	1		
1			
2			
3			
4	ICOS enhances follicular T helper responses and deteriorates the		
5	pathogenic process of liver in mice infected with Schistosoma japonicum		
6			
7	Bo Wang ^{1,2} , Song Liang ² , Yan-Yan Wang ² , Yu Wang ² , Chao-Ming Xia ² *		
8	1 Laboratory Department, Inner Mongolia People's Hospital, Huhhot, Inner Mongolia Autonomous		
9	Region, The Peoples Republic of China, 010017		
10	2 Department of Parasitology, Medical College of Soochow University, Suzhou, Jiangsu Province, The		
11	Peoples Republic of China, 215123		
12			
13	* Corresponding author: Professor Chao-Ming Xia, Department of Parasitology, Medical		
14	College of Soochow University, Renai Road, Industrial Park, Suzhou 215123, Jiangsu		
15	Province, P. R. China.		
16	E-mail: cmx2019@126.com		
17	Funding: This work was supported by grants from the National Natural Science Foundation		
18	of China (No: 81171603 and No: 81471977) to C.M.X and the General Program of Inner		
19	Mongolia Natural Science Foundation of China (No:2016BS0812), A project funded by the		
20	Program of Inner Mongolia People's Hospital Foundation (No:2019YN23) to B.W. The		
21	funders had no role in study design, data collection and analysis, decision to publish, or		
22	preparation of the manuscript.		

2

23 Abstract

24	Background: Humoral immune responses play an important role in mediating liver
25	granulomatous inflammation and fibrosis in schistosomiasis. Follicular helper T (Tfh) cells
26	have a central role in mediating humoral immune responses. Generation of Tfh cells depends
27	on inducible T cell costimulator (ICOS) signaling, but the underlying molecular mechanisms
28	are incompletely understood in pathogenesis of schistosomiasis.
29	Methodology/Principal Findings: We used a strain of ICOS-transgenic (Tg) mice to
30	test the degrees of liver granulomatous inflammation and fibrosis, the frequency of splenic
31	Tfh cells and soluble egg antigen-specific cytokine responses longitudinally in mice
32	following Schistosoma japonicum (S. japonicum) infection. In comparison with that in
33	wide-type (WT) mice, significantly severer liver granulomatous inflammation and fibrosis
34	and higher mortality were observed in ICOS-Tg mice. Significantly higher frequency of
35	splenic Tfh cells was accompanied by significantly higher levels of Bcl-6 and CXCR5
36	expression in the livers of ICOS-Tg mice. Furthermore, significantly higher levels of
37	SEA-specific IL-4, IL-6, IL-10, IL-13, IL-17A, IL-21 and TGF-β1 responses, but lower
38	levels of IFN- γ responses were detected in ICOS-Tg mice, which were abrogated by
39	treatment with ICOS blockers in vitro. In addition, significantly higher levels of serum
40	anti-SEA IgG were detected in ICOS-Tg mice.
41	Conclusions/Significance: The ICOS-related signaling may promote the pathogenesis
42	of murine schistosomiasis by polarizing Tfh cells, which may be immune check points for the
43	prevention and intervention of schistosomiasis.

3

44 Author summary

45	Granulomatous inflammation and fibrosis in the liver are the major pathogenic
46	characteristics of schistosomiasis. ICOS is crucial for the development of Tfh cells, which are
47	the key modulators of B cell activation and humoral immunity. However, the underlying
48	molecular mechanisms are incompletely understood in pathogenesis of schistosomiasis. Here,
49	our results showed that the ICOS over-expression would significantly induce severer liver
50	inflammation and fibrosis, higher frequency of splenic Tfh, higher levels of anti-SEA IgG as
51	well as imbalanced SEA-specific cytokine responses in ICOS-Tg mice. The findings
52	suggested that ICOS signaling may promote the pathogenesis of murine schistosoma-related
53	liver inflammation and fibrosis by polarizing Tfh cells. Potentially, ICOS signaling and Tfh
54	cells may be immune check points for the prevention and intervention of schistosomiasis.

4

56 Introduction

57	S. japonicum infection remains a problem for human health in developing countries.
58	During the pathogenesis of schistosomiasis, S. japonicum infection-related egg deposition can
59	recruit inflammatory infiltrates and cause granulomatous inflammation and fibrosis in the
60	liver [1,2]. More importantly, continual pathogenic process of inflammation and fibrosis in
61	the liver usually impairs its function, even leading to cirrhosis and live failure. Although
62	previous studies have shown that antigen-specific T cells, such as Th2 and Th17, participate
63	in the pathogenic process and Th1 and regulatory T cells (Tregs) antagonize Schistosomiasis-
64	related inflammation [3-5]. The molecular mechanisms of immunoregulation of S. japonicum
65	infection-related inflammation and fibrosis in the liver have been incompletely clarified.
66	Hence, illustration of the pathogenic process of S. japonicum infection-related inflammation
67	and fibrosis will be of great significance in the develop targets for design of new therapies for
68	patients with schistosomiasis.
69	Tfh cells are activated $CD4^+$ T cells commonly resident in the B cell follicles of second
70	lymph tissues and constitutively express homing receptor CXCR5 [6,7]. Tfh cells can also
71	express programmed death 1 (PD-1), ICOS and CD40L and secrete IL-21 as well as other
72	cytokines, which are crucial for their autocrine regulation of Tfh development and functions
73	[8-10]. Tfh differentiation is mainly regulated by the transcription factor, Bcl-6 [11]. Tfh cells
74	can promote antigen-specific B cell activation, germinal center formation and humoral
75	responses [12,13]. In addition, Tfh cells are involved in the pathogenic process of some
76	autoimmune diseases [14-16] and participate in defensing against parasite infection [17,18].
77	Indeed, increased frequency of Tfh cells is detected in rodent with S. japonicum infection and

5

78	Tfh cells activated by ICOS ⁺ macrophages infiltrate into the liver and enhance the liver injury	
79	in mice infected with S. japonicum [19].	
80	ICOS is crucial for T and B cell activation and important for T and B cell interaction to	
81	promote humoral responses [20]. ICOS is highly expressed by human tonsillar $CXCR5^+T$	
82	cells within the light zone of germinal centers and efficiently support immunoglobulin	
83	production [21,22]. In addition, ICOS-deficient mice show poor humoral responses and ICOS	
84	deficiency in humans results in significantly reduced numbers of Tfh cells, indicating a	
85	critical role of ICOS in the differentiation of CXCR5 ⁺ CD4 ⁺ T cells [23,24]. However, it is	
86	incompletely understood that the underlying molecular mechanisms of Tfh development and	
87	function in pathogenesis of schistosomiasis. Here we characterized to establish the ICOS-Tg	
88	mice as a model of schistosomiasis to assess the role of the ICOSL/ICOS interaction in	
89	mediating humoral immune responses by polarizing Tfh cells, particularly, which were	
90	abrogated by treatment with ICOS blockers in vitro. ICOS signaling and Tfh cells may be	
91	immune check points for the prevention and intervention of schistosomiasis.	
92		
93	Methods	
94	Ethics statement	
95	The experimental protocols were established, according to the Regulations for the	

96 Administration of Affairs Concerning Experimental Animals (1988.11.1) of the State Science

- and Technology Commission of the People's Republic China and were approved by the
- 98 Institutional Animal Care and Use Committee (IACUC) of Soochow University (Permit
- Number: 2007-13). All efforts were made to minimize suffering of animals.

-	
۲.	
υ	

100

101 Mice, parasites, and infection

102	Specific pathogen-free (SPF) female FVB mice (6-8 weeks old) were purchased from
103	the Center of Comparative Medicine of Yangzhou University (Yangzhou, China). Animals
104	were housed and bred in a SPF facility of our campus. To generate ICOS-Tg mice, human
105	ICOS cDNA was amplified by RT-PCR from activated human T cells and cloned into a
106	vector pEGFP-N2 plasmid, and a Tg cassette that drives transgene expression by the CMV
107	promoter/enhancer. The AseI-StuI transgene fragment at 0.642 kbwas microinjected into
108	fertilized mouse eggs prepared from FVB mice.
109	The generated ICOS-Tg founders were backcrossed to FVB mice over 10 generations to
110	stabilize the Tg strain (Yangzhou, China). Snails (Oncomelaniahupensis) harboring S.
111	japonicum cercariae (Chinese mainland strain) were purchased from Jiangsu Institute for
112	Schistosomiasis Control (Wuxi, China).
113	Individual FVB wide-type and ICOS-Tg mice at 6-8 weeks of age were infected with
114	14 (±1) cercaria of <i>S. japonicum</i> through the abdominal skin. At 4, 7, 12, 16, and 20 weeks
115	post-infection, 8 mice at each time point from the infected and control groups were randomly
116	chosen and sacrificed for subsequent ex vivo experiments. The remaining 20 mice per group
117	were monitored for their survival until they met certain clinical criteria for sacrifice. The
118	criteria included severe diarrhea, and difficult to eat and breath.
119	

120 Flow cytometry

121 The frequency of Tfh and other subsets of T cells was determined by flow cytometry

	7		
122	analysis. Briefly, splenic mononuclear cells were prepared from individual mice at each time		
123	point post infection and the cells at 1×10^6 /tube were stained in duplicate with FITC-anti-CD4,		
124	PE-anti-CXCR5, PE-Cy5-anti-ICOS, and APC-anti-CD40L or isotype controls (eBioscience,		
125	San Diego, USA). The percentages of CXCR5 ⁺ CD4 ⁺ Tfh cells, ICOS ⁺ CXCR5 ⁺ CD4 ⁺ Tfh		
126	cells and CD40L ⁺ CXCR5 ⁺ CD4 ⁺ Tfh cells were analyzed on a FACS Calibur Flow Cytometer		
127	(BD Biosciences).		
128	In addition, splenic mononuclear cells at 1×10^6 cells/well were stimulated with 25		
129	ng/ml of phorbolmyristate acetate (PMA) and 1 μ g/ml of ionomycin (Sigma-Aldrich) in		
130	complete RPMT 1640 medium in the presence of 3 μ g/ml of BFA for 5 hours at 37 °C in 5%		
131	CO ₂ . Subsequently, the cells were surface-stained with FITC-anti-CD4 and PE-anti-CXCR5		
132	or FITC-anti-CD4 alone, fixed, permeabilized with Fixation/Permeabilization buffer,		
133	followed by intracellularly staining with APC-anti-IL-21, PE-anti-BCL-6 or isotype controls		
134	for analyzing the frequency of IL-21 ⁺ CXCR5 ⁺ CD4 ⁺ or BCL-6 ⁺ CD4 ⁺ Tfh cells, respectively.		
135			
136	Culture and stimulation of splenic mononuclear cells in vitro		
137	Splenic mononuclear cells were prepared from individual mice in each group at the		
138	indicated time points post infection. Splenic mononuclear cells at 1×10^6 cells/well were		
139	stimulated in triplicate with 25 μ g/ml of soluble egg antigens (SEA) of <i>S. japonicum</i> from		
140	Jiangsu Institute for Schistosomiasis Control (Wuxi, China), 25 ng/ml of PMA and 1 μ g/ml of		
141	ionomycin in 10% fetal bovine serum (FBS) RPMI 1640 in 24-well plates at 37 °C for 72		
142	hours in the presence or absence of 0.5 μ g/ml of anti-ICOSL or 0.375 μ g/ml of antagonist		
143	anti-ICOS (eBioscience). The culture supernatants were collected and the contents of		

	8
144	cytokines (IL-2, IL-4, IL-6, IL-10, IL-13, IL-17A, IL-21, IFN-γ, TNF-α) were determined by
145	Cytometric Bead Array (CBA) using specific kit (BD Biosicences, San Diego, USA),
146	according to the manufacturers' instruction. The levels of TGF- β 1 in the cultured supernatants
147	were measured by ELISA using the ELISA Ready-SET-Go kit (eBiosicence, San Diego, CA),
148	according to the manufacturers' protocol. The limitation of detection for IL-2, IL-4, IL-6,
149	IL-10, IL-13, IL-17A, IL-21, IFN- γ , TNF- α and TGF- β 1 is (2.8pg/ml) respectively.
150	
151	Enzyme-linked immunosorbent assay (ELISA)
152	The concentrations of serum SEA-specific IgG and HA in individual mice were
153	evaluated by ELISA. Briefly, individual wells of 96-well ELISA plates (ICN Biomedicals,
154	Costa Mesa, USA) were coated with 100 μl of SEA (20 $\mu g/ml)$ in 0.05 M carbonate buffer
155	(pH 9.6) overnight at 4°C and after being washed and blocked with 10% FCS in 0.01M PBST,
156	the wells were added in triplicate with 1:100 diluted serum samples and cultured at 37 °C for
157	1 hour. The bound antibodies were detected with horseradish peroxidase (HRP)-conjugated
158	goat anti-mouse IgG (1:4000) for 1 hour at 37 °C and developed with tetramethyubenzidine
159	(TMB) substrate (BD PharMigen), followed by measuring the absorbance of individual wells
160	at 450 nm using an ELISA reader (Bio-rad mod.550). Serum samples from unmanipualted
161	mice were used for negative controls.
162	
163	Histopathological study

164 The liver tissue samples from individual mice were dissected out at the indicated time 165 points post infection, fixed with paraformaldehyde and paraffin-embedded. The tissue

9

166	sections at 5 μ m were stained with hematoxylin-eosin and the egg-related granuloma volumes
167	of individual liver samples were evaluated using a formula of $V=\pi AB^2/6$, where A and B
168	represented two diameters cross opposite axes [5].
169	Furthermore, some liver tissue sections were stained with Masson trichrome (MT). The
170	degrees of liver fibrosis in at least 10 low-power fields (magnification x 100) of each sample
171	were evaluated by pathologists in a blinded manner. In addition, the percentages of collagen+
172	regions were calculated using an image analysis system (Image-Pro Plus 6.0) to measure a
173	relative objective index. The fibrotic areas were calculated and expressed as the relative ratios
174	of the collagen-containing area to the whole area. At least 10 high-power fields
175	(magnification x 200) were measured from each liver sample.
176	
177	Immunohistochemistry
178	The contents of CXCR5 and Bcl-6 expression in the livers of individual mice were
179	evaluated by immunohistochemistry. Briefly, liver tissue sections (5 μ m) were rehydrated,
180	and treated with 3% H ₂ O ₂ , followed by blocking with 10% normal goat serum (Boster,
181	Wuhan, China). Subsequently, the sections were incubated with rabbit anti-CXCR5 (1:500,
182	
	Millipore, Germany) or rabbit anti-Bcl-6 (1:100, Santa Cruz, USA) overnight at 4 °C and
183	Millipore, Germany) or rabbit anti-Bcl-6 (1:100, Santa Cruz, USA) overnight at 4 °C and bound antibodies were detected using HRP-conjugated goat anti-rabbit IgG (ChemMate
183 184	
	bound antibodies were detected using HRP-conjugated goat anti-rabbit IgG (ChemMate

- and counterstained with Mayer's hematoxylin. Rabbit sera at 1:10 dilutions served as
- 187 negative controls. The intensity and percentages of positive staining cells in the liver

	10		
188	granulomas were evaluated for five high-power fields selected randomly using the Leica		
189	QWin Plus software, version 3.5.1 (Leica Microsystems, Switzerland). The percentage of		
190	positively staining cells in 15 granulomas was assessed and the mean of % positively staining		
191	cells in 15 granulomas +/- SD in each group was calculated.		
192			
193	Statistical analysis		
194	Statistical analysis was performed using the SPSS version 10.1 (Statistical Package for		
195	Social Science, Chicago, IL) software. The difference of the data among the groups was		
196	compared by two-way ANOVA followed by Tukey's multiple comparison test. The		
197	relationship between measures was analyzed by Spearman's rank correlation. The survival of		
198	each group of mice was estimated by Kaplan-Meier survival analysis and the difference		
199	between two groups was analyzed by the log-rank test. A P value of P<0.05 were considered		
200	statistically significant.		
201			
202	Results		
203	ICOS over-expression deteriorates the liver granulomatous inflammation and fibrosis in		
204	mice post-infection		
205	S. japonicum infection can cause liver granulomatous inflammation and fibrosis. To		
206	assess the impact of ICOS over-expression on S. japonicum infection-related liver		
207	inflammation the liver and spleen gross pathology, weights and liver granulomatous		
208	inflammation were examined longitudinally in WT and ICOS-Tg mice following S.		
209	japonicum infection. We observed dark-yellow livers (Fig 1A-b,c) compared with		

1	1
т	Τ.

210	non-infected liver (Fig 1A-a) and enlarged spleens in the mice infected with S. japonicum			
211	(Fig 1A-d). The liver and spleen weights in the mice infected with S. japonicum rapid			
212	increased and significantly greater than that in the non-infected mice (Fig 1B). The liver and			
213	spleen weights in ICOS-Tg mice were significantly greater than that in the WT mice at 4			
214	weeks post infection and later time points (Fig 1B; *P<0.05 or **P<0.01). Histological			
215	examination indicated that the mean volumes of granulomas in the ICOS-Tg mice were also			
216	significantly bigger than that in the WT mice (Fig 1C and D). More importantly, the overall			
217	survival periods of ICOS-Tg mice were significantly shorter than that in the WT mice (Fig 1E;			
218	P < 0.01). Collectively, these data indicated that induction of systemic ICOS over-expression			
219	deteriorated the liver granulomatous inflammation and fibrosis and accelerated mortality in			
220	mice infected with S. japonicum.			
221	Given that chronic S. japonicum infection is associated with the liver fibrosis we			
222	examined the effects of systemic ICOS over-expression on the liver fibrosis in mice infected			
223	with S. japonicum. MT staining revealed that the liver fibrosis developed at 7 weeks post			
224	infection and the degrees of liver fibrosis increased with time in mice following S. japonicum			
225	infection (Fig 2A). Quantitative analysis pointed out that the degrees of liver fibrosis in the			
226	ICOS-Tg mice were significantly greater than that in the WT mice (Fig 2B; <i>P</i> <0.01).			
227	Therefore, induction of systemic ICOS over-expression enhanced the fibrotic process in the			
228	livers of mice following S. japonicum infection.			
229				
230	Fig 1. Hepatic granulomatous inflammation and fibrosis in ICOS-Tg mice post-infection.			

231 Female FVB ICOS-Tg and WT mice were infected with *S. japonicum*. The liver and spleen

232	gross pathology, weights and liver granulomatous inflammation in WT and ICOS-Tg mice
233	were examined longitudinally at the indicated time points post S. japonicum infection. The
234	liver tissue sections were stained with H&E and granulomous inflammatory areas were
235	analyzed in a blinded manner. Data are representative images and expressed as the mean \pm
236	SEM of each group (n=8 per group per time point). The survival of remaining mice (n=20 per
237	group) were monitored. (A) The gross pathology of the livers from the healthy control (a);
238	infected WT mice (b) and ICOS-Tg mice (c) and spleens (d: from left to right: normal spleen;
239	infected WT mice; infected ICOS-Tg mice). (B) The changes in the liver and spleen weights.
240	The liver and spleen weights of healthy mice at 4 weeks post infection was designated as
241	100%. Two-way ANOVA followed by Tukey's multiple comparison test showed no
242	significant genotype \times time interaction effect for the liver/spleen weight changes (P=0.455/
243	P=0.16). The main effects showed a significant difference in the changes of the liver/spleen
244	weights among different time points and different genotypes (** P <0.01). (C) H&E analysis
245	of the liver sections of mice at 12 weeks post infection. The images are original magnification,
246	$\times 100$; scale bar, 100um. Arrowheads indicate the margins of hepatic granulomatous
247	inflammation. (D) The mean granuloma sizes in ICOS-Tg and WT mice were assessed at 7,
248	12, or 16 weeks post-infection and quantified from at least 20 granulomas selected randomly
249	from individual mice, as described in the Materials and Methods. * P <0.05, ** P <0.01, or
250	***P<0.001 vs. the WT mice. Two-way ANOVA and then Tukey's multiple comparison tests
251	showed a significant genotype \times time interaction effect for the volumes of egg granuloma
252	(* P <0.05). The main effects showed a significant difference in the volumes of egg granuloma
253	among different time points and different genotypes (* P <0.05 or ** P <0.01). (E) The survival

	13				
254	of mice following S. japonicum infection. (ICOS-Tg vs. WT, P=0.0038). The survival				
255	analysis data are a representative of three independent experiments with similar results.				
256					
257	Fig 2. The schistosoma-related liver fibrosis in ICOS-Tg mice. The liver tissue sections				
258	from individual mice at the indicated time points post infection were stained with MT				
259	(original magnification×200). (A) The blue area represents fibrillar collagen. (B) Two-way				
260	ANOVA and Tukey's multiple comparison tests showed a significant genotype \times time				
261	interaction effect for the ratios of fibrotic to total area (%) (** P =0.0035). The main effects				
262	showed a significant difference in the ratios of fibrotic to total area (%) among different time				
263	points and different genotypes (** P <0.01).				
264					
265	ICOS over-expression increases the frequency of circulating Tfh cells in mice post-				
266	infection.				
267	CXCR5 ⁺ Bcl-6 ⁺ Tfh cells can secrete IL-21 and are crucial for humoral responses [9].				
268	Recent studies indicate that ICOS positively regulates the Tfh development [8]. To				
269	understand the mechanisms underlying the action of ICOS over-expression in this model, we				
270	characterized the frequency of circulating Bcl-6 ⁺ CD4 ⁺ , CXCR5 ⁺ CD4 ⁺ and CXCR5 ⁺ IL-21 ⁺ T				
271	cells in total CD4 ⁺ T cells in WT and ICOS-Tg mice at different time points post infection by				
272	flow cytometry analysis (Fig 3). Quantitative analysis indicated that the percentages of				
273	Bcl-6 ⁺ CD4 ⁺ , CXCR5 ⁺ CD4 ⁺ and CXCR5 ⁺ IL-21 ⁺ Tfh cells in both strains of mice gradually				
274	increased, as compared with that before infection and peaked at 12 weeks post infection,				

followed by slightly declined. Interestingly, the percentages of Bcl-6⁺CD4⁺, CXCR5⁺CD4⁺

	14			
276	and CXCR5 ⁺ IL-21 ⁺ Tfh cells in the ICOS-Tg mice were significantly higher than that in the			
277	WT mice. Similarly, further analysis revealed that the percentages of circulating $ICOS^+$			
278	$CXCR5^+CD4^+$ and $CD40L^+CXCR5^+CD4^+$ Tfh cells in the ICOS-Tg mice were significantly			
279	higher than that in the WT mice (Fig 4). Hence, induction of systemic ICOS over-expression			
280	enhanced Tfh responses in mice following S. japonicum infection.			
281				
282	Fig 3. The frequency of splenic Tfh cells. The frequency of splenic $Bcl-6^+CD4^+$ (A),			
283	$CXCR5^{+}CD4^{+}$ (B) and IL-21 ⁺ $CXCR5^{+}$ (C) Tfh cells in the ICOS-Tg and WT mice was			
284	characterized longitudinally post infection by flow cytometry after staining with the indicated			
285	antibodies. The cells were first gated on splenic mononuclear cells and at least 10,000 events			
286	from each sample were analyzed. Data are representative charts and expressed as the mean \pm			
287	SEM of the percentages of specific type of Tfh cells in each group (n=5 per group per time			
288	point) at the indicated time points post infection from three separate experiments.* $P < 0.05$,			
289	** <i>P</i> <0.01, or *** <i>P</i> <0.001 vs. the WT mice. Two-way ANOVA and Tukey's multiple			
290	comparison tests showed a significant genotype \times time interaction effect for the Bcl-6			
291	(* <i>P</i> =0.028), CXCR5 (* <i>P</i> =0.033) and IL-21 (* <i>P</i> =0.016). The main effects showed a			
292	significant difference in the levels of Bcl-6, CXCR5 and IL-21 expression among different			
293	genotypes and different times point (* P <0.05 or ** P <0.01).			
294				
295	Fig 4. The frequency of splenic ICOS ⁺ or CD40L ⁺ Tfh cells. The frequency of splenic			
296	ICOS ⁺ CXCR5 ⁺ CD4 ⁺ Tfh cells and CD40L ⁺ CXCR5 ⁺ CD4 ⁺ Tfh cells in the ICOS-Tg and WT			

297 mice was characterized by flow cytometry analysis and at least 10,000 events were analyzed.

15

	15
298	Data are presentative charts and expressed as the mean \pm SEM of the percentages of
299	$ICOS^{+}CXCR5^{+}CD4^{+}$ Tfh cells (A) and $CD40L^{+}CXCR5^{+}CD4^{+}$ Tfh cells (B) in each group
300	(n=5 per group per time point) at the indicated time points post infection from three separate
301	experiments. *P<0.05, **P<0.01, or ***P<0.001 vs. the WT mice. Two-way ANOVA and
302	Tukey's multiple comparison tests showed a significant genotype \times time interaction effect for
303	the ICOS ⁺ Tfh cells (** P =0.001) and CD40L ⁺ Tfh cells (* P =0.049). The main effects showed
304	a significant difference in the percentages of $ICOS^+$ Tfh cells and $CD40L^+$ Tfh cells among
305	different genotypes and different times point (* P <0.05 or** P <0.01).
306	
307	ICOS over-expression promotes antigen-specific Tfh, Th2 and Th17 responses in mice
308	post-infection
309	To further elucidate the role of ICOS-ICOSL signaling in modulating Tfh responses,
310	we isolated splenic mononuclear cells from the ICOS-Tg and WT mice at different time
311	points post S. japonicum infection and stimulated them with SEA in the presence or absence
312	of anti-ICOS or anti-ICOSL in vitro, followed by measuring cytokines in the supernatants by
313	CBA. Although the levels of IL-2 and TNF- α increased for a short period post infection in
314	both groups of mice, there was no significant difference in the levels of IL-2 between the
315	ICOS-Tg and WT mice regardless the presence or absence of anti-ICOS or anti-ICOSL (Fig
316	5A and B). Similarly, the levels of IFN- γ also increased for a short period post infection. The
317	levels of IFN- γ in the supernatants of cultured splenic mononuclear cells from the ICOS-Tg
318	mice were significantly lower than that in the WT mice (Fig 5C). The levels of IFN- γ
319	increased dramatically after treatment with anti-ICOS or anti-ICOSL in the supernatants of

16

320	cultured splenic mononuclear cells from the ICOS-Tg mice, but not from WT mice in most			
321	time points tested. Furthermore, the levels of IL-4, IL-10, IL-13, IL-17A, IL-21 and TGF- β 1			
322	gradually increased in both groups of mice, peaked at 12 weeks post infection and slightly			
323	declined (Fig 5D-I). The levels of IL-4, IL-10, IL-13, IL-17A, IL-21 and TGF-B1 in the			
324	supernatants of cultured splenic mononuclear cells from the ICOS Tg mice were significantly			
325	higher than that in the WT mice. Similarly, treatment with anti-ICOS or anti-ICOSL also			
326	significantly reduced the levels of IL-4, IL-10, IL-13, IL-17A, IL-21 and TGF- β 1 in the			
327	supernatants of cultured splenic mononuclear cells from the ICOS Tg mice (Fig 5D-I). These			
328	data clearly demonstrated that induction of systemic ICOS over-expression promoted Tfh,			
329	Th2 and Th17 responses in mice infection with S. japonicum.			
330	Then, we determined the HA titers in ICOS-Tg mice following S. japonicum infection			
331	and analyzed the potential correlation between the levels of HA and the levels of serum IL-4,			
332	IL-13, TGF- β 1, and IL-21 (Fig 6A-D). The levels of serum IL-4, IL-13, and TGF- β 1 were			
333	positively correlated with the HA titers in ICOS-Tg mice following S. japonicum infection			
334	(Fig 6E; $P < 0.01$ or $P < 0.001$). Importantly, the levels of serum IL-21 were also positively			
335	correlated with the HA titers in ICOS Tg mice following S. japonicum infection ($P < 0.05$)			
336	(Fig 6D and E). These data suggest that ICOSL/ICOS interactions play a key role in Tfh, Th2			
337	and Th17 responses, which are identified as pertinent to fibrosis.			
338				
339	Fig 5. The dynamic changes in the cytokine production by splenocytes from the ICOS-			

Tg and WT mice. Female ICOS-Tg and WT mice were infected with *S. japonicum*. Splenic

mononuclear cells were prepared from each group before and at 4, 7, 12, 16, or 20 weeks

(which was not	certified by peer		aCC-BY 4.0 Inte		perpetuity. It
17					

342	post-infection and stimulated in triplicate with SEA, PMA and ionomycin in the presence or
343	absence of anti-ICOS or anti-ICOSL for 72 hrs. The supernatants were harvested and the
344	concentrations of (A) IL-2, (B) TNF-α, (C) IFN-γ, (D) IL-4, (E) IL-10, (F) IL-13, (G)
345	IL-17A, (H) IL-21 and (I) TGF- β 1 were determined by CBA. Data are expressed as the mean
346	\pm SEM of the concentrations of each cytokine in individual group of mice (n=5 per group,per
347	time point) from three independent experiments. $\sqrt[3]{P}<0.05$ between ICOS-Tg and the WT
348	mice, $^{1}P < 0.05$ between ICOS-Tg and Tg-ICOSL-blocking mice, $^{\checkmark}P < 0.05$ between ICOS-Tg
349	and Tg-ICOS-blocking mice. Two-way ANOVA and Tukey's multiple comparison tests
350	showed a significant genotype × time interaction effect for the IFN- γ (* <i>P</i> =0.046), IL-4
351	(** <i>P</i> =0.005), IL-10 (* <i>P</i> =0.031), IL-13 (** <i>P</i> <0.01), IL-17A (* <i>P</i> =0.038), IL-21 (* <i>P</i> =0.028)
352	and TGF- β 1 (** <i>P</i> =0.004). The main effects showed a significant difference among different
353	genotypes and different time points in the level of IL-2, TNF- α , IFN- γ , IL-4, IL-10, IL-13,
354	IL-17A, IL-21 and TGF-β1 (* <i>P</i> <0.05 or ** <i>P</i> <0.01).
355	
356	Fig 6. The analysis of correlation of Th2 / Tfh and fibrosis. The linear relationship of IL-4
357	(A : R=0.4727, ** <i>P</i> =0.0083), IL-13 (B : R=0.5306, ** <i>P</i> =0.0026), TGF-β1 (C : R=0.5858,
358	*** <i>P</i> =0.0007), IL-21 (D : R=0.4234, * <i>P</i> =0.0197) and HA. The results are a representative of
359	three independent experiments with similar results, which are from 6 time points (at 0, 4, 7,
360	12, 16, 20 weeks) (E). The comparison of Spearman R from the analysis of correlation. The

361 Spearman R from the analysis of correlation between IL-4 / IL-13 / TGF- β 1 / IL-21 and HA.

*P < 0.05, **P < 0.01, and ***P < 0.001 between cytokine and HA, Spearman's rank.

18

364 ICOS over-expression enhances antigen-specific humoral responses and Tfh liver

365 infiltration in mice post-infection.

366	Tfh cells can promote humoral response. Finally, we assessed the impact of systemic
367	ICOS over-expression on SEA-specific humoral responses and on the degrees of liver Tfh
368	infiltration in mice at different time points post S. <i>japonicum</i> infection. We found that S.
369	japonicum infection induced SEA-specific IgG responses, which gradually increased and
370	peaked at 12 weeks post infection in both groups of mice. The levels of serum SEA-specific
371	IgG in the ICOS-Tg mice were significantly higher than that in the WT mice at chronic stage
372	of S. japonicum infection (Fig 7A). Immunohistochemistry analyses indicated that the
373	intensity and extensity of positively anti-BCL-6 and anti-CXCR5 staining in the liver sections
374	of ICOS-Tg mice were obviously stronger than that in the WT mice at 12 weeks post
375	infection (Fig 7B). Quantitative analysis revealed that the ratios of IOD to AOVI for
376	anti-Bcl-6 and anti-CXCR5 staining in the livers of ICOS Tg mice were significantly greater
377	than that in the WT mice at 12 weeks post infection (Fig 7C). Therefore, these data clearly
378	indicated that induction of systemic ICOS over-expression promoted antigen-specific
379	humoral responses and Tfh liver infiltration in mice following S. japonicum infection.
380	
381	Fig 7. The concentrations of serum SEA-specific IgG and the intensity of Tfh liver
382	infiltration liver in mice. The concentrations of serum anti-SEA IgG in the ICOS-Tg and

WT mice at the indicated time points post infection were determined by ELISA (A) and the

degrees of Tfh infiltrates in the livers of both groups of mice at 12 weeks post infection were

determined by immunohistochemistry using anti-Bcl-6 and anti-CXCR5 (**B**). The intensity of

1	n
4	

386	anti-Bcl-6 and anti-CXCR5 staining was analyzed by the % positively staining cells in 15
387	granulomas (C). Data are representative images and expressed as the mean \pm SEM of the
388	concentrations of serum IgG and the mean of % positively staining cells in 15 granulomas +/-
389	SD of each group of mice (n=5 per group per time point) from three separate experiments.
390	* <i>P</i> <0.05, ** <i>P</i> <0.01, or *** <i>P</i> <0.001 vs. the WT mice. Two-way ANOVA and Tukey's
391	multiple comparison tests showed no significant genotype \times time interaction effect for the
392	concentrations of serum anti-SEA IgG ($P=0.08$). The main effects showed a significant
393	difference in the changes of the liver/spleen weights among different time points and different
394	genotypes (**P<0.01).
395	
396	Discussion
397	Tfh cells are crucial for B cell activation, germinal center formation and humoral
398	responses [7]. ICOS, besides CD40L and CD28, is important for T cell activation,
200	particularly for Tfh calls. In this study, we tested the impact of systemic ICOS over

particularly for Tfh cells. In this study, we tested the impact of systemic ICOS over-

400 expression on the dynamics of liver granulomatous inflammation and fibrosis in mice

401 following *S. japonicum* infection. We found that in comparison with that in the WT mice,

402 larger liver and spleens organs and greater wet liver and spleen weights were observed,

403 accompanied by significantly severer liver granulomatous inflammation and fibrosis in the

404 ICOS-Tg mice. As a result, the ICOS-Tg mice had significantly shorter survival following *S*.

- 405 *japonicum* infection. Clearly, these data demonstrated that systemic ICOS over-expression
- 406 promoted the liver granulomatous inflammation, fibrosis and mortality in mice following *S*.
- 407 *japonicum* infection. These novel findings indicated that systemic ICOS over-expression not

-	-
2	n
~	v

408 only promoted the liver granulomatous inflammation and fibrosis, but also accelerated the
409 mortality in *S. japonicum*-infected mice.

410	Recent studies have shown that the ICOS signaling can promote Tfh cell differentiation
411	and IL-21 production [9,10]. To understand the mechanisms underlying the action of ICOS
412	over-expression, we characterized the frequency of splenic Tfh cells in the ICOS-Tg and WT
413	mice following S. <i>japonicum</i> infection. We found that the percentages of Bcl- 6^+ CD4 ⁺ ,
414	CXCR5 ⁺ CD4 ⁺ , CXCR5 ⁺ IL-21 ⁺ and CD40L ⁺ CXCR5 ⁺ CD4 ⁺ Tfh cells gradually increased in
415	both groups of mice following S. japonicum infection and the percentages of these Tfh cells
416	in the ICOS-Tg mice were significantly higher than that in the WT mice. These data indicated
417	that ICOS enahcned Tfh development during the process of S. japonicum infection. It is
418	possible that ICOS may up-regulate the CXCR5 and Bcl-6 expression to promote the
419	differentiation of Tfh cells. More importantly, we observed significantly higher levels of
420	IL-21 secreted by splenic mononuclear cells from ICOS-Tg mice following S. japonicum
421	infection. Given that IL-21 is a growth factor and important for the function of Tfh cells, it is
422	possible that the ICOS signaling may also enhance IL-21 expression, providing a positive
423	feedback regulation of Tfh responses. The higher frequency of Tfh cells, the higher levels of
424	IL-21 production may activate and expand memory B cells, thereby enhancing humoral
425	responses. Indeed, we detected significantly higher levels of SEA-specific humoral responses
426	in the ICOS-Tg mice. Apparently, ICOS through promoting Tfh development and in turn
427	enhancing humoral responses, contributes to the pathogenesis of granulomatous inflammation
428	and fibrosis in mice following S. japonicum infection. Potentially, ICOS and Tfh may be
429	immune check points for the prevention and intervention of Schistosoma-related

21

430 granulomatous inflammation and fibrosis.

431	It is well known that Th2 and Th17 responses are involved in the pathogenesis of
432	Schistosoma-related granulomatous inflammation and fibrosis. In this study, we found that
433	significantly higher levels of SEA-specific Th2 and Th17 responses in the ICOS-Tg mice,
434	which was abrogated by treatment with a blocker of the ICOS/ICOSL signaling. These data
435	suggest that the ICOS signaling may promote Th2 and Th17 responses during the pathogenic
436	process of Schistosoma-related granulomatous inflammation and fibrosis. Our findings were
437	consistent with previous observations that the ICOS expands Th2 immunity and Th2-
438	medaited inflammation by augmenting the migration of inflammatory infiltrates [25,26].
439	Interestingly, we also detected significantly higher levels of IL-10 and TGF- β 1 responses in
440	the ICOS-Tg mice. Given that IL-10 and TGF- β 1 are important anti-inflammatory cytokines
441	secreted by regulatory T cells (Tregs), the enhanced anti-inflammatory responses may inhibit
442	the liver granulomatous inflammation. Hence, the ICOS signaling has dual functions by
443	promoting pathogenic Th2 and Th17 responses and enhancing anti-inflammatory IL-10 and
444	TGF-β1 responses during the pathogenesis of <i>Schistosoma</i> -related granulomatous
445	inflammation. Unfortunately, TGF- β 1 is potent pro-fibrotic factor and through its receptor to
446	activate the Smad signaling to promote fibrosis-related gene expression [27,28]. It is possible
447	that the ICOS signaling through enhancing TGF- β 1 production contributes to the
448	pathogenesis of Schistosoma-related liver fibrosis. Therefore, inhibition of the ICOS
449	signaling may not only attenuate hepatic granulomatous inflammation, but also mitigate
450	Schistosoma-related liver fibrosis.
451	In summary, our data indicated that systemic ICOS over-expression deteriorated the

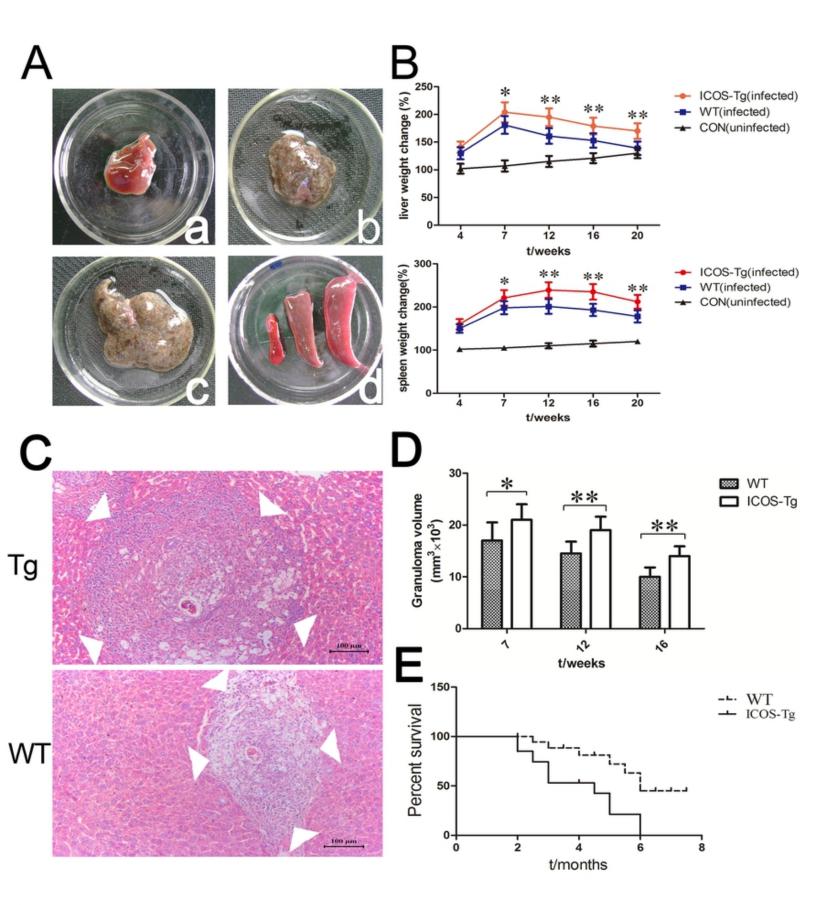
452	pathogenic process of Schistosoma-related liver granulomatous inflammation and fibrosis and
453	accelerated mortality in mice. Furthermore, systemic ICOS over-expression not only
454	significantly increased the frequency of splenic Tfh cells, but also enhanced SEA-specific
455	Th2, Th17, IgG, IL-21, IL-10 and TGF-β1 responses in mice following <i>S. japonicum</i>
456	infection. Hence, the ICOS signaling has sequential roles in regulating the Schistosoma-
457	related liver granulomatous inflammation and fibrosis in mice. Importantly, the ICOS
458	signaling may be an immune check point for the prevention and intervention of Schistosoma-
459	related liver granulomatous inflammation and fibrosis. Therefore, our findings may not only
460	provide new insights into the mechanisms by which the ICOS regulates the pathogenesis of
461	Schistosoma-related liver granulomatous inflammation and fibrosis, but also may aid in the
462	design of new therapies for the intervention of Schistosoma-induced fibrosis.
463	

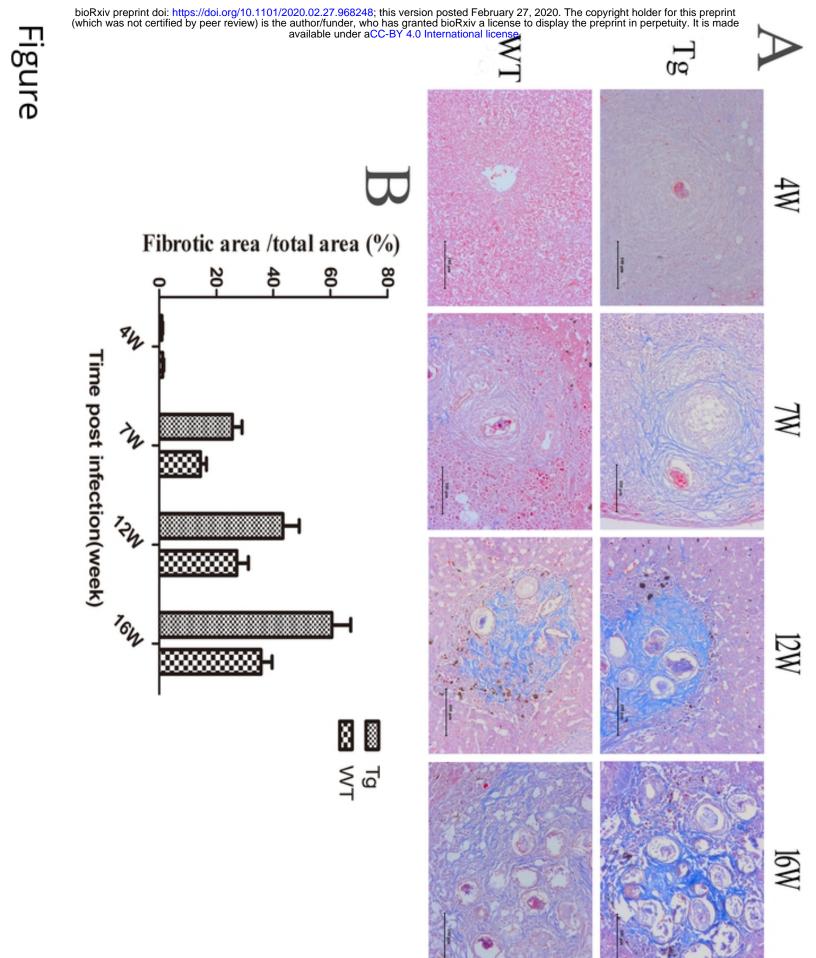
23

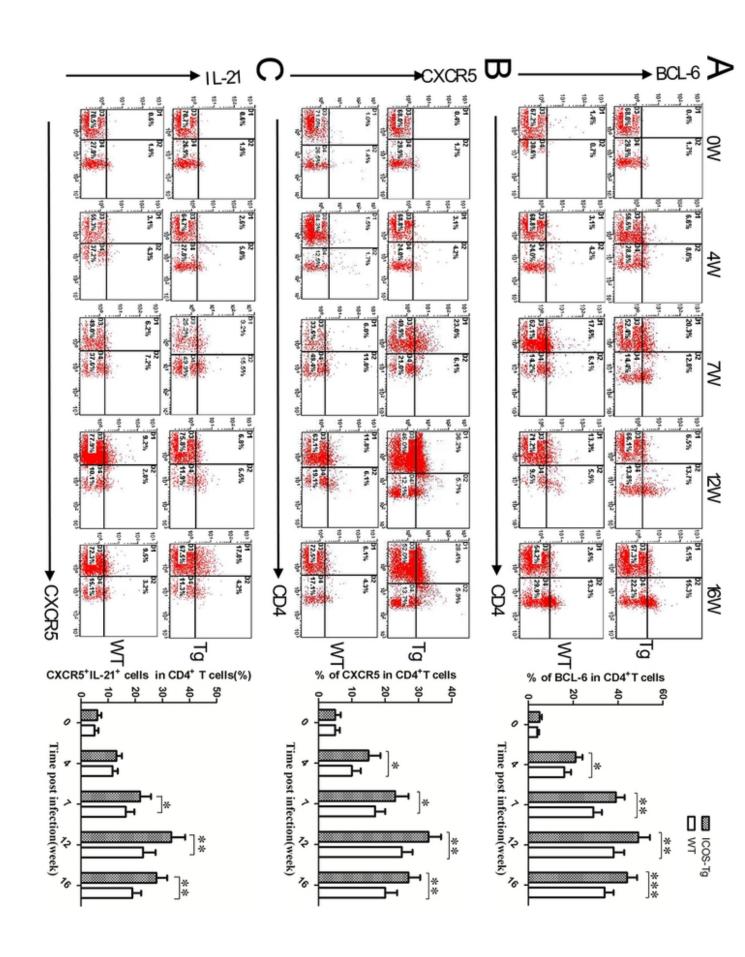
465 **References**

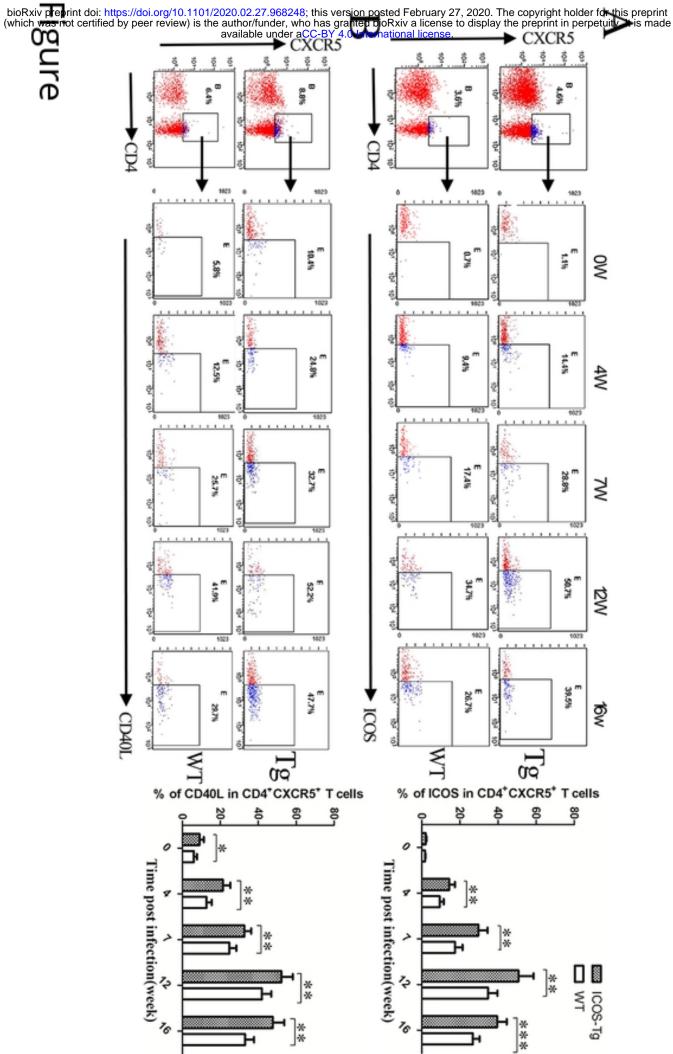
466	1.	Nono JK, Ndlovu H, Aziz NA, Mpotje T, Hlaka L, Brombacher F. Host regulation of
467		liver fibroproliferative pathology during experimental schistosomiasis via interleukin-4
468		receptor alpha. PLoS Negl Trop Dis. 2017 Aug 21;11(8):e0005861. doi:
469		10.1371/journal. pntd.0005861. PMID: 28827803; PMCID: PMC5578697.
470	2.	Vicentino ARR, Carneiro VC, Allonso D, Guilherme RF, Benjamim CF, Vicentino ARR,
471		et al. Emerging Role of HMGB1 in the pathogenesis of schistosomiasis liver fibrosis.
472		Front Immunol. 2018 Sep 12;9:1979. doi: 10.3389/fimmu.2018.01979. PMID:
473		30258438; PMCID: PMC6143665.
474	3.	Kumar R, Mickael C, Kassa B, Sanders L, Koyanagi D, Hernandez-Saavedra D, et al.
475		Th2 CD4+ T Cells are necessary and sufficient for Schistosoma-pulmonary
476		hypertension. J Am Heart Assoc. 2019 Aug 6;8(15):e013111. doi: 10.1161/JAHA.
477		119.013111. Epub 2019 Jul 24. PMID: 31339057; PMCID: PMC6761627.
478	4.	Soloviova K, Fox EC, Dalton JP, Caffrey CR, Davies SJ. A secreted schistosome
479		cathepsin B1 cysteine protease and acute schistosome infection induce a transient T
480		helper 17 response. PLoS Negl Trop Dis. 2019 Jan 17;13(1): e0007070. doi: 10.1371/
481		journal.pntd. 0007070. PMID: 30653492; PMCID: PMC6353221.
482	5.	Wang B, Liang S, Wang Y, Zhu XQ, Gong W, Zhang HQ, et al. Th17 down-regulation
483		is involved in reduced progression of schistosomiasis fibrosis in ICOSL KO mice.
484		PLoS Negl Trop Dis. 2015 Jan 15;9(1):e0003434. doi: 10.1371/journal.pntd.0003434.
485		PMID: 25590646; PMCID: PMC4295877.

486 6. Qin L, Waseem TC, Sahoo A, Bieerkehazhi S, Zhou H, Galkina EV, et al. Insights into

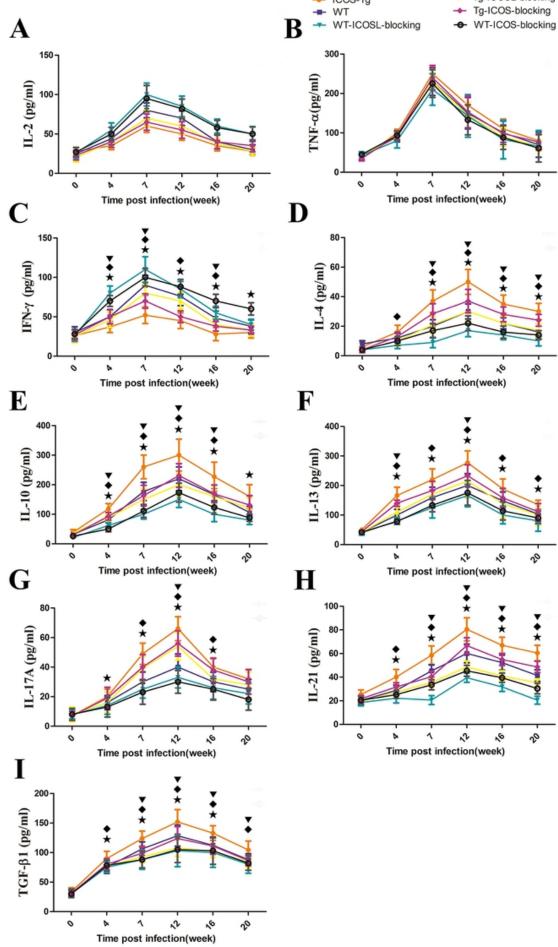

	24	
487		the molecular mechanisms of T follicular helper-mediated immunity and pathology.
488		Front Immunol. 2018 Aug 15;9:1884. doi: 10.3389/fimmu.2018.01884. PMID:
489		30158933; PMCID: PMC6104131.
490	7.	Wu H, Deng Y, Zhao M, Zhang J, Zheng M, Chen G, et al. Molecular control of
491		follicular helper T cell development and differentiation. Front Immunol. 2018 Oct
492		25;9:2470. doi: 10.3389/fimmu.2018.02470. PMID: 30410493; PMCID:
493		PMC6209674.
494	8.	Uwadiae FI, Pyle CJ, Walker SA, Lloyd CM, Harker JA. Targeting the ICOS/ICOS-L
495		pathway in a mouse model of established allergic asthma disrupts T follicular helper
496		cell responses and ameliorates disease. Allergy. 2019 Apr;74(4):650-662. doi: 10.1111/
497		all.13602. Epub 2018 Nov 12. PMID: 30220084; PMCID: PMC6492018.
498	9.	Wang Y, Lin C, Cao Y, Duan Z, Guan Z, Xu J, et al. Up-regulation of interleukin-21
499		contributes to liver pathology of schistosomiasis by driving GC immune responses and
500		activating HSCs in mice. Sci Rep. 2017 Nov 30;7(1):16682. doi: 10.1038/
501		s41598-017-16783-7. PMID: 29192177; PMCID: PMC5709429.
502	10.	Shi J, Hou S, Fang Q, Liu X, Liu X, Qi H. PD-1 controls follicular T helper cell
503		positioning and function. Immunity. 2018 Aug 21;49(2):264-274.e4. doi: 10.1016/
504		j.immuni.2018.06.012. Epub 2018 Jul 31. PMID: 30076099; PMCID: PMC6104813.
505	11.	Read KA, Powell MD, Oestreich KJ. T follicular helper cell programming by
506		cytokine-mediated events. Immunology. 2016 Nov;149(3):253-261. doi:10.1111/
507		imm.12648. Epub 2016 Aug 16. PMID: 27442976; PMCID: PMC5046059.
508	12.	Kim ST, Choi JY, Lainez B, Schulz VP, Karas DE, Baum ED, et al. Human

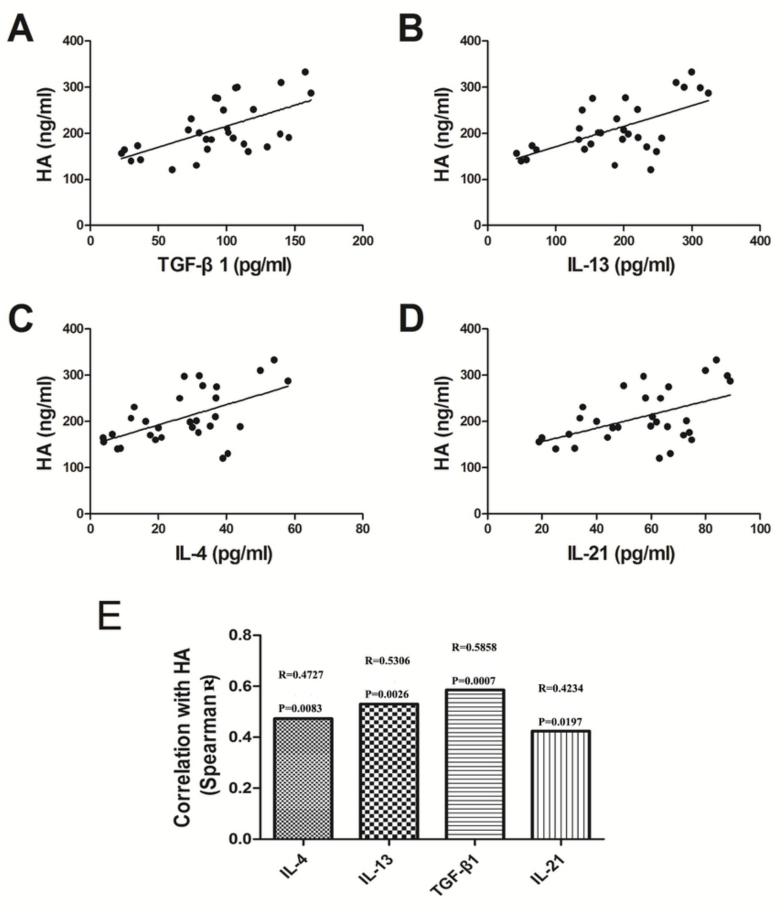

2	5	
		extrafollicular CD4 ⁺ Th cells help memory B cells produce Igs. J Immunol. 2018 Sep
		1;201(5):1359-1372. doi: 10.4049/jimmunol.1701217. Epub 2018 Jul 20. PMID:
		30030323; PMCID: PMC6112860.
1	3.	Xie MM, Dent AL. Unexpected Help: Follicular regulatory T cells in the germinal
		center. Front Immunol. 2018 Jul 2;9:1536. doi: 10.3389/ fimmu.2018.01536. PMID:
		30013575; PMCID: PMC6036241.
1	4.	Gensous N, Charrier M, Duluc D, Contin-Bordes C, Truchetet ME, Lazaro E, et al. T
		follicular helper cells in autoimmune disorders. Front Immunol. 2018 Jul 17;9: 1637.
		doi: 10.3389/fimmu.2018.01637. PMID: 30065726; PMCID: PMC6056609.
1	5.	Quinn JL, Axtell RC. Emerging role of follicular T helper cells in multiple sclerosis
		and experimental autoimmune encephalomyelitis. Int J Mol Sci. 2018 Oct 19;19(10):
		3233. doi: 10.3390/ijms19103233. PMID: 30347676; PMCID: PMC6214126.
1	6.	Cao G, Chi S, Wang X, Sun J, Zhang Y. CD4+CXCR5+PD-1+ T follicular helper cells
		play a pivotal role in the development of rheumatoid arthritis. Med Sci Monit. 2019
		Apr 25;25:3032-3040. doi:10.12659/MSM.914868. PMID: 31019190; PMCID:
		PMC6498883.
1	7.	Chen X, Li W, Zhang Y, Song X, Xu L, Xu Z, et al. Distribution of peripheral memory
		T follicular helper cells in patients with schistosomiasis Japonica. PLoS Negl Trop
		Dis. 2015 Aug 18;9(8):e0004015.doi: 10.1371/journal.pntd.0004015. PMID:
		26284362; PMCID: PMC4540279.
1	8.	Zhang Y, Wang Y, Jiang Y, Pan W, Liu H, Yin J, et al. T follicular helper cells in
		patients with acute schistosomiasis. Parasit Vectors. 2016 Jun 6;9(1):321. doi:10.1186/

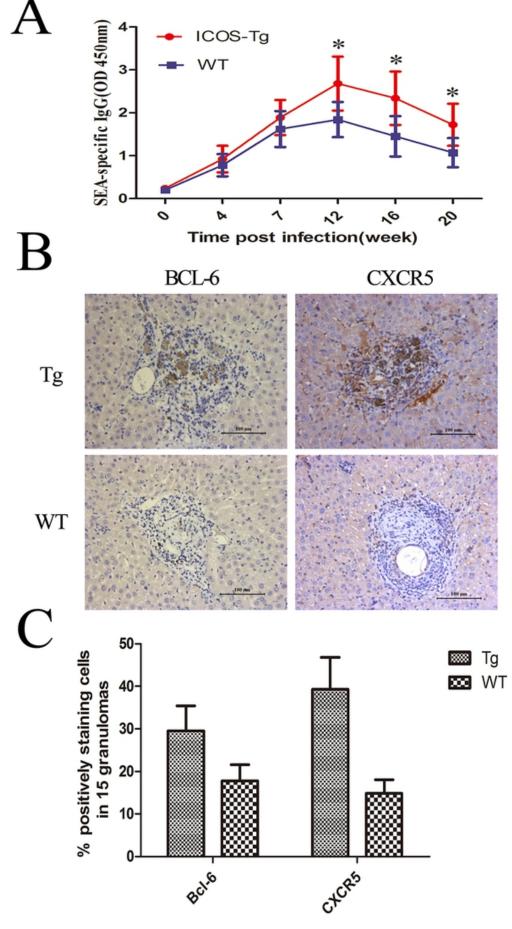

		available under aCC-BY 4.0 International license.
	26	
531		s13071-016-1602-6. PMID: 27266984; PMCID: PMC4895967.
532	19.	Chen X, Yang X, Li Y, Zhu J, Zhou S, Xu Z, et al. Follicular helper T cells promote
533		liver pathology in mice during Schistosoma japonicum infection. PLoS Pathog. 2014
534		May 1;10(5):e1004097. doi: 10.1371/journal.ppat. 1004097. PMID: 24788758;
535		PMCID: PMC4006917.
536	20.	Wikenheiser DJ, Stumhofer JS. ICOS co-stimulation: friend or foe? Front Immunol.
537		2016 Aug 10;7:304. doi: 10.3389/fimmu. 2016.00304. PMID: 27559335; PMCID:
538		PMC4979228.
539	21.	Le KS, Amé-Thomas P, Tarte K, Gondois-Rey F, Granjeaud S, Orlanducci F, et al.
540		CXCR5 and ICOS expression identifies a CD8 T-cell subset with $T_{\rm FH}$ features in
541		Hodgkin lymphomas. Blood Adv. 2018 Aug 14;2(15): 1889-1900. doi: 10.1182/
542		bloodadvances.2018017244. PMID: 30087107; PMCID: PMC6093730.
543	22.	Liu J, Zhou Y, Yu Q, Zhao Z, Wang H, Luo X, et al. Higher Frequency of
544		CD4+CXCR5+ICOS+PD1+ T follicular helper cells in patients with infectious
545		mononucleosis. Medicine (Baltimore). 2015 Nov;94(45):e2061. doi: 10.1097/MD.
546		000000000002061. PMID: 26559315; PMCID: PMC4912309.
547	23.	Jogdand GM, Sengupta S, Bhattacharya G, Singh SK, Barik PK, Devadas S. Inducible
548		costimulator expressing T cells promote parasitic growth during blood
549		stage plasmodium berghei ANKA infection. Front Immunol. 2018 May 28;9:1041. doi:
550		10.3389/fimmu.2018.01041. PMID: 29892278; PMCID: PMC5985291.
551	24.	Wikenheiser DJ, Ghosh D, Kennedy B, Stumhofer JS. The costimulatory molecule
552		ICOS regulates host Th1 and follicular Th Cell differentiation in response to


	27	
553		plasmodium chabaudi chabaudi AS infection. J Immunol. 2016 Jan 15;196(2):778-91.
554		doi: 10.4049/jimmunol.1403206. Epub 2015 Dec 14. PMID: 26667167; PMCID:
555		PMC4705592.
556	25.	Tesciuba AG, Shilling RA, Agarwal MD, Bandukwala HS, Clay BS, Moore TV, et al.
557		ICOS costimulation expands Th2 immunity by augmenting migration of lymphocytes
558		to draining lymph nodes. J Immunol. 2008 Jul 15;181(2):1019- 24. doi: 10.4049/
559		jimmunol.181.2.1019. PMID: 18606653; PMCID: PMC2560985.
560	26.	Shilling RA, Clay BS, Tesciuba AG, Berry EL, Lu T, Moore TV, et al. CD28 and ICOS
561		play complementary non-overlapping roles in the development of Th2 immunity in
562		vivo. Cell Immunol. 2009;259(2):177-84. doi:10.1016/j.cellimm.2009.06.013. Epub
563		2009 Jul 10. PMID: 19646680; PMCID: PMC2748173.
564	27.	Ahamed J, Laurence J. Role of platelet-derived transforming growth factor- $\beta 1$ and
565		reactive oxygen species in radiation-induced organ fibrosis. Antioxid Redox Signal.
566		2017 Nov 1;27(13):977-988. doi: 10.1089/ars. 2017.7064. Epub 2017 Jul 5. PMID:
567		28562065; PMCID: PMC5649128.
568	28.	Jee MH, Hong KY, Park JH, Lee JS, Kim HS, Lee SH, et al. New mechanism of
569		hepatic fibrogenesis: hepatitis C virus infection induces transforming growth factor $\beta 1$
570		production through glucose-regulated protein 94. J Virol. 2015 Dec 30;90(6):3044-55.

doi: 10.1128/JVI.02976-15. PMID: 26719248; PMCID: PMC4810663.







bioRxiv preprint doi: https://doi.org/10.1101/2020.02.27.968248; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

