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Translational relevance 

Predicting outcomes after resection of primary melanoma is currently based on traditional 

histopathological staging, however survival outcomes within these disease stages varies 

markedly. Since adjuvant systemic therapies are now being used routinely, accurate prognostic 

information is needed to better risk stratify patients and avoid unnecessary use of high cost, 

potentially harmful drugs, as well as to inform future adjuvant strategies. The Cam_121 gene 

expression signature appears to have this capability and warrants evaluation in prospective 

clinical trials. 
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Abstract  

Purpose: Predicting outcomes after resection of primary melanoma remains crude, primarily 

based on tumour thickness. We explored gene expression signatures for their ability to better 

predict outcomes. 

  

Methods: Differential expression analysis of 194 primary melanomas resected from patients 

who either developed distant metastasis (n=89) or did not (n=105) was performed. We 

identified 121 metastasis-associated genes that were included in our prognostic signature, 

“Cam_121”. Several machine learning classification models were trained using nested leave-

one-out cross validation (LOOCV) to test the signature’s capacity to predict metastases, as well 

as regression models to predict survival. The prognostic accuracy was externally validated in 

two independent datasets.  

  

Results: Cam_121 performed significantly better in predicting distant metastases than any of 

the models trained with the clinical covariates alone (pAccuracy=4.92x10
-3

), as well as those 

trained with two published prognostic signatures. Cam_121 expression score was strongly 

associated with progression-free survival (HR=1.7, p=3.44x10
-6

), overall survival (HR=1.73, 

p=7.71x10
-6

) and melanoma-specific survival (HR=1.59, p=0.02). Cam_121 expression score also 

negatively correlated with measures of immune cell infiltration (ρ=-0.73, p<2.2x10
-16

), with a 

higher score representing reduced tumour lymphocytic infiltration and a higher absolute 5-year 

risk of death in stage II melanoma. 

  

Conclusions: The Cam_121 primary melanoma gene expression signature outperformed 

currently available alternatives in predicting the risk of distant recurrence. The signature 

confirmed (using unbiased approaches) the central prognostic importance of immune cell 

infiltration in long-term patient outcomes and could be used to identify stage II melanoma 

patients at highest risk of metastases and poor survival who might benefit most from adjuvant 

therapies.
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Background 

Melanoma is among the few cancers demonstrating an increasing incidence over time (1). Most 

patients present with primary tumours and the majority will be cured by local surgery. 

Outcomes from metastatic melanoma have improved radically in the last 10 years with the 

introduction of new systemic therapies (2), although median survival remains around 3 years. It 

is the large number of patients presenting with early stage disease who unfortunately 

experience disease recurrence over time and represent the majority of deaths due to 

melanoma (3). Optimal management of early melanoma is therefore key to improving 

outcomes. 

 

Patients with resected AJCC stage III melanoma are now eligible for adjuvant immune 

checkpoint inhibitors as well as BRAF targeted therapies, based on randomised trials confirming 

reduction in risk of relapse and improved overall survival (4-7). Clinical trials are underway to 

evaluate similar therapies in resected stage IIB/C patients (8), whose outcomes reflect that of 

stage IIIA/B melanoma, untreated (9). As such the number of patients eligible for treatment 

with adjuvant therapies over the coming years is expected to increase substantially. These 

modern anticancer drugs are high cost and carry risk of both life-changing and life-threatening 

toxicities, so there is growing desire to more accurately predict those patients at high-risk of 

recurrence in whom intervention is expected to be beneficial and to avoid over-treating 

patients likely already to be cured of their disease by surgery alone.  

 

Gene expression signatures have the potential to improve the prediction of the biological 

behaviour of melanocytic lesions by objectively defining ‘high-risk’ on a molecular level (10). 

Previous transcriptomic analyses of cutaneous melanoma (CM) identified patterns of gene 

expression associated with survival independent of AJCC stage (11). Building on these data, 

Gerami et al first reported a prognostic gene expression profile (GEP) test utilising the 31-gene 

panel (28 discriminating and 3 control genes) for use in patients with CM (Decision-Dx 

Melanoma
TM

) (12). The test measures the expression of individual genes from formalin-fixed 

paraffin-embedded (FFPE) primary melanomas to provide a binary classification of low (class 1) 

or high (class 2) risk for developing metastases within 5 years of diagnosis (with A and B 
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subclasses to further stratify risk) (13-15). A further recent unsupervised clustering analyses 

based on 677 primary melanoma transcriptomes embedded within a population-controlled 

cohort study from the Leeds Melanoma Cohort (LMC) identified a six-class 150-gene prognostic 

signature (herein reference to as LMC_150) (16). The signature uniquely demonstrated 

prognostic relevance in patients with stage I primary melanoma and further predicted poor 

outcomes in patients undergoing immunotherapy (16). However, owing at least in-part to a lack 

of prospective reproducible data, proving the clinical utility of such prognostic molecular tools 

remains a considerable challenge and there are currently no established prognostic biomarkers 

able to accurately identify truly high-risk patients (17).  

 

Using patient samples and long-term clinical outcome data from one of the largest adjuvant 

melanoma trials (18), we undertook RNA sequencing of the primary tumour matched with 

robust prospective clinical data to uncover a molecular signature that could be used to predict 

patient outcomes. This was then validated in two externally acquired datasets.
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Results 

1. Prognostic signature generated using covariate corrected differential 

expression 

The structure of the datasets and analyses are depicted in (Supplementary figure S1). Principal 

component analysis (PCA) showed that primary cutaneous melanomas (n=204) and melanoma 

spread to local lymph nodes (n=177) clustered separately, suggesting an impact of the 

microenvironment on tumour gene expression (Supplementary figure S2; see Supplementary 

methods). We therefore decided to treat these as separate datasets, focussing our analyses on 

the primary melanoma samples and validated our results in the lymph node metastases (see 

Methods). We conducted a differential expression analysis, identifying differences in gene 

expression levels in primary tumours between those patients with and without distant 

metastasis over a minimum of six years follow-up while controlling for a set of variables 

(Supplementary figure S3(A); Supplementary table S1). Our analyses revealed 197 significantly 

differentially expressed genes (DEGs, FDR adjusted p-value<0.1) associated with metastases 

(Supplementary figure S3(B)). These DEGs were further filtered to remove pseudogenes (n=39) 

and those genes not identified within the Leeds Melanoma Cohort DASL array (n=37) to enable 

external validation of our signature (Supplementary figure S1). We were therefore left with 121 

DEGs which made up our core prognostic signature herein referred to as “Cam_121” 

(Supplementary table S2). 

2. Cam_121 predicts metastases significantly better than both clinical 

covariates and published prognostic signatures 

We trained machine learning models with the prognostic signature Cam_121 employing 

multiple (n=8) machine learning classifiers (see Methods). The models were evaluated by their 

capacity to predict whether a primary melanoma would ultimately metastasise to distant body 

sites, or would not. We trained the same models with the key clinical covariates, of which a 

number were independently associated with distant metastases (Stage AJCC 7th edition (19) 

(herein referred to as ‘stage’), Breslow thickness, ECOG; Eastern Cooperative Oncology Group 

Performance Status and the experimental adjuvant therapy) (Supplementary table S1) for 
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comparison. We found that the models trained with both Cam_121 and clinical covariates 

significantly out-performed the models trained with the clinical covariates alone 

(pAccuracy=2.94x10
-3

, pkappa=3.23x10
-3

; Supplementary table S3), and this remained consistent 

across all machine learning classifiers (Supplementary figure S4; Supplementary table S3). By 

selecting the top performing classifier for each signature, we were able to compare the 

performance of the signature to baseline clinical covariates across multiple measures of model 

efficacy. The prognostic signature added incremental benefit across all key performance 

metrics including: accuracy (66.5% using the clinical covariates only vs 72.7% using the 

Cam_121 gene expression + clinical covariates), kappa (0.32 vs 0.45), sensitivity (60.7% vs 

70.8%), specificity (71.4% vs 74.3%) (Figure 1A-D).  In particular, we found that adding the 

signature to the clinical covariates correctly predicted an additional 42 cases (Figure 1E). We 

then tested the performance of published prognostic signatures from Gerami et al (12) 

(Decision-Dx Melanoma
TM

; n=27 genes) and Thakur et al (16) (LMC_150; n=150 genes) using the 

same machine learning models in our dataset and were not able to deduce that these 

signatures perform better than the baseline clinical covariates at the 5% significance level 

(Supplementary figure S4 & Supplementary table S3).
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3. Signature added incremental prognostic value when combined with 

conventional clinical staging  

In order to explore the relationship between Cam_121 gene expression and prognosis, we first 

performed univariate Cox regression using weighted Cam_121 expression score (see Methods) 

as predictor and found that it was significantly associated with both overall survival (OS; 

HR=1.64 (95% CI 1.30-2.07), p=3.56x10
-5

) and progression-free survival (PFS; HR=1.63 (95% CI 

1.31-2.02), p=8.92x10
-6

) (Figure 1G-H). The Kaplan-Meier survival curves of melanoma patients 

with high and low weighted Cam_121 score (see Methods) showed a clear difference in survival 

between these two groups (Figure 1G-H). In order to evaluate whether the signature score 

contributed independent prognostic information while controlling for conventional clinical 

staging, multivariate Cox regression analyses were performed (Figure 1I-J). The signature score 

was significantly associated with both OS (HR=1.73 (95% CI 1.36-2.20), p=7.71x10
-6

) and PFS 

(HR=1.7 (95% CI 1.36-2.14), p=3.44x10
-6

) in multivariate Cox regression models.  

 

We further tested the performance of Cam_121 in the (entirely separate) regional lymph-node 

metastasis samples within this dataset (n=177) and found that the weighted signature score 

was also significantly associated with both OS (HR=1.72 (95% CI 1.37-2.14), p=1.53x10
-6

) and 

PFS (HR=1.75 (95% CI 1.43-2.16), p=1.10x10
-7

) in multivariate Cox regression models 

(Supplementary figure S5), indicating that Cam_121 could also be relevant as a prognostic tool 

after the resection of stage III melanoma.  

 

As Cam_121 was developed and tested on the same dataset, there are chances of overfitting. 

Therefore, we further tested the signatures’ prognostic power in an externally acquired 

independent validation dataset from the Leeds Melanoma Cohort (n=677) (15). This confirmed 

that Cam_121 was associated with melanoma-specific survival (MSS) in both univariate 

(HR=1.49 (95% CI 1.27-1.74), p=5x10
-7

) and multivariate Cox regression models (HR=1.7 (95% 

CI), p=0.001, Figure 2). A second external validation was attempted using the Lund primary 

melanoma cohort (20)(n=223), however only 24 of the Cam_121 genes were present in this 

dataset. This 24-gene signature was significantly correlated with PFS (HR=1.67 (95% CI 1.06-
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2.62), p=0.03 univariate Cox regression analyses), but not with OS (p=0.32), although there was 

paucity of signature genes within this dataset (Supplementary Figure S6).  

 

The published signatures from Thakur et al (16) (LMC_150; n=150 genes) as well as those from 

Gerami et al (12) (Decision-Dx Melanoma
TM

; n=27 genes) were not found to be significantly 

associated with survival in multivariate models in our dataset, which may in part be reflective a 

higher proportion of stage III patients in these data than in these earlier studies (Supplementary 

figure S7). 

4. Cam_121 gene signature score performed significantly better than genes 

selected at random in predicting overall and progression-free survival 

In light of reports suggesting that randomly selected genes may perform equally well in 

predicting prognosis as published signatures (21), we decided to test the performance of 

Cam_121 against a set of 1000 randomly selected signatures of 121 genes each (from a pool of 

19,434 protein-coding genes in our dataset; see Supplementary methods). We found that 

Cam_121 gene significantly outperformed random signatures across all measures of clinical 

efficacy including: OS (p=0.001) and PFS (p=0.001) in multivariate Cox regression models 

(Supplementary figure S8). 

5. Stage II patients with a ‘high-risk’ signature demonstrated a 33% risk of 

death at 5-years, a threshold for which adjuvant therapy could be 

considered 

We envisage that one of the central clinical applications of a prognostic GEP might be to 

identify those patients with stage II melanoma who may be at higher risk of relapse or death 

and for whom adjuvant systemic therapies may be considered. In order to compare our data 

with the registration adjuvant melanoma trials conducted in resected stage III melanoma 

survival (4-7), we measured the absolute risk of death at 5 years (calculated as the proportion 

of patients who died due to melanoma within 5-years from diagnosis).  

 

Analyses in the Leeds Melanoma Cohort (where there was a higher preponderance of early-

stage patients) revealed that stage II patients had a 27% (54/279) baseline absolute risk of 
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death at 5-years. This risk rose to 33% (64/192) in those stage II patients with a high-risk 

weighted Cam_121 expression score profile and dropped to 14% (12/87) in those stage II 

patients with a low-risk profile (Table 1). The stratification of high/low risk cohorts in this 

context was based on a 0.33 quantile cut-off of the weighted Cam_121 expression score and 

subsequent references to high/low Cam_121 risk groups refer to these weighted expression 

groups (see methods).   

6. Per-gene analyses 

In order to determine the relative influence of each gene and each baseline clinical covariate 

within the machine learning model, we analyzed their feature importance scores and found 

that no single feature dominated the performance of the model (Supplementary figure S9), 

suggesting that it is the combination of all the features that yielded improved performance over 

the baseline clinical covariates (Supplementary figure S4). In keeping with this, none of the 

Cam_121 genes proved significant in the per gene multivariate survival analyses after 

correcting for multiple testing (p-value<0.05), further confirming that it is the combination of all 

the genes that give improved performance in predicting OS and PFS (Supplementary figure S7).  

 

We undertook further multivariate Cox regression analyses for all protein coding genes in this 

dataset (n=19,434) and found no single gene was significantly associated with either PFS or OS 

(Supplementary Tables S4 and S5). 
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7. A high weighted Cam_121 score reflected a lymphocytic depleted tumour 

with worse clinical outcomes  

In order to identify the biological processes reflected by the signature, we inputted the genes 

into pre-ranked gene set enrichment analyses, ordered by their fold-change from the covariate-

corrected differential expression analysis (see Methods). In doing this, we found that the top 

five significant (FDR corrected p-value<0.05) down-regulated hallmark gene-sets resulting from 

this analysis included interferon gamma (IFNγ) response, interferon alpha (IFNT) response, 

allograft rejection, inflammatory response and IL6-JAK-STAT3 signalling (Supplementary figure 

S11). Interestingly, when we ran gene-set enrichment on DEGs derived from the (entirely 

separate) lymph node samples (n=177; Supplementary figure S12), we observed significant 

(FDR corrected p-value<0.01) down-regulation of the exact same immune-related processes 

(Supplementary figure S12). Therefore indicating that the differential expression analyses (with 

a predominance of down-regulated genes in both the primary melanoma and regional lymph 

node datasets) also reflected a significant down-regulation of key immune mediated processes 

in the samples from patients that developed metastases (Supplementary figure S3 and S11).  

 

We next used the Angelova dataset (22) to deconvolute the expression of immune cell subtypes 

within each sample (see Methods). We found a negative correlation between the weighted 

signature score and multiple immune cell types (with the highest correlation found with 

Activated B-cells (ρ=-0.75, p<2.2x10
-16

; Figure 3A), T-cells (ρ=-0.73, p<2.2x10
-16

; Figure 3B) as 

well the overall immune cell expression score (ρ=-0.73, p<2.2x10
-16

; Figure 3C). We also found 

that patients with samples showing a high weighted Cam_121 expression score were more 

likely to develop metastases than those with a low weighted Cam_121 expression score (Figure 

3A-B & Supplementary table S6). Although 9 of the Cam_121 signature genes were common 

with the Angelova immune marker genes (TUBB, AIM2, CASQ1, NTRK1, FASLG, CCR3, P2RY14, 

PRF1 and CCR5), we were able to demonstrate that samples segregated based on overall 

immune cell score, with low immune cell expression clustering with high weighted Cam_121 

gene expression scores (Figure 3D), using principal component analysis. Therefore, we 

concluded that the weighted signature expression score negatively correlated with lymphocytic 
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infiltration and that a high signature score equates to a relatively immune-deprived tumour 

with worse clinical outcomes.   

8. Gene reduction analysis revealed that Cam_121 had the potential to be 

reduced to upto 70 genes but was not prognostic in multivariate models 

In order to assess whether the signature length could feasibly be reduced without comprising 

efficacy, we serially removed 10 genes at a time from Cam_121 ordered by decreasing fold-

change (Supplementary Table 2; see Supplementary methods). In doing this we found that the 

top 70 genes with the highest fold-change (herein referred to as Cam_70) performed better in 

predicting metastases than signatures of all other lengths (Supplementary figure S13A-D). This 

reduced-length signature, Cam_70, further significantly correlated with both OS and PFS in uni- 

and multivariate survival models (p<0.05; Supplementary figure S13E-F) and was externally 

validated in the Leeds Melanoma Dataset (Supplementary figure S13G). However, the signature 

lost its significance after correcting for the tumour-infiltrating lymphocyte score in the 

multivariate model (p=0.14) and was therefore not considered for further analysis 

(Supplementary figure S13G). 
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Discussion 

The ability to identify primary melanoma patients at risk for disease recurrence is an important 

unmet need and effective prognostic biomarkers that could serve to guide adjuvant therapy are 

lacking. We sought to identify whether the expression of genes in a primary melanoma tumour 

can predict for distant metastasis and survival, analysing data acquired from one of the largest 

phase III prospective adjuvant melanoma clinical trials associated with long-term patient 

outcome data (18). We used covariate-corrected differential expression analyses to identify 121 

genes significantly associated with distant metastases which made up our signature, and found 

that this added prognostic value in both the prediction of metastasis and survival. The 

prognostic relevance was further confirmed in an independent external validation cohort 

assessing melanoma-specific survival. Immune cell deconvolution analyses revealed that the 

weighted Cam_121 expression score negatively correlated with multiple measures of 

lymphocytic infiltration, with a high weighted signature score reflecting a relatively cold 

tumour-immune microenvironment with worse long-term prognosis. These findings were cross-

validated using gene-set enrichment analyses, showing that differential expression analyses in 

both primary melanoma (n=194) and lymph node (n=177) datasets reflected down-regulation 

of the same key immune mediated processes. That this conclusion was reached using unbiased 

differential expression, re-affirms the central importance of the immune system in this setting.  

 

The melanoma microenvironment consists of multiple immune and stromal cells, which play a 

critical role in regulating both the initiation and development of disease. Several studies have 

demonstrated the association of lymphocyte infiltration with longer survival (23-25), as well as 

an inverse relationship between tumour infiltrating lymphocyte (TIL) grade and the presence of 

lymph node metastases (26,27), implying that evaluating the tumour microenvironment 

landscape may hold promise for prognostic biomarkers. However only a limited number of 

studies have investigated the immune landscape in primary melanomas. A transcriptomic 

analysis of primary melanomas identified six distinct subgroups based on their expression of 

immune-related, keratin and beta-catenin pathway genes (28). In this study, patients with low 

immune but high beta-catenin score (CIC4) had the poorest overall survival (28). A recent study 

utilising high-throughput sequencing of T-cell receptor beta-chain in T2-T4 primary melanomas 
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(n=199) indicated that the T-cell fraction accurately predicted progression-free survival and was 

independent of other key clinico-pathologic covariates (29). Although it was difficult to discern 

specific immune cell subtypes using bulk RNA sequencing, given that the weighted Cam_121 

score was strongly negatively correlated with B cells, T cells and cytotoxic cells (ρ
 
= -0.75, -0.73 

and -0.74 respectively with p<2.2x10
-16

) and that interferon pathways dominated gene-set 

enrichment, we regard this as further evidence that a successful immune mediated cytotoxic 

anti-tumour response exists in primary melanoma. Critically, we found that the signature 

retained its prognostic power even after correcting for the TIL score, and it is our opinion that 

quantifying the expression of these key immune-mediated genes could potentially provide a 

more standardised and reproducible measure of immune activity. Furthermore, the prognostic 

relevance in both the primary melanoma and lymph node datasets attests to the signatures’ 

robustness. The challenge over the coming years will be to identify and validate a clinically-

relevant measure of lymphocytic abundance of relevance to primary CM, that can be easily 

implemented in real-life clinical practice.  

 

Interrogating the Leeds Melanoma Cohort, we found that the GEP-designated high/low risk 

could be used to separate patients with ≥ 33% risk of death at 5-years; a risk threshold for 

which we believe adjuvant systemic therapies could be considered. Conversely, it is envisaged 

that “low risk” GEP profiles could also be used to ‘downstage’ stage III patients for whom 

treatment might be unnecessary. There is substantial evidence supporting the importance of 

pre-treatment immune cell infiltration in eliciting anti-tumour responses with immunotherapy 

(30), however it remains to be seen whether Cam_121 expression can predict therapeutic 

responses in this setting. Future well-designed prospective clinical trials will ultimately be 

required to examine whether Cam_121 can be used to better tailor adjuvant therapy for early-

stage melanoma patients. 

 

The present study has a number of advantages over previous analyses. First, the large sample 

size linked to a well-conducted prospective clinical trial enabled an objective assessment of the 

risk of distant metastases, in addition to the key survival measures of interest. Furthermore, the 

long duration of follow-up (minimum of 6-years) in a cohort of patients predating modern 

approved adjuvant systemic therapies provided a unique insight into the ’natural history’ of 

primary cutaneous melanoma. Finally, to our knowledge, this is the first large-scale biomarker 
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analysis in primary melanoma to make use of data from comprehensive RNA sequencing. That 

such unbiased genome-wide assessment uncovered the dominance of immune-mediated genes 

reaffirms the central role of the host immune system’s ability to respond to the tumour 

resulting in immune editing or in some immune control. 

 

It is important to point out that high quality evidence guiding the best practice use of gene 

expression predictors, particularly in the context of early stage CM are lacking. Future trials 

evaluating adjuvant therapies should examine both primary and locoregional melanoma 

samples using RNA sequencing technologies, to better characterise a molecular 

subtype/signature that could ultimately be used in conjunction with existing CM staging 

parameters and tailor future interventions more specifically to the individual. We believe that 

measures of lymphocytic infiltration should also be assessed in such studies.  

 

Our results indicate that the Cam_121 signature score complements conventional melanoma 

staging by contributing prognostically relevant information and could potentially be used to 

select early-stage melanoma patients at higher risk of relapse or death. Further carefully 

designed prospective clinical trials will help guide how molecular features can be incorporated 

with traditional clinico-pathologic features to best estimate individual risk and guide the 

optimal clinical use of molecular biomarkers.
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Methods 

1. AVAST-M melanoma cohort 

This study made use of individual patient-level and transcriptomic data from the phase III 

adjuvant AVAST-M study, investigating the role of the angiogenesis inhibitor bevacizumab 

versus placebo in high-risk primary cutaneous melanoma (18). 1343 stage American Joint 

Committee on Cancer stage IIB (T3bN0M0 and T4aN0M0), IIC (T4bN0M0) and III (TxN1–3M0) 

cutaneous melanoma (7
th

 edition AJCC (19)) were recruited to the study over the period July 18, 

2007-March 29, 2012, as previously described. The study (including the collection of DNA and 

RNA) was ethically approved in accordance with the Declaration of Helsinki (REC reference 

number 07/Q1606/15, 16
th

 March 2007). Participants provided written informed consented to 

sampling of their tumour blocks during study recruitment (and prior to the investigational 

systemic therapy).  

 

All study participants underwent a sentinel lymph-node biopsy, and if positive proceeded to a 

completion lymph node clearance as per the study protocol. Demographic (including gender, 

age, centre, as well as pathologic data (site of primary, Breslow depth, ulceration, lymph node 

involvement and BRAF/NRAS mutation by pyrosequencing) was collected at the time of 

randomisation. Data was also collected on the timing, presence/absence and site/s of distant 

metastases (according to the findings from CT scanning). Data on overall and progression-free 

survival was collected with a minimum of 6 years follow-up. 

 

RNA sequencing data was available on 204 primary melanoma samples and 177 regional lymph 

node (Ln) samples. 

2. Leeds melanoma cohort 

A primary melanoma transcriptomic dataset from the Leeds melanoma cohort study (LMC DASL 

array) was used as independent replication. This represents a population-controlled cohort 

study, as previously described (16). This study recorded data on melanoma-specific survival in 

677 patients, calculated from the time of diagnosis to the time of last follow-up or time of 
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death from melanoma, whichever occurred first. The regression coefficient (beta) for each gene 

(reflecting differential expression in AVAST-M dataset) was used to generate a weighted 

signature score in the new dataset. Hence for further analysis, a per-sample weighted gene 

expression score for our Cam_121 gene signature was calculated by multiplying the expression 

value of each gene by its corresponding beta coefficient (equation 1) followed by z-score 

normalization (zero mean-unit variance). 

�������� 	��
���� 	��� �  ∑�

��� �� � ��
��                 (equation 1) 

where i ranges from 1 to number of genes in the signature and β corresponds to the beta-

coefficient of the respective gene obtained from DESeq2 analysis on AVAST-M melanoma 

cohort. 

3. Lund melanoma cohort 

Gene expression data on 223 primary tumors was generated using the Illumina DASL platform, 

as previously described (20).  Data on relapse-free survival as well as overall survival were 

collected. The DASL platform analysed 7752 genes and only 24 of the Cam_121 genes were 

present. Validation was undertaken using weighted signature scores as outlined above. 

4. mRNA extraction 

Histopathological assessments of hematoxylin and eosin (H&E) stained slides were used to 

facilitate tumour sampling. Samples were consistently extracted from the least inflamed, least 

stromal regions of the invasive front of the tumour. RNA was extracted using the Roche High 

Pure FFPE RNA Micro Kit (cat# 04823125001) (Genentech Biosciences) according to the 

manufacturer's recommendations. RNA quantity and quality were assessed using Agilent’s 2100 

bioanalyzer. 

5. Expression data generation  

Extracted RNA was sequenced on the Illumina exome-capture sequencing platform, using 50 

base-pair paired-end sequencing. Quality control (QC) was performed using fastq_utils (31)
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(version 0.14.7) and FastQC (32) (version 0.11.7). The reads that passed QC were aligned to the 

reference genome (GRCh38) using TopHat2 (33). Aligned reads were quantified using HTSeq 

(34). Only those genes with more than five reads, as reported by HTSeq, in at least one sample 

were selected for further analysis. The sequencing data was of good quality with a median of 

~50Million reads/sample. 446 tumor transcriptomes were profiled which included samples 

from: primary tumour (n=204); lymph node (n=177); local/distant relapse (n=58) and 

uncategorised samples (n=7). However, due to the clinical value of primary tumours in 

facilitating stratification at the earliest disease timepoint, we chose to focus our analyses on 

samples from cutaneous primaries (n=204) and used the lymph node samples as an internal 

validation. 

6. Clinical covariate selection  

Firstly, the association between distant relapse (yes/no) and clinical covariates was studied 

both with or without controlling for length of follow-up (defined as the time from diagnosis to 

last follow-up) and for treatment (yes/no). When ignoring length of follow-up and treatment, 

generalised Cochran-Mantel-Haenszel tests (R-package coin (35)) were used for nominal clinical 

predictors as they have the Pearson’s Chi-square tests and Cochran,-Armitage trend tests as 

special cases when respectively considering the clinical covariate of interest as categorical or 

ordinal. For ordinal clinical covariates, we reported the ‘nominal/nominal’ association results 

when the ‘nominal/ordinal’ one was found less significant (as it is likely a sign that the 

assumption of linearity required by the ordinal test was not met. Mann–Whitney-Wilcoxon 

tests were used for continuous clinical covariates. When controlling for length of follow-up and 

treatment, likelihood ratio tests comparing the fits of logistic regression models with and 

without the clinical predictor of interest were used. The p-values were corrected for multiple 

testing using the Holm–Bonferroni method (Supplementary table S1A). Note that, as the 5-level 

Stage variable was highly related to N-class (Spearman correlation coefficient over 0.85), we 

picked the one with the lowest number of levels.  

 

The variables 2-level Breslow staging and 2-level ECOG (Eastern Cooperative Oncology Group 

Performance Status) were significantly associated with relapse. The variable 2-level treatment 

was found to be related to relapse but is kept as control and the 2-level EventMet was the 

variable of interest indicating whether the patient relapsed or not. Therefore, the covariates 
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Stage, Breslow thickness, ECOG and treatment were accounted for in the design formula of 

DESeq2 (36) without interactions and for further downstream analysis. 

 

Secondly, the association between clinical covariates and overall survival (OS, calculated from 

the time of diagnosis to the time of last follow-up or death) and Progression free survival (PFS, 

calculated from the time of diagnosis to the time of last follow-up or death/progression to 

metastatic disease, whichever occurred first) was assessed by means of Cox proportional 

hazard models (R-package survival (37)). Both outcomes were considered as left-truncated due 

to delayed patient enrolment and right-censored due to loss of follow up or alive at the time of 

the end of the study. 6 years was chosen as the minimum cut-off for these analyses based on 

the original trial design.  

 

Stage, Sex, Age and Nclass were significantly associated with both OS and PFS (p<0.05; 

Supplementary table S1(B-C)). The state of distant relapse (“EventMet”) was the most 

important variable but was not of our interest, hence dropped. ECOG is a good predictor. 

Treatment was not significant (p > 0.05) but was kept in the analysis. Also for PFS, ulceration 

(Ulc) was borderline at 5% level and was dropped from further analysis. Therefore, Stage, Sex, 

Age, Nclass, ECOG and Treatment were corrected for in subsequent gene-level survival 

analyses.  

7. Differential expression analysis 

Differential expression analysis between primary tumours that became metastastic vs those 

that remained non-metastatic over the six-year study period was performed using the package 

DESeq2 (36) (v1.18; R v3.6.1). The negative binomial models we considered controlled for the 

clinical covariates Stage, Breslow thickness, ECOG (Eastern Cooperative Oncology Group 

Performance Status) and treatment, as well as for the library size (offset). Raw read counts 

were provided as the input, with each column representing a sample and each row 

representing a gene, along with the categorical clinical information about each sample as 

colData. Samples with missing information for any of these four covariates were removed from 

the analysis, leaving 194 samples in total. The adjusted p-value cutoff (FDR) was set to 0.1 using 
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the alpha parameter in DESeq2 results function and genes with FDR less than 0.1 were 

considered significantly differentially expressed.  

 

Log fold change shrinkage was applied using the lfcshrink function with apeglm method from 

the apeglm package (38) (v1.6.0; R v3.6). For visualization and other downstream analysis, 

variance stabilizing transformation (vst) was used by means of the DESeq2’s 

varianceStabilizingTransformation function with option blind=FALSE. 

8. Machine learning analysis 

This section explains the steps followed to develop a machine learning classifier for each 

signature and to evaluate their performance in predicting relapse (yes/no). All the following 

steps were done using (R package caret  (39) v6.0.84, DESeq2 v1.22.2; R v3.5.1) 

6.1 Dataset preparation and pre-processing 

The dataset was prepared such that each column/feature contained information about all the 

patients/samples. These features can either be the expression values of the genes belonging to 

the signature of interest and/or the categorical clinical covariate information. In the latter case, 

the categorical clinical covariates were converted to numeric dummy variables. The clinical 

information about whether the patients metastasized or not were used as labels for the 

analysis. 

 

This dataset was then divided into training and testing dataset for model selection and 

performance evaluation as explained below. In case of the gene expression data, vst 

transformation was applied to both training and testing dataset. This step was omitted for the 

clinical covariate dataset. To apply vst transformation on the testing dataset, mean-dispersion 

estimates learnt on the training dataset were used.  

 

At each training step, the default parameters of the  trainControl function (R-package caret) 

were used (i.e., freqCut=95/5, uniqueCut=10) with option search = “random”. The same 

feature(s) were removed from the testing dataset before evaluating the performance of the 

fully trained model.  
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6.2 Model development and selection 

For developing the machine learning classifier, nested leave-one-out cross-validation was 

performed for model development and evaluation:an inner LOOCV step first trained the model 

to prevent overfitting and the outer LOOCV loop then evaluated the performance of the model 

on the held-out sample (Supplementary figure S14). Therefore, at each step, 193 samples (i.e., 

n-1) were used for training the classifier using LOOCV whereas 1 sample was held-out for 

testing the performance of this final model. The process was repeated for all 194 samples, held-

out one at a time and the final accuracy and kappa values were reported along with other 

performance metrics calculated using the confusionMatrix function (R-package caret).  

 

Also, at each LOOCV training step, a random search was performed over 100 random 

combinations of hyperparameters and the set of hyperparameters giving maximum accuracy 

and kappa values on the training dataset was selected. This final model was then trained on the 

held-out sample. Note that nested-LOOCV was applied to compare the performance of 

different prognostic signatures on a per patient basis. 

 

We selected all classifiers of the R-package caret that required less than 50,000 MB of memory, 

less than 5000 seconds of run time to execute this pipeline and did not produce “NA” as a 

possible metastases status. These eight selected classifiers are: Bayesian generalized linear 

model (40) (bayesglm), Lasso and elastic-net regularized generalized linear model (41) (glmnet), 

k-nearest neighbour (42) (knn), linear discriminant analysis (43) (lda), penalized logistic 

regression (44) (plr), random forest (45) (rf) and support vector machine (46) with linear 

(svmLinear) and radial kernel (svmRadial).   

 

For each signature, each selected classifier was trained using the nested-LOOCV described 

above and the classifier giving the highest kappa value on the test dataset was selected as the 

best classifier for the signature of interest.  

 

For the random forest classifier, the contribution of each feature (gene expression + clinical 

covariates) on predicting metastases, the feature importance score calculated for each LOOCV 

training step (1 step per held-out-sample; 194 in total) was saved and plotted as a boxplot using 

geom_boxplot function in R.  
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6.3 Gene expression Vs covariate performance comparison per patient 

In order to compare the performance of the signatures: Cam_121 + clinical covariates, 

Cam_121 only and clinical covariates only on a per patient basis, the test prediction of the best 

performing classifier (random forest (rf), svmLinear and glmnet respectively) for each signature 

was extracted. To visualize the overlap, venn diagram was generated using the venn.diagram 

function from the VennDiagram package (47) (1.6.20) in R. 

6.4 Statistical analyses 

To check if the performance of various gene expression signatures in predicting relapse 

(yes/no) across multiple classifiers (n=8) is significantly better than those built on clinical 

covariates alone, Welch Two Sample t-tests were used (R function t.test function with option 

var.equal=FALSE, paired=FALSE, alternative=“greater”) for each performance metric and each 

combination of signature and  clinical covariate at the 5% level. The null hypothesis was that 

the true difference in mean performance across 8 classifiers between both conditions (‘clinical 

covariates alone’ versus ‘clinical covariates and signature’) equals 0 while the alternative 

hypothesis was that the true difference in means is greater than 0.  

9. Determination of the weighted expression score cut-off to define 

‘high’ and ‘low’ absolute risk of death at 5-years 

Data from the Leeds Melanoma Cohort was used to calculate the absolute risk of death at 5-

years (this dataset was chosen for this analysis due to the preponderance of early stage 

patients; Stage I = 194 samples; Stage II = 279 samples; Stage III = 76 samples). Five-year 

melanoma specific survival was calculated such that those patients who died due to melanoma 

within 5 years of follow-up were assigned event = “Yes” and those that did-not were assigned 

event = “No”. Those patients who did-not yet die and were followed up for less than 5 years 

were removed from the analysis due to inadequate follow-up. 

 

The quantile cut-offs 0.25, 0.33 and 0.5 were used to divide patients into high/low groups 

based on their corresponding weighted Cam_121 expression score. Absolute risk of death at 5-

years was calculated as the ratio of patients where event = “Yes” to the total number of 

patients within each stage (I-III). The cut-off giving the maximal separation (of absolute risk of 

death) between high/low groups was selected. This was achieved using a 0.33 quantile cut-off 
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of the weighed Cam_121 expression score and subsequent references to high/low Cam_121 

risk groups refer to these high/low weighted stratification cohorts.  

10.Survival analyses 

For each sample, a vector of weighted signature expression scores was calculated by using 

equation 1 on the vst normalized gene expression data. The standardised scores were then 

used  as a continuous predictor in Cox regression models fitted by means of the coxph function 

of the survival package (37) (c2.42.3) in R (v3.5.1). The hazard ratio (HR) (95% CI) and p-values 

corresponding to the signature were reported in both univariate and multivariate analyses.  

 

In order to display Kaplan-Meier survival curves, samples were divided into “high”/”low” 

signature expression groups based on the 0.33 quantile cutoff which we obtained from the 

absolute 5y risk assessment in Methods section 8. Samples with weighted signature expression 

score greater than this cutoff were assigned to the “high” group and those with weighted 

signature expression score lower than this cut-off were assigned to the “low” group. The 

survival distribution of both groups were finally compared by means of Log-rank tests using 

survfit function from the survival package (v2.42.3) in R (v3.5.1)).  

11.Tumour immune microenvironment analysis  

Sample-level gene expression data from the AVST-M cohort was deconvoluted into infiltrating 

immune cell scores using the Angelova dataset (22). This dataset reports 812 marker genes 

corresponding to 31 immune cell-subtypes. Out of these 812 genes, 53 genes were missing 

from our 38,690 gene list. Therefore, two immune cell subtypes MDSC (myeloid-derived 

suppressor cells) and NK56_bright (natural-killer CD56
bright

 cells), with more than 1% of missing 

marker genes were removed from further analysis, leaving 719 marker genes corresponding to 

29 cell-types. 

11.1 Immune cell correlation analysis 

To perform correlation analysis for each cell type, the median of the corresponding marker 

genes’ expression for each sample (y-axis) was plotted against the weighted Cam_121 

expression score for that sample (x-axis). To calculate the overall immune score, the median of 

all 719 marker genes was used for the analysis. A regression line was fitted through these 
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points using the lm function of the stats package (48) (v3.6.2) in R (v3.6.2). The Pearson’s 

correlation coefficient (ρ) between the immune-cell score and the signature, as well as the p-

value of the corresponding test of association were estimated by means of the function cor.test 

of the stats package (v3.6.2) in R (v3.6.2).  Sensitivity analyses considering robust regression 

(lmrob function of the robustbase package (49) (v0.93.5)) led to similar conclusions.  

 

Samples were coloured according to their metastatic status. With red points indicating the 

samples obtained from patients who later metastasized (Yes) and blue points indicating the 

samples obtained from patients who didn’t (No). To calculate the distribution of these 194 

samples along the axes, they were equally divided into two parts of 97 samples each and the 

ratio of metastases vs non-metastases samples samples was calculated for each part using 

equation 2. To equally divide these samples, a perpendicular line was drawn to the fitted line 

obtained above which passed through the median (x,y) point. 
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 (equation 2) 

 

To confirm the relationship between the signature and immune cells, a PCA analysis was 

performed. For each cell-type, the corresponding marker genes’ expression was projected into 

the principal component space and the first two principal components explaining the maximum 

variance were plotted against each other. These samples were then colored by the 

“high”/”low” weighted Cam_121 expression score groups obtained during the survival analysis 

and sized by the “high”/”low” groups based on marker genes’ median expression 

corresponding to that particular cell-type. Here, to divide the samples into two independent 

categories based on their marker genes’ expression, the median cut-off was used, where the 

sample with marker genes’ median expression value above its overall median value was 

assigned to the “high” group and that with marker genes’ median expression value below its 

overall median value was assigned to the “low” group.  
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11.2 Gene set enrichment analyses 

Preranked GSEA (GSEA-P) was implemented using the GSEAPreranked tool of the GSEA 

software from Broad Institute (50,51) (v4.0.2). Hallmark gene sets were downloaded from the 

MSigDB database (52) (6.2.0). The genes were pre-ranked according to their shrinked log fold 

change values obtained in the differential expression analysis and the GSEAPreranked tool was 

run with default parameters with the enrichment statistic set to “classic”.  

Data availability 

All the raw RNA sequencing data (forward and reverse fastq files) will be made available at the 

European Genome-Phenome Archive (https://www.ebi.ac.uk/ega/ at the EBI).  
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Figure 1. Cam_121 gene expression is strongly associated with both metastases and survival across 
multiple machine-learning and Cox regression analyses. Barplots indicating, for each set of predictors 
(y-axes), the scores of A) accuracy, B) kappa, C) sensitivity and D) specificity (x-axes) of the top performing 
classifier (among the 8 considered). The dashed red line in (A) represents the accuracy achieved when the 
classifier only predicts the majority class (metastases=“No” in our case, 105/194 (54.12%) ). Coloured lines 
in (B) represent the range of agreement bands of  [cite whoever] defined for Cohen’s Kappa values. Venn 
diagrams comparing the number of correctly predicted relapse outcomes (yes/no) of 194 patients of E) 
"Cam_121 + clinical covariates” and "Clinical covariates” models, and of F) "Cam_121” and "Clinical 
covariates” models. Out of a total of 194 patients, 23 were wrongly predicted by both the models in (E) and 
22 were wrongly predicted by both the models in (F)
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Figure 1. Cam_121 gene expression is strongly associated with both metastases and survival across 
multiple machine-learning and Cox regression analyses. Kaplan-Meier survival plots comparing the survival 
probabilities (y-axes) as a function of time (x-axes) of groups with high and low “Cam_121” (quantile 0.33 
split) for G) overall survival (OS) and H) progression free survival (PFS). Forest plot indicating the hazard 
ratio estimates (vertical bars) and 95% confidence intervals (horizontal bars) related to the signature 
“Cam_121” when predicting  I) OS and J) PFS by means of Cox proportional hazard models while controlling 
for different (sets of) clinical variables (y-axes). The Wald t-test  p-value corresponding to the signature 
“Cam_121” parameter in each model is indicated on the right. ECOG; Eastern Cooperative Oncology Group 
Performance Status.
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Figure 2. Validation of Cam_121 in an independently acquired external dataset (Leeds Melanoma 
Cohort, n=677). A) K-M curve comparing the Melanoma specific survival probabilities (y-axis) as a 
function of time (x-axis) of groups with high and low “Cam_121” (quantile 0.33 split)  B) Forest plot 
indicating the hazard ratio estimates (vertical bars) and 95% confidence intervals (horizontal bars) related 
to the signature “Cam_121” when predicting  Melanoma specific survival by means of Cox proportional 
hazard models while controlling for different (sets of) clinical variables (y-axes). Multivariate correction 
was undertaken for sex, age, breslow thickness, ulceration, mitotic count as well as BRAF and NRAS 
mutation status and (in the final row), correction was also undertaken for the tumour infiltrating 
lymphocyte (TIL) score. The Wald t-test p-values corresponding to the signature “Cam_121” parameter in 
each model  are indicated on the right.

p-value = 5.25x10-7
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AJCC stage GEP_class Death Total Proportion

1 All 17 194 0.09

1 High 11 118 0.09

1 Low 6 76 0.08

2 All 76 279 0.27

2 High 64 192 0.33

2 Low 12 87 0.14

3 All 44 76 0.58

3 High 35 58 0.60

3 Low 9 18 0.50

Table 1: Clinical utility of GEP test 5-year melanoma specific survival (Leeds Melanoma Cohort 
Data). High and low risk expression cut-off are based on 0.33 quantile cut-off on weighted Cam_121 
gene expression score expression of all 121 genes. 
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Figure 3

Yes/No = 0.61 Yes/No = 1.52 Yes/No = 0.55 Yes/No = 1.51
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Figure 3. Weighted Cam_121 score negatively correlates with immune cell expression scores, indicating 
that a lower weighted signature expression score is associated with a richer immune microenvironment 
and better prognosis. Scatterplots showing the relationship between the standardised weighted Cam_121 
score (x-axes) and A) the  median Activated B-cell gene expression derived from Angelova et al, B) the 
median T-cell gene expression, and C) the total immune score (median gene expression of all cell-types in 
Angelova et al). Observations are colour-coded based on their metastatic status. A dashed grey separates 
all samples in two parts (passing through the median (x,y) coordinate). The Pearson’s correlation coefficient 
(ρ), its p-value and the ratio of metastases “Yes” to “No” samples on each side of the grey line is reported 
on the plot. D) Biplot of the scores of the observations on the two first dimensions of a PCA analysis of 
overall immune cell expression data. Observations are colour-coded according to their weighted Cam_121 
expression score (“high”/”low” classification based on a quantile 0.33 split) and sized by overall median 
immune cell expression level (“high”/”low” classification based on a median split).

A B
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AVAST-M Expression Dataset 
(n=446 samples)

Skin primary dataset (n=204 samples) 

Non skin primary samples removed:
-Lymph node (n=177 samples)
-Local/distant relapse (n=58 samples)
-Uncategorised (n=7 samples)

Stages:
-IIB (n=47 samples)
-IIC (n=45 samples)
-IIIA (n=29 samples)
-IIIB (n=57 samples)
-IIIC (n=26 samples)

Differential expression; 
Patients with distant relapse (n=89) vs no 

distant-relapse (n=105) (covariate corrected, adjusted 
p-value <0.1) (n=197 genes) 
(Supplementary figure S3)

Filter-out:
Pseudogenes (n=39 genes) 

158 gene signature

Removed 10 samples with no data on 
the corrected covariates (Stage, 
Breslow thickness, ECOG PS, 
treatment) 

Predictive of survival 
(overall + progression-free 

survival)
(Figure 1G-J)

Fitted Cox-proportional 
hazards regression model

Fitted Cox-proportional 
hazards regression model

Independent replication in Leeds 
Melanoma Cohort (n=677 samples)

Predictive of melanoma specific 
survival (MSS)

(Figure 2)

Filter-out:
Genes not in LMC DASL array 
(n=37 genes) 

Cam_121 (gene signature)

Predictive of metastases 
across multiple classifiers

(Figure 1 A-D; 
Supplementary figure S4)

Trained multiple machine 
learning models

Reduction analysis; Cam_121 
reduced to 70 genes without 
compromising performance 
(Supplementary figure S11)

Supplementary Figure S1. Flow chart of the analysis. The figures corresponding to each analyses are 
indicated in bold. 
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A

B

Supplementary Figure S2. PCA results of the 1000 most variable genes, showing that samples separated 
by their site of origin A) Scree-plot showing the variance of the data (y-axis) explained by each of the first 
10 principal components (x-axis). B) Biplot of the scores of the observations on the two first dimensions of a 
PCA analysis of expression values of 1000 most variable genes.  The samples are colour-coded according to 
their relapse status (yes/no) and shaped according to their tissue of origin (skin samples in circles, lymph 
nodes in triangles). The plot shows that samples cluster based primarily on the tissue of origin, separated 
primarily on the x-axis accounting 44% of the total variance.
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Primary 
tumours, 

194

No distant 
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A

B

Supplementary Figure S3. Results of metastases vs non-metastases covariate-corrected differential 
expression analysis for primary melanoma samples, indicating predominantly down-regulated DEGs. A) 
Schematic of the number of samples used in the differential expression analysis. B) Volcano plot showing, 
for each gene, the negative of the log 10 of its FDR corrected p-value (y-axis, FDR<0.1) and its log 2 fold 
change estimate according to the differential expression analysis results . The downregulated DEGs are 
coloured red (144/197, 73.1%) and the upregulated DEGs (53/197, 26.9%) are coloured blue.
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Supplementary Figure S4. Machine learning results for multiple classifiers showing that Cam_121 
outperforms clinical covariates as well as published prognostic signatures. Scatter plots showing, for each 
set of predictors (columns), the scores of A) accuracy B) kappa C) sensitivity D) and specificity (y-axes) of 
the 8 selected classifiers, ordered by performance on predicting accuracy from top to low (x-axes). To 
facilitate comparisons, a blue line representing the performance of clinical covariates based on the glmnet 
classifier (which was found to be the best performing classifier for this set of predictors for all criteria 
except sensitivity) was added to each plot The red line in (A) represents the accuracy achieved when the 
classifier only predicts the majority class (metastases=“No” in this case 105/194 (54.12%)). Coloured lines in 
(B) represent the range of agreement bands of [CITE WHOEVER] defined for Cohen’s Kappa values. Refer to 
supplementary table 3 for a statistical comparison between these signatures. Decision-Dx Melanoma: 
Decision-Dx MelanomaTM, LMC_150: Leeds Melanoma Cohort 150 gene signature.
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Supplementary Figure S5. Validation of Cam_121 in the entirely separate lymph node samples from the 
AVAST-M cohort (n=177). K-M curve comparing the A) OS probabilities (y-axis) and B) PFS probabilities 
(y-axis) as a function of time (x-axis) of groups with high and low absolute 5y risk of death (0.33 quantile 
split). C) Forest plot indicating the hazard ratio estimates (vertical bars) and 95% confidence intervals 
(horizontal bars) related to the signature “Cam_121” when predicting OS and D) PFS by means of Cox 
proportional hazard models while controlling for different (sets of) clinical variables (y-axes). The Wald 
t-test p-values corresponding to the signature “Cam_121” parameter in each model are indicated on the 
right.
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p-value = 0.03
HR = 1.67 (95% CI 1.06-2.62)

Supplementary Figure S6. Validation of Cam_121 within a second independently acquired external 
dataset (Lund Melanoma Cohort, n=223). A) K-M curve comparing the progression free survival 
probabilities (y-axis) as a function of time (x-axis) of groups with high and low “Cam_121” (quantile 0.33 
split). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.24.961771doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.24.961771
http://creativecommons.org/licenses/by-nc/4.0/


0.13393

0.096272

0.10827

0.13578

0.18831

0.12767

0.16541

0.085741

0.11991

0.1046

0.095267

0.11005

0.15074

0.12099

0.22886

0.097078

p-value

0.008511

0.0082081

0.02177

0.27992

0.0055207

0.0092439

0.023028

0.38964

0.00020409

0.00019702

0.00066788

0.047794

0.00012385

0.0001904

0.00047499

0.072368

C

D

A

B

DecisionDx

DecisionDx+Sex

DecisionDx+Age

DecisionDx+Stage

DecisionDx+ECOG

DecisionDx+Treatment

DecisionDx+Nclass
DecisionDx+sex+age+stage
+ECOG+Treatment+Nclass

Supplementary Figure S7. Forest plot of univariate and multivariate survival analysis for previously 
published signatures (Gerami and LMC). Forest plot indicating the hazard ratio estimates (vertical bars) and 
95% confidence intervals (horizontal bars) related to the signatures of Gerami (A and B) and LMC (C and D) 
when predicting overall survival (A and C) and progression free survival (B and D) by means of Cox 
proportional hazard models while controlling for different (sets of) clinical variables (y-axes). The Wald 
t-test p-values corresponding to the parameter of the signature of interest in each model are indicated on 
the right. ECOG; Eastern Cooperative Oncology Group Performance Status.
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Supplementary Figure S8. Analysis of Cam_121 showing that the signature significantly outperforms 1000 
sets of 121 randomly selected protein-coding genes. Comparison of the performance of the Cam_121 gene 
signature (red vertical lines) and random signatures (smoothed densities) in terms of A) multivariate OS and 
B) multivariate PFS. The p-values are defined as the fraction of scores of random signatures which are 
greater that the one observed when using the (real) Cam_121 gene signature. The red vertical lines 
correspond to the cut-off of 5% one-sided tests. 
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Supplementary Figure S9. Feature importance score (FIC) for each gene in Cam_121 showing similar 
scores across all genes, thereby suggesting that it is a composite analysis of all genes that contribute to 
the signatures’ prognostic power rather than the dominance of any single gene. Genes are ranked in 
decreasing FIC order. The clinical covariates are indicated on the top for comparison. Each boxplot 
highlights five summary statistics including median, first and third quartiles, two whiskers and all the 
outlying points. More information can be found on the official documentation of the geom_boxplot 
function.
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Supplementary Figure S10. Multivariate survival analysis for each gene in Cam_121 showing some genes 
can significantly predict survival, however none proved significant after correction for multiple testing 
(FDR corrected p-value<0.05). This therefore suggests that it is a composite analysis of all genes that 
contribute to the signatures’ prognostic power rather than the dominance of any single gene. A) OS. Genes 
are ranked in increasing order of HR. The Wald t-test p-values (before FDR correction) corresponding to the 
parameter of the signature of interest in each model are indicated on the right.
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Supplementary Figure S10. Multivariate survival analysis for each gene in Cam_121 showing some genes 
can significantly predict survival, however none proved significant after correction for multiple testing 
(FDR corrected p-value<0.05). This therefore suggests that it is a composite analysis of all genes that 
contribute to the signatures’ prognostic power rather than the dominance of any single gene. B) PFS. Genes 
are ranked in increasing order of HR. The Wald t-test p-values (before FDR correction) corresponding to the 
parameter of the signature of interest in each model are indicated on the right.
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Supplementary Figure S11. Results of gene set enrichment analysis showing downregulation of key 
immune-related pathways in skin samples. A) Barchart of the top five most significant down-regulated 
Hallmark gene sets (p<0.01 for all gene sets) B-F) The corresponding enrichment plots from (A). The top 
portion of the plot shows the running enrichment score for the gene set as the analysis walks down the 
ranked list. The middle portion of the plot shows where the members of the gene set appear in the ranked 
list of genes and the bottom portion of the plot shows the value of the ranking metric as one moves down 
the list of ranked genes. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.24.961771doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.24.961771
http://creativecommons.org/licenses/by-nc/4.0/


A

B

C

Supplementary Figure S12. Results of differential expression and gene-set enrichment analysis comparing 
metastases vs non-metastases in lymph node samples, uncovering the same results as those obtained 
from skin samples. A) A schematic of the number of samples in the covariate corrected differential 
expression analysis. B) Volcano plot showing more downregulated (red points; 1967/3022 (65.1%)) than 
upregulated DEGs (blue points; 1055/3022 (34.9%)). C) Barplot showing downregulation of the same top 
five immune-related pathways as those identified in skin sample analyses (FDR corrected p-value<0.01 for 
all gene sets) (supplementary figure S11A).
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Supplementary Figure S13. Feature reduction analysis showing signature length was reduced to 70 genes 
without compromising performance in our dataset but failed in external dataset. Barplots indicating, for 
each signature length (y-axes), the scores of A) accuracy, B) kappa, C) sensitivity and D) specificity (x-axes) 
of the top performing classifier (among the 8 considered). The blue line represents the corresponding 
scores of the top performing classifier (in terms of accuracy and kappa) on baseline clinical covariates. The 
dashed red line in (A) represents the accuracy achieved when the classifier only predicts the majority class 
(metastases=“No” in our case, 105/194 (54.12%) ). Coloured lines in (B) represent the range of agreement 
bands of [cite whoever] defined for Cohen’s Kappa values. Forest plot indicating the hazard ratio estimates 
(vertical bars) and 95% confidence intervals (horizontal bars) related to the signature “Cam_70” when 
predicting  E) OS and F) PFS by means of Cox proportional hazard models while controlling for different 
(sets of) clinical variables (y-axes). The Wald t-test p-values corresponding to the signature “Cam_70” 
parameter in each model  are indicated on the right. 
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Supplementary Figure S13. Feature reduction analysis showing signature length was reduced to 70 genes 
without compromising performance in our dataset but failed in external dataset. Validation on 
independently acquired external dataset (Leeds Melanoma Cohort, n = 677 samples): G) K-M curve 
comparing the Melanoma specific survival probabilities (y-axis) as a function of time (x-axis) of groups with 
high and low “Cam_70” (quantile 0.33 split)  H) Forest plot indicating the hazard ratio estimates (vertical 
bars) and 95% confidence intervals (horizontal bars) related to the signature “Cam_70” when predicting  
Melanoma specific survival by means of Cox proportional hazard models while controlling for different (sets 
of) clinical variables (y-axes). Multivariate correction was undertaken for sex, age, breslow thickness, 
ulceration, mitotic count as well as BRAF and NRAS mutation status. In the final row, correction was also 
undertaken for the tumour infiltrating lymphocyte (TIL) score which diminished the prognostic value of the 
signature. The Wald t-test p-values corresponding to the signature “Cam_70” parameter in each model  are 
indicated on the right.

p-value = 3.58x10-5
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Supplementary Figure S14. Schematic description of nested leave-one-out cross-validation (LOOCV). 
Outer test loop (Row 1): Each observation is iteratively considered as a test-set (violet observation) while 
the 193 remaining ones constitute the training set (grey observations). Nested inner loop in the training set 
(Rows 2 to last): Each observation of the training set is then iteratively considered as a validation set 
(orange observation), aiming to assess the properties (accuracy, kappa) of models and classifiers trained on 
the remaining 192 observations. At this level, 100 random combinations of hyperparameters are used for 
each classifier. The model and set of leading to the highest average criterion (accuracy, kappa) on the 
validation is then used on the outer loop test-set. 
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