez-Rodríguez, B., Suárez, L.E., Markello, R.D., Shafiei, G., Paquola, C., 
Hagmann, P., van den Heuvel, M.P., Bernhardt, B.C., Spreng, R.N., Mišić, B., 
2019. Gradients of structure-function tethering across neocortex. Proc. Natl. 
Acad. Sci. U.S.A. 116, 21219–21227. doi:10.1073/pnas.1903403116 

Watanabe, T., Rees, G., Masuda, N., 2019. Atypical intrinsic neural timescale in 
autism. Elife 8, 839. doi:10.7554/eLife.42256 

Wilting, J., Priesemann, V., 2018. Inferring collective dynamical states from widely 
unobserved systems. Nat Commun 9, 2325. doi:10.1038/s41467-018-04725-4 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2020. ; https://doi.org/10.1101/2020.02.28.970350doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.28.970350
http://creativecommons.org/licenses/by-nc-nd/4.0/

