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Abstract 

INTRODUCTION: Some aspects of memory start declining in the fifth decade which may be 

related to systemic metabolic changes. These changes have not been fully identified. This is the 

first Metabolome-Wide Association Study of the human plasma for the longitudinal change in 

memory in healthy adults.  

METHODS: Ultra-high resolution mass spectrometry with liquid chromatography was performed 

on 207 University employees’ plasma.  

RESULTS: From 10,201 measured metabolic features, 558 differed between those 

experiencing change vs no change in memory (False Discovery Rate, FDR< 0.2). Differentially 

abundant metabolites were observed in lipid and fatty acid metabolism pathways: 

glycerophospholipid (p=0.0003), fatty acid (p=0.0003) and linoleate (p=0.0003) 

pathways.  Within these pathways, higher homocysteine (OR for memory decline=1.09, 

FDR=0.19) and lower arachidonic acid (OR=0.97, FDR=0.19), sterol (OR=0.92, FDR=0.02), 

acetylcholine (OR=0.78, FDR=0.19), carnitine (OR=0.75, FDR=0.19) and linoleic acid 

(OR=0.74, FDR=0.19) were associated memory decline.  

DISCUSSION: Altered systemic lipid and fatty acid are linked with early memory decline in 

middle-aged individuals. 

Keywords: memory decline, metabolomics, fatty acid metabolism, mass spectrometry, liquid 

chromatography 
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1. Introduction 

Although there is a wide heterogeneity within the population, there is evidence for progressive 

declines in memory processes with aging that may start in middle age, 1,23 In the some cases, 

these early declines progress to dementia and Alzheimer’s disease (AD) later in life. Prior 

evidence supports the existence of multiple metabolic changes or signature for AD.4-7 Whether 

similar or related metabolic changes can be identified in those with early age-related memory 

changes remain unknown. Identification of such metabolic alterations would offer insight into 

mechanisms and opportunities for drug development.  

Recent advances in mass spectrometry and related computational methods offer the 

opportunity to assess a large number of metabolic features in small volume biospecimens. 8  

This high resolution metabolomics (HRM) uses a combination of chromatography coupled to 

ultrahigh resolution mass spectrometry and advanced computational approaches for spectral 

feature alignment, peak integration, and feature extraction.9-11 With this workflow, HRM is 

capable of measuring greater than 10,000 unique spectral features with high reproducibility 

[defined by a characteristic mass-to-charge ratio (m/z), retention time (RT), and intensity].  This 

untargeted approach has been applied by our team and others in multiple populations and 

diseases and provides improved capabilities for biomarker discovery, mechanistic 

understanding of disease and biological phenomena by identifying related chemical pathways 

and metabolic networks.12,13  

The human metabolome includes molecules from endogenous sources (e.g., lipids, 

carbohydrates, nucleotides, amino acids, metabolic intermediates, signaling molecules, small 

peptides) and exogenous dietary and environmental sources. The expansion of chemical 

databases such as Metlin (over 240,000 entries), the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (over 17,000 entries), or the Human Metabolome Database (HMDB) (over 
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40,000 entries) has facilitated efforts to identify many features obtained from HRM with very low 

abundance. To date, our coverage has exceeded 50% of identified metabolites in these 

databases and due to this wide coverage we are now able to perform metabolome-wide 

association studies (MWAS) that have detailed coverage of the human metabolome.14 Applying 

this workflow to early changes in memory in middle age has a significant impact on our 

understanding and potential prevention of age-related memory declines.  

We aimed at conducting MWAS for memory changes over 4 years in a group of dementia-free 

middle aged adults using HRM to identify key metabolic features and pathways involved in early 

memory changes with aging.   
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2. Methods 

 

2.1 Cohort Description 

A cohort of healthy employees from Emory University and Georgia Institute of Technology were 

randomly recruited into the Center for Health Discovery and Well Being cohort as part of the 

Emory University/Georgia Tech Predictive Health Institute (http://predictivehealth.emory.edu). 

15,16 Exclusion criteria were a history in the past year of non-accident related hospitalization, 

severe psychosocial disorder, or addition of new prescription medications to treat a chronic 

disease (except for changes in anti-hypertensive or anti-diabetic agents), active drug abuse or 

alcoholism, a current active malignant neoplasm, uncontrolled or poorly controlled autoimmune, 

cardiovascular, endocrine, gastrointestinal, hematologic, infectious, inflammatory, 

musculoskeletal, neurological, psychiatric, or respiratory disease, and any acute illness in the 2 

weeks before baseline studies. 

 

2.2 Cognitive assessment and derivation of memory scores 

Commonly employed versions of neuropsychological measures were administered via computer 

at baseline, and then yearly for a total of 4 times, using software developed by Aharonson and 

colleagues.17,18 Cognitive tests included memory delayed recall, memory recognition, visual 

spatial learning, spatial short term memory, pattern recall, delayed pattern recall and recognition 

of pattern, executive function test, mental flexibility, digit symbol substitution test, forward and 

backward digit span, symbol spotting, and focused and sustained attention (computerized 

score:0-100% correct adjusted for skill levels). Cognitive scores for cognitive domains were 

derived using principal component analysis with Varimax (orthogonal) rotation and Kaiser 

Normalization to perform the exploratory factor analysis and then performed a confirmatory 

factor analysis by exploring the correlations and model fit of the derived factor-saved scores as 

reported previously. 19 The memory score (unit less) was differentially loaded by the delayed 
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recall, pattern delayed recall and visual-spatial memory (results of the factor analysis are shown 

in the online supplement of reference19). Test scores were then divided into a binomial 

variables: low vs high performance during the follow-up relative to baseline performance if a 

participant’s score was below (or above) the lowest quartile of the corresponding score at 

baseline. We restricted our analysis to the memory domain since it may start to change by the 

5th decade of age and included those with at least 2 cognitive evaluations during the study 

period. 

2.3 High Resolution metabolomics 

Our analysis was performed using an ultra-high performance liquid chromatography (UPLC) 

system coupled with ultra-high-resolution mass spectrometry (MS) at Emory University 

Biomarker laboratory as described previously. 20,21 Samples were analyzed using the Reverse 

Phase (C18) chromatography with positive electrospray ionization (ESI). This method 

detects >10,000 ions with 49% KEGG matches and provides accurate mass matches to 55% of 

the human metabolome KEGG database.14 Plasma samples were extracted with acetonitrile, 

and then analyzed along with NIST 1950-calibrated reference pooled human plasma preceding 

and following each block according to standard operating procedures.  Samples were analyzed 

in triplicate and a feature was included only if it was detected on at least two out of three 

technical replicates, and features with greater than median 50% CV for technical replicates were 

removed from analyses. The triplicate measurements from each subject/visit were merged by 

taking the mean of the non-zero values of each feature.  Pooled reference plasma was run prior 

to and after each batch for quality control and quality assurance.  

2.4 Bioinformatic analyses 

An adaptive processing software package (apLCMS, http://web1.sph.emory.edu/apLCMS/) was 

used for peak extraction and quantification of ion intensities.11 This software provided feature 

tables containing m/z values, retention time, and integrated ion intensity for each m/z feature, 
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obtained through five major processing steps: (1) noise filter, (2) peak identification, (3) retention 

time correction, (4) m/z peak alignment across multiple spectra, and (5) reanalysis to capture 

peaks originally missed because of weak signal relative to the signal to noise filter. We used 

xMSanalyzer (http://sourceforge.net/projects/ xmsanalyzer/) to enhance the feature detection 

process by performing systematic data re-extraction, statistical filtering, and data merger to 

enhance quality of data extraction.22  xMSanalyzer also provided batch normalization using 

ComBat 23 to control for batch effects. Data then underwent log2 transformation to reduce 

heteroscedasticity and normalize results. Obtained dataset was then used for the statistical 

analyses.  

2.5 Statistical analysis 

We used the baseline metabolic features as our independent variables and the longitudinal 

memory measure as the dependent variable (discrete measure 0, 1 as defined above). Since 

we have longitudinal data with repeated measures, a Generalized Estimating Equation (GEE) 

was used to estimate the coefficient of associations. The analysis was done one metabolic 

feature at a time. Specially, let 𝑦  denote the value for memory score, 𝑥  denote the metabolic 

feature under study at baseline, and𝑧 , …,  𝑧  denote the value for p confounding variables 

(demographic and clinical factors) for subject i at visit j. In this analysis, 𝑦  is binary with 𝑦 1 

indicating a decline relative to baseline performance. The model is: 

                         𝑙𝑜𝑔𝑖𝑡 𝑦 𝛽 𝑥 𝛽 𝑧 𝛾 ⋯  𝑧 𝛾  

Where 𝑙𝑜𝑔𝑖𝑡 𝑦     with 𝑃 𝑦 1  being the probability for 𝑦 1. An exchangeable 

correlation structure is specified to estimate the coefficients in the GEE model.  

Each metabolite is analyzed individually to find its marginal effect on the outcome, while 

adjusting for age, gender, race, years of education, hypertension/antihypertensive therapy, use 
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of statin, mean systolic blood pressure, BMI, and diabetes. For each metabolite, we obtained 

the coefficient estimation 𝛽  and its associated p-value from the GEE models. We then 

corrected the p-values from all metabolic features for multiple testing using False Discovery 

Rate (FDR) 24. We choose the significant metabolites by controlling the FDR at 0.2 (FDR<=0.2).   

2.6 Pathway analysis 

To study the metabolic pathways associated with the memory outcome, we used pathway 

analysis using Mummichog 25, which matches metabolic features to adduct ions of metabolites 

based on m/z, and selects pathways that are over-represented by the selected features. This 

approach predicts directly from mass spectrometry data without a priori identification of 

metabolites by unifying network analysis and metabolite prediction under the same framework. 

This process minimizes ambiguity, uses exiting knowledge from KEGG, UCSD Recon1, and 

Edinburgh human metabolic network, and has been validated by activation experiments, gene 

expression and metabolite identification methods reported previously (agreement ranges 80-

97%). 25 We then calculated the odds ratio for a doubling level for each metabolite within the 

significant pathways. The interpretation  for OR is that if the metabolite level doubles, OR gives 

us the 4-year cumulative odds of developing cognitive decline (compared to baseline) in the 

high vs low levels of the metabolite. 

 

3. Results 

3.1 Sample Characteristics 

The main characteristics of the analytical sample (n=207, 28% had memory decline) are shown 

in Table 1. The mean derived memory score was 65 (SD=16, max 80) and the mean yearly 

decline in the sample was 0.05/year. There was no difference in yearly memory change by sex 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.23.949537doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.23.949537


 

(p=0.22) but there were steeper declines in the non-white participants (0.001 in Whites vs 0.2 in 

non-Whites, p=0.02) and in those with higher BMI at baseline (=0.02, p=0.01).  

3.2 Metabolomic-Wide-Association Study (MWAS), pathways, and features 

Mass spectral data from the sample yielded 10,201 ions which were used in our binomial 

regression MWAS analyses.  Of those, 1483 features were associated with memory change, 

after adjusting for covariate (age, sex, race, education, BMI, SBP, statins, DM and treatment for 

DM/HTN). After FDR correction (0.2), 558 features were significantly linked to memory change. 

These results are shown in the Manhattan Plot (–log P versus m/z), Figure 1. The full detailed 

results of the MWAS are also provided in a supplemental Table S1.  

Pathway analysis was subsequently conducted using Mummichog, which matches metabolic 

features to adduct ions of known metabolites based on m/z in metabolic databases and selects 

pathways that are over-represented by the selected features. This analysis resulted in 

identifying a set of pathways that included the significant metabolites showing differential 

abundance between those with or without memory change. The top pathways that include 

differentially abundant metabolites are shown in Figure 2 and included Glycerophospholipid 

(GCP, P=0.0003), fatty acid (FA, p=0.0003) and linoleate (p=0.0003) metabolism. Within these 

3 pathways, we identified 31 features that remained significant after FDR corrections and were 

matched to an identifiable metabolite. Results for the key significant features within the top 3 

pathways along with their KEGG ID and related odds ratio are shown in Table 2.  

Within the GCP pathway, lower levels linoleic acid, galactose, acetyl-choline, sterol, and 

arachidonic acid whereas higher homocysteine and glycerol3 phosphate at baseline were linked 

with a greater risk of having memory decline over the following 4 years. In the fatty acid 

pathway, lower L-carnitine, and octadeconate whereas higher phytanic acid and decanoyl coa 

were linked to increased risk of memory decline. In the linoleic acid metabolism, lower linoleic 
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and azelaic acid and higher octadeconic acid were linked with greater risk of memory decline. 

We provide the full list of the significant pathways and the related features are provided in online 

supplement (Figure S1 and Table S2). Finally, in a confirmatory analysis we matched 

significant features identified in our analyses with prevalidated list of features and demonstrated 

that those in the linoleic acid pathways correctly corresponded to the validated metabolites 

within this pathway. In those validated, we provide the difference between those with vs without 

memory decline for Arachidonic and Linoleic acid in Figure 3.    

 

4. Discussion 

In this first Metabolome-Wide-Association-Study of early memory changes in a healthy 

dementia free middle aged sample, we identified multiple pathways/metabolites including 

phospholipids, fatty acid and linoleic metabolism that predicted memory decline. These lipid-

based alterations were linked with very early memory changes and were detectable in plasma of 

healthy individuals. 

The findings of multiple metabolites the phospholipid pathway are in agreement with prior 

research suggesting that glycerophospholipids alterations are highly involved in brain health and 

neurological disorders. 26 In particular, neural membrane glycerophospholipids  are altered in 

multiple brain regions in AD patients.27 It was not known if these can correspond to a plsma 

alteration in these membrane lipids or in healthy individuals without AD. Our study suggests that 

these alterations are detectable in the peripheral plasma and are linked to memory changes in 

non-demented individuals.  

Our study further describes additional key components within multiple fatty acid and lipid 

metabolic pathway that are linked to memory changes. The findings extends the previous 

reports of lipid alteration in AD to ealry memory changes. For example a higher level of multiple 
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phospholipids (ALA28, Linoleic acid29, sterol30, and inositol31) is of particular interest since they 

have been previously reported to be altered in AD. More importantly, these are highly affected 

by dietary habits. 32,33 Hence, offering a new insight into the potential role of dietary interventions 

for memory preservations even before cognitive symptoms have appeared.  

We found an association between homocysteine and memory decline even in a healthy 

population. These extend and support the accumulating evidence for the role of homocysteine 

in cognitive aging and disorders.34-36 Another key finding is the higher levels of   acetylcholine 

levels in plasma are protective against future memory decline. Prior reports have suggested that 

acetylcholinesterase levels are altered in AD and are correlates with brain amyloid levels, and 

are potentially affected by many approved AD symptomatic therapies.37 To our knowledge this 

is the first report of the potential for peripheral acetylcholine levels in identifying those at risk of 

memory decline. Future more focused analysis may show its usefulness in identifying high risk 

individuals with respect to cognitive decline.   

Our results in the fatty acid metabolism and beta oxidation also are in support to prior findings in 

memory loss. 38 For example, prior reports have supported that phytanic acid is neurotoxic. 39,40 

In our MWAS we identified a negative effect of circulating levels of this molecule. Similarly 

carnitine has been shown to be lowered in those at risk of AD41 and in our study it was linked 

with a protective effect for memory decline.  

Finally, multiple recent reports emphasizes the role of arachidonic and linoleic acid in AD. We 

again demonstrate that these are similarly altered in middle age prior to the evidence of memory 

decline.  This enforces the role of neuro-inflammation in the aging brain prior to the clinical 

evidence neurodegeneration.42 

There are many innovation aspects to our study including the use of high resolution 

Metabolomic platforms, the utilization of existing bioinformatics resources and databases to 
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improve our detection of altered pathways, and the inclusion of healthy middle age individuals to 

detect early metabolic alterations that are linked to decline in memory. The limitations of our 

analyses is the relative small sample size with Metabolomic data conducted at one time point. 

The metabolome is likely to be dynamic and hence we might have missed the effect of 

metabolic changes on memory. Additionally, our approach relies on matching features to 

existing biochemical databases and not direct measurements. 

 

5. Conclusion 

Multiple key metabolic alterations in glycerophoshplipids, fatty acid and linoleic acid metabolism 

predict memory decline in middle aged healthy adults. These results support the role of these 

systemic fats and lipids in early changes in memory with ageing. This first MWAS of memory 

declines offer insight into the role of systemic metabolic changes in middle age and possibly 

offer targets for future research in cognitive protection against the aging process. 
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Table 1: Key clinical characteristics of the selected sample for the MWAS (N=207) 

Characteristic Mean or Count  (standard deviation or %) 

Age in years, mean standard deviation 

(SD) 

50.5 (10.0) 

Education in years, mean (SD)  18.8 (4.4) 

Body Mass Index, mean (SD)  27.3 (5.7) 

Systolic Blood Pressure in mm Hg, mean 

(SD)  

120.7 (17.3) 

Number of women, n (%) 136 (65.7%)  

Number of Whites, n (%)  157 (75.8%) 

Number of African Americans, n (%)  38(18.4%) 

Number of those receiving anti-

hypertensive medications, n (%) 

41 (19.8%) 

Number of Diabetics, n (%) 10 (4.8%) 

Number of those receiving statin 

medications, n (%) 

41 (19.8%) 
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Table 2: Results of MWAS and pathway analyses for the top 3 metabolic pathways significantly 

different between those with vs without memory change (decline) with associated M/Z ratio, 

retention time, odds ratio (<1 implies protective effect) with the 95% Confidence Interval (CI), 

Raw p-value and False Discovery Rate (FDR<=0.2 reflects metabolome wide significance with 

multitests adjustments)  

KEGG.id Metabolite M/Z Reten

tion 

time 

OR 95% 

CI, 

Low

er 

limi

t 

95% 

CI, 

Upp

er 

limi

t 

Raw p-value FDR 

 Glycerophospholi

pid metabolism 

Pathway 

0.00032

9

C06459 N-Trimethyl-2-

aminoethylphospho

nate 

169.09 464.2

7

0.70

6

0.00

3

0.88 0.001999 0.17

C00137 myo-Inositol 203.05 74.30 0.70

8

0.00

4

0.89 0.002901 0.19

CE0520 (R)-glycerol 1-

acetate 

203.05 74.30 0.70

8

0.00

4

0.89 0.002901 0.19

C01582 Galactose 203.05 74.30 0.70

8

0.00

4

0.89 0.002901 0.19

C06427 alpha-Linolenic acid 279.23 28.19 0.73

9

0.59

4

0.92 0.00663 0.20

C01595  Linoleic acid 281.25 33.78 0.74

3

0.00

7

0.91 0.004619 0.19
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C06893 2-Deoxy-5-keto-D-

gluconic acid 6-

phosphate 

327.01 550.4

4

0.75

8

0.01

0

0.93 0.006487 0.20

C01996 Acetylcholine 146.12 38.69 0.77

9

0.01

7

0.94 0.010772 0.20

C00307 Cytidine 5'-

diphosphocholine 

557.10 110.9

6

0.80

2

0.01

6

0.95 0.009606 0.20

C00114 Choline 104.11 78.75 0.80

6

0.01

0

0.94 0.006413 0.20

C00836 Sphinganine 370.29 94.02 0.85

4

0.01

4

0.96 0.008237 0.20

C00370 Sterol 250.22 488.8

8

0.92

5

0.00

003

0.96 3.09E-05 0.02

C00219  Arachidonic acid 307.25 518.1

0

0.97

3

0.00

8

0.99 0.004028 0.19

C00093  Glycerol-3-

phosphate 

256.98 124.3

4

1.04

7

0.01

2

1.08 0.005887 0.20

C00021 S-Adenosyl-L-

homocysteine 

407.11 86.78 1.09

0

0.00

8

1.15 0.003791 0.19

 Fatty Acid 

Metabolism 

0.00034

C00318 L-Carnitine 163.12 88.58 0.73

3

0.00

8

0.91 0.005364 0.19

C00249 Hexadecanoic acid 279.23 28.19 0.73

9

0.01

0

0.92 0.00663 0.20

C01595 Linoleate 281.25 33.78 0.74

3

0.00

7

0.91 0.004619 0.19
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C01530    octadecenoate  281.25 33.78 0.74

3

0.00

7

0.91 0.004619 0.19

C02571 O-Acetyl-L-carnitine 204.12 91.15 0.75

2

0.00

4

0.91 0.002908 0.19

C06424 Tetradecanoic acid 251.20 128.3

3

0.95

8

0.01

4

0.99 0.007172 0.20

C02679 Dodecanoic acid 269.17 17.40 0.96

3

0.01

8

0.99 0.009251 0.20

C05274 Decanoyl-CoA 921.24 150.4

3

1.02

9

0.01

4

1.05 0.006995 0.20

C01607  Phytanic acid 168.15 48.14 1.04

9

0.00

1

1.08 0.000603 0.11

 Linoleate 

metabolism 

0.00035

3

C14765 11-dienoic acid 295.23 29.04 0.70

9

0.00

4

0.89 0.003002 0.19

C06426  gamma-Linolenic 

acid; Gamolenic 

acid 

279.23 28.19 0.73

9

0.01

0

0.92 0.00663 0.20

C01595 Linoleate 281.25 33.78 0.74

3

0.00

7

0.91 0.004619 0.19

C08261 Azelaic acid 189.11 453.7

6

0.77

4

0.00

3

0.91 0.002267 0.18

C14762 11-dienoic acid 381.20 570.8

8

1.05

3

0.02

0

1.09 0.009521 0.20
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C14826  (12R,13S)-(9Z)-

12,13-

Epoxyoctadecenoic 

acid 

381.20 570.8

8

1.05

3

0.02

0

1.09 0.009521 0.20

C14825 (9R,10S)-(12Z)-

9,10-

Epoxyoctadecenoic 

acid 

381.20 570.8

8

1.05

3

0.02

0

1.09 0.009521 0.20
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Figure 1: Visualization of the Metabolome-Wide-Association Study (MWAS) for the risk of 

having memory decline in middle-age adults. 
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Figure 2: Bar-chart with p-value reflecting the pathways significantly altered in those with vs 

without memory decline 

 

Footnote: X-axis is log p-value derived from the Mummichog package. Y axis outlines the 

name of the pathway, the number of significant features/total features identified in the MWAS. 

We consider a minimum of 3-5 significant feature within a pathway to mean a high level of 

certainty (significance) for its differential activity/feature abundance between the 2 groups (with 

and without memory changes). Numbers after the name of the pathway include (number of 

fetaures significant/number identified within the pathway). The darkness of the color of the bar 

reflects the magnitude or level of alteration in this pathway (darker= greater change in that 

pathway reflected by Beta from the GEE models)  
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Figure 3: Difference between those with and without memory decline in 2 key validated 

metabolites Arachidonic acid (A) and Linoleic Acid (B). 

With memory decline 

A: Arachidonic acid   B: Linoleic acid  

No memory decline  No memory decline  With memory decline 
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