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Abstract 

 

The neuroimaging community has witnessed a paradigm shift in biomarker discovery from using traditional 

univariate brain mapping approaches to multivariate predictive models, allowing the field to move towards a 

translational neuroscience era. Regression-based multivariate models (hereafter "predictive modeling") 

provide a powerful and widely-used approach to predict human behavior with neuroimaging features. These 

studies maintain a focus on decoding individual differences in a continuously behavioral phenotype from 

neuroimaging data, opening up an exciting opportunity to describe the human brain at the single-subject level. 

In this survey, we provide an overview of recent studies that utilize machine learning approaches to identify 

neuroimaging predictors over the past decade. We first review regression-based approaches and highlight 

connectome-based predictive modeling (CPM), which has grown in popularity in recent years. Next, we 

systematically describe recent representative studies using these tools in the context of cognitive function, 

symptom severity, personality traits and emotion processing. Finally, we highlight a few challenges related to 

combining multimodal data, longitudinal prediction, external validations and the employment of deep learning 

methods that have emerged from our review of the existing literature, as well as present some promising and 

challenging future directions. 
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Introduction 

A biomarker, or biological marker, generally refers to a measurable indicator of normal biological 

processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention (1). The ultimate 

goal of developing biomarkers is to perform individual-level predictions of human behavior that may 

eventually benefit educational or clinical practices in real-world settings (2). However, most neuroimaging 

findings from the published studies cannot be easily translated into tools with practical utility. On one hand, 

many existing studies primarily focus on group-level mapping using univariate analytical techniques across a 

massive number of isolated brain measurements, e.g., either detecting brain features showing significant group 

differences between healthy controls and patients with brain disorders using statistical inferences, or 

establishing the brain-behavior relationship using correlational analysis. Despite the fact that these 

investigations have offered valuable insights into the human brain, such studies may dilute the considerable 

heterogeneity within group that is crucial for understanding the related neurobiological basis (3). On the other 

hand, due in part to a lack of out-of-sample validation, group-level inferences often overfit to both the signal 

and noise in a specific dataset. Therefore, the generalizability of such group-level findings to new individuals 

remains unknown (4). In addition, traditional univariate research focuses on explaining the neural correlates 

of observed behavior, rather than predicting future behavior based on neuro(5)imaging signatures, the latter 

being an important aspect of moving towards a translational neuroscience era (6). 

Recent years have witnessed a paradigm shift in biomarker discovery from using traditional univariate 

brain mapping techniques to multivariate predictive models for an individual (7). Different from conventional 

approaches, machine learning-based methods can establish integrated brain models by taking into account the 

multivariate nature of diverse brain function or structure measurements across the whole brain (8), which may 

open up an exciting opportunity to analyze neuroimaging data at the single-subject level (9). Hence, the 

application of machine learning approaches that can facilitate the search for reliable neuroimaging biomarkers 

in both health and disease has been a highly discussed topic (5). 

While most predictive analyses with neuroimaging data focus on dichotomous classification, there is an 

emerging trend in using regression-based machine learning approaches to reveal individual differences in 

disease severity or cognitive functioning from brain imaging data, i.e., the individualized prediction of human 

behaviors (3). Compared to binary classification, behavior prediction can be more challenging, since it 

considers the problem of quantitatively estimating the specific scores for a continuous behavioral measure 

over the whole range of the variable, instead of determining the group membership (10). Nevertheless, such 

applications can tell us more about the severity of symptom for a psychotic patient, the level of negative affect 
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an individual tends to experience, or how well a participant can perform during a cognitive task. The biggest 

difference between predictive modeling and conventional correlational analysis is that predictive modeling 

generally employs a built-in cross-validation strategy to guard against the possibility of overfitting, which 

holds substantial promise for testing the generalizability of the identified biomarkers (11). The prediction of 

phenotypic measures requires dedicated design and techniques, recent reviews provide practical guidance on 

this topics (11, 12). 

In this review, we will focus on approaches and cases specifically relevant to “cognitive biomarker” 

identification. We first outline various machine learning approaches and some key aspects on regression-based 

prediction, which aims to decode individual differences in a continuous behavioral phenotype from 

neuroimaging data. Next, we review studies on predictive modeling identified via a key word search in 

PubMed and Google Scholar over the past decade. Finally, challenges and future directions in the field of 

predictive modeling are discussed. 

 

Figure 1. Visual summary of studies using regression-based machine learning approaches to predict 

continuous variables. (A) There is an obviously increasing trend in the number of papers published each year 

since 2010. (B) The overall prediction accuracy against the corresponding sample size used in the studies. (C) 

The type of behaviors of interest that are used as the target measures among all surveyed studies. (D) Cognitive 
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metrics adopted in our surveyed studies. (E) Distribution of prediction accuracy for healthy subjects and 

patients with brain disorders shown as boxplot plot (left) and kernel density (right). (F) Distribution of 

prediction accuracy from studies using multimodal or unimodal data. 

Study search criteria and results 

Over the past few years, there has been increasing interest in using regression-based predictive modeling 

to determining cognition-related biomarkers. To summarize these studies, we performed a systematic review 

to include papers in English based on a search on PubMed and Google Scholar using search terms: 

“biomarker”, “cogniti*”, “predict*”, “behavior*”, “regression”, “individual difference”, “neuroimaging”, 

“machine learning”, and “cross validation”, both in isolation and in combination. Searches were restricted to 

journal papers from January 2010 to October 2019. More than 500 papers were identified. We further reviewed 

the abstract and the full-text to restrict the papers to predictive studies that utilized regression-based machine 

learning approaches, employed cross-validation or external validation strategy to assess model generalizability, 

and reported the prediction accuracy using correlation coefficient. These criteria led to the inclusion of 122 

papers on the topic of behavior prediction. Note that many studies performed prediction for more than one 

behavioral metric or several sub-dimensions of one cognitive scale. Overall, a total of 340 metric prediction 

accuracies were reported by all these 122 studies. Table S1 lists these studies in terms of employed imaging 

modality, behavioral measure of interest, sample size, adopted method, and prediction accuracy. We 

summarize these papers and illustrate some key aspects in Figure 1. 

Sample size vs Prediction accuracy 

There is an obviously increasing trend in the number of papers published each year (Figure 1A). Most 

of these studies have fewer than 200 participants, and a sample size of about 100 is the most common case 

(Figure 1B). In general, prediction accuracies exhibit a significantly negative correlation (r= -0.25, p 

=2.68×10-6) with the sample sizes, suggesting that high prediction accuracies are more likely to be achieved 

on a small number of subjects. Previous studies suggest that a minimum of several hundred participants are 

required for predictive modeling to have adequate statistical power (13, 14). Small samples may not be 

representative of the general population, therefore, models built using small homogeneous datasets tend to 

mistakenly fit sample-specific idiosyncrasies (12). Failure to account for this optimism results in the fact that 

neuroimaging findings are hard to generalize in practice (15). Consequently, findings derived from small 

sample studies often yield low reliability and should be interpreted with great caution. By contrast, the use of 

large datasets increases the possibility of identifying robust and generalizable brain signatures due to a higher 

statistical power. In this regard, predictive models based on large samples should be given more priority and 

emphasis, even if these studies sometimes achieve relatively lower prediction accuracies. 
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Importantly, the work from Sripada et al. is the largest predictive modeling study to date, which included 

2013 subjects across 15 different sites from the Adolescent Brain Cognitive Development (ABCD) consortium 

(16) and predicted general cognitive ability using functional connectivity with leave-one-site-out cross-

validation. The robustness of results was validated in a series of control analyses including replication in split-

half analysis and in a low head-motion sample. In contrast to the leave-one-subject-out cross-validation, which 

has been criticized for inflated variance (12), the use of leave-one-site-out cross-validation guards against the 

possibility of detecting spurious brain-behavior relationships, improving our ability to identify brain signatures 

that will generalize. 

Interestingly, a majority of the studies with large samples of subjects were performed on the publicly 

available data sharing initiatives, which encompass subjects spanning a range of developmental statuses and 

psychotic disorders. Promisingly, these data-sharing initiatives are making significant strides towards 

collecting large-scale neuroimaging datasets, driving the progress of brain-based biomarker discovery. 

 

Figure 2. Summary of regression approaches used in our surveyed papers. Multi-task approaches jointly 

predict multiple clinical variables in a unified framework, while single-task methods only predict one type of 

cognitive score at one time. Most of the surveyed papers used linear models to reveal brain-behavior 

relationships. Connectome-based predictive modeling (CPM) is a recently developed data-driven approach 

that combines simple linear regression and feature selection together to predict individual differences in traits 

and behavior from connectivity data, and has been successfully employed for the prediction of multiple human 

behaviors. 

Overview of regression-based prediction models 

Figure 2 provides an overview of regression methods that are commonly adopted in our reviewed studies. 
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These approaches can be divided into two main classes: single-task and multi-task. Multi-task approaches 

jointly predict multiple phenotypic variables in a unified framework by considering the dependence 

relationship among behavioral measures derived from a single cognitive test (17). Only a small number of 

studies performed multi-task predictions, consequently, we will not present a detailed discussion here. 

Single-task methods predict only one type of phenotypic measure at one time. Such type of studies 

account for more than 90% of all surveyed papers. These methods primarily include the simple/multiple linear 

regression, relevance vector regression (RVR), linear support vector regression (SVR), ridge regression, 

LASSO, elastic net, partial least square regression (PLSR), and Gaussian process regression (GPR). Almost 

all of these methods belong to linear models, which are based on the hypothesis that there exists a linear 

relationship between brain imaging measurements and behavior scores. Although nonlinear approaches may 

be better suited for capturing complex brain-behavior relationships (10), the linear models could substantially 

reduce the possibility of overfitting and ensure good generalizability. Moreover, linear models have more 

interpretability, thereby allowing researchers to easily pinpoint the predictive brain regions and quantify their 

contribution by mapping them back to the original feature space and extracting their beta coefficients (10, 18). 

Here, we present some representative prediction models as follows. 

Simple/multiple linear regression—Among all approaches, the simplest and most prevalent method for 

establishing brain-behavior relationship is simple/multiple linear regression (10). However, multiple linear 

regression requires the sample size to exceed feature dimension, and tends to overfit when the data is noisy. 

Given the high dimensional nature of neuroimaging data, these approaches are commonly accompanied by a 

feature selection step to obtain low-dimensionality representations (19). Typically, connectome-based 

predictive modeling (CPM) is one of such approaches that combine simple linear regression and feature 

selection together to predict individual differences in traits and behavior from connectivity data (3, 10, 20). 

Figure 3A shows a schematic summarizing the CPM pipeline. The CPM procedure has several advantages 

including straightforward interpretation, fast computation, and robust generalization, and has been 

successfully employed for the prediction of multiple human behaviors (20-23). Figure 3B-C show two 

example studies using CPM to predict individual differences in creativity and sustained attention. 

LASSO—LASSO is a regularized regression method using an L1-norm penalty to reduce model 

complexity. LASSO shrinks most regressors’ coefficient with low predictability to zero, and retains one 

arbitrary feature among the correlated ones (13). This means that some important features may be absent from 

the final model, which may lead to problems in feature interpretation. 

Ridge regression—The ridge regression also employs the regularization technique to impose sparsity 
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constraints. Ridge regression includes all features in the final prediction model and assigns similar coefficient 

values to the correlated features. Consequently, it has a good resilience to multicollinearity (24). 

Elastic net—Elastic net can be seen as a combination of LASSO and ridge regression. It can not only 

achieve a sparse model through dropping features with low predictability but can retain groups of correlated 

features, thereby improving interpretability and stability (25). 

SVR—To reduce model complexity, SVR works by placing constraints to ensure only a small number 

of observations (support vectors) are used. SVR works with the goal of constructing a regression line that fits 

the data within some chosen level of error (26). Due to an easy availability of implementation tools, SVR has 

been widely employed for behavior predictions. 

RVR—RVR is a sparse kernel learning regression method based on Bayesian framework (27). Like SVR, 

only a relatively small number of samples (relevance vectors) are used to fit the model. RVR requires no extra 

computation for parameter tuning, therefore, it has a good generalizability and moderate computational cost. 

PLSR—PLSR works by representing the high-dimensional features with a small number of latent 

components and then using these latent components to make predictions (28, 29). Consequently, PLSR does 

not need a feature selection step to reduce the feature dimension, and is particularly helpful in situations where 

the predictors are highly collinear and high dimensional. 

Study review of individualized prediction of human behavioral measures  

The regression-based machine learning models have been successfully applied in the prediction of several 

important behavioral aspects including cognition abilities, symptom severity, personality traits, emotion 

feelings and motor performance (Figure 1C). We now review these translational neuroimaging findings and 

present some example studies.  

Cognition 

As a core function of humans, cognition ubiquitously pervades one’s daily life and plays a crucial role in 

determining how individuals understand, learn and communicate with the world. A majority of all reviewed 

papers focused on predicting cognition metrics. Such investigations attempt to unravel the secret of cognition 

processing by examining how the brain gives rise to cognition. General intelligence, attention and reading 

comprehension ability constitute the top three most studied cognitive metrics (Figure 1D). 

Prediction of cognition has been most active in general intelligence (30-32). One recent study predicted 

the fluid intelligence scores in a sample of 515 subjects based on functional connectivity features, and 

confirmed the robustness of results by controlling for an array of potential factors including cross-validation 

method, head motion effect, global signal regression, and brain parcellation schemes. More importantly, the 
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prediction models could be generalized to predict three intelligence-related measure in a large independent 

dataset (n=571) (21). With respect to attention, Rosenberg et al. accomplished robust prediction of sustained 

attention using CPM in a sample of 25 healthy subjects (20), and more importantly, the identified 

neuromarkers were generalized to predict a series of attention-related measures like inhibition control, reading 

recall, and even a clinical measure for patients with attention-deficit/hyperactivity disorder (ADHD) in several 

independent data sets (33-36) (Figure 3C). Within a three-fold cross-validation framework, another study 

employed elastic net to decode individual differences in reading comprehension ability from grey matter 

volume for 507 healthy subjects, and further evaluated the generalizability in two external validation cohorts 

(n=372 and n=67) (37). 

Apart from the aforementioned studies, predictive modelling has also been extended to achieve 

predictions for other cognitive metrics, including working memory (38-40), verbal learning (41), inhibition 

control (42, 43), processing speed (44, 45), cognitive flexibility (42, 46, 47), creativity (48-50) and spatial 

orientation (51) using neuroimaging features of functional or structural connectivity, grey matter volume, 

cortical thickness and fractional anisotropy. 

Symptom severity 

In the clinical domain, most existing criteria to assess severity of brain disorders predominantly rely on 

subjective judgement of the patient symptoms and self-reported history. Machine learning-based predictive 

modeling has been utilized to decode symptom severity or cognition dysfunction from neuroimaging data. 

These models can establish the quantitative relationship between symptom scores and brain changes, which 

can further help us track the progress of neurological diseases and better understand the pathophysiology (52). 

Such models have been applied to patients with a spectrum of neurological or mental health disorders, such 

as schizophrenia (53, 54), autism spectrum disorder (ASD) (25, 55), depression (56-58), Alzheimer's disease 

(AD) (59-62), ADHD (22), Huntington’s disease (26), obsessive-compulsive disorder (63, 64), and 

Parkinson’s disease (65, 66). For example, based on cortical thickness measurements, Moradi et al. predicted 

the symptom severity scores for 156 subjects with ASD from four different sites (25). Another study presented 

a deep learning model for the prediction of clinical scores of disease severity for AD patients using structural 

MRI data (67). Within 10 rounds of 10-fold cross-validation, this model achieved high prediction accuracies 

across two independent large cohorts (n=669 and n=690). 

Interestingly, models developed to predict behavioral measures for patients with brain disorders achieved 

significantly higher accuracies than models developed for health (p=8.12×10-11, Hedge’s g=0.73, Figure 1E). 

A potential reason may be behavioral measures show small variations in the healthy controls instead of patients, 
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which may be too low for the algorithms to pick up on predictive features. In contrast, many clinical measures 

are designed to pick up differences in patients. Notably, this result should be interpreted with caution, since 

these studies varied in a wide range of aspects, like the phenotypic measures, prediction approaches, sample 

size, and cross-validation schemes. 

 

Figure 3. Overview of the connectome-based predictive modeling (CPM) framework and its 

applications in behavior prediction. (A) Overview of general analysis strategy for CPM procedure. 

Specifically, CPM is performed first by calculating the relevance of each connectivity feature to behavioral 

measure of interest across subjects and retaining the most significantly correlated ones under a predefined 

threshold. And then, a single aggregate metric named ‘network strength’ is computed by summing strength of 

the retained connectivity features. Afterwards, the summary statistics and behavioral scores are submitted to 

a simple linear regression model. By placing the procedure within a cross-validation framework, accurate 

estimations of behavioral scores can be obtained. (B) Beaty et al. accomplished robust prediction of individual 

creative ability using FCs acquired from 163 participants engaged in a classic divergent thinking task, and 

assessed the generalizability in three external cohorts (n=39, 54, and 405). (C) Rosenberg et al. accomplished 

robust prediction of sustained attention using CPM in a sample of 25 healthy subjects, and the identified 

neuromarkers were generalized to predict a clinical measure for patients with ADHD (validation cohort 1, 

n=113) and individuals’ go response rate in a stop-signal task (validation cohort 2, n=83). (Adapted from ref. 

(48), and (20, 36)). 
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Personality 

Personality is a relatively stable trait consisting of a collection of behaviors, thoughts, cognitions, and 

emotional characteristics that evolve from biological and environmental factors (68). Personality represents 

an individual’s disposition that influences long-term behavioral style (24). Among all personality dimensions, 

traits measured using the Five-Factor Inventory, which encompasses five broad dimensions of extraversion, 

neuroticism, agreeableness, conscientiousness and openness to experience, have been most widely 

investigated. For example, within a leave-one-family-out cross-validation, Dubois et al. predicted the scores 

of openness and a personality factor generated from the principal component analysis using elastic net in a 

large sample of 884 adults (24). Another study, based on nine meta-analytically derived functional networks 

and RVR, demonstrated the predictability of extraversion, neuroticism, agreeableness and openness within a 

10-fold cross-validation in a sample of 420 subjects, and assessed the generalizability of findings in a 

replication sample of 310 subjects (69). Moreover, this study suggested that the functional networks linked to 

each personality dimension were gender-specific. Other personality traits being investigated primarily include 

temperament (70, 71), narcissism (72), and dispositional worry (27). 

Emotion 

Only a limited number of studies have attempted to identify biomarkers for emotion related behaviors 

using predictive modeling, which have largely deepened our understanding of the underlying neurobiological 

substrates. These emotion measures primarily include individuals’ feeling of loneness (73), anxiety (74-76), 

fear of pain (77), intensity of interoception (78), as well as constructs associated with social relationships like 

propensity to trust (79) and deception (80). 

Apart from the above mentioned phenotypic aspects, there are also some other behavioral domains being 

investigated (81, 82). A remarkable example is the study that identified an fMRI-based brain signature of pain 

intensity, and showed its generalizability in multiple independent datasets (81). Due to word limits, we will 

not describe these studies in detail. 

Challenges and future directions 

The studies surveyed above highlight the potential of using regression-based predictive modeling to 

identify neuromarkers and characterize the neurodiversity of the human brain in both health and disease. 

Despite such success, some issues should be mentioned and lots of work remains to be done. 

Prediction using Multimodal data 

Recently, collecting multimodal brain data from the same subject has become a common practice (41, 

83, 84). Integrating multimodal data could effectively capitalize on the strength of each imaging modality and 
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provide a comprehensive view into the brain (85). As such, in the surveyed papers, studies using multimodal 

data to predict individuals’ behaviors achieved significantly higher accuracies than those using unimodal data 

(p=1.45×10-6, Hedge’s g=0.72, Figure 1F). A recent study predicted the intelligence quotient scores using 

resting-state functional connectivity and grey matter cortical thickness, and found that integrating multimodal 

data improved prediction accuracy (86). More importantly, this study suggested that these two types of 

neuroimaging features provided unique evidence of the neurobiological correlates of intelligence from distinct 

perspectives (Figure 4A). 

However, the multimodal prediction was primarily achieved by simply concatenating brain features from 

different modalities horizontally into a single, combined feature space and submitting them into a regression 

model, thereby not allowing for a full use of the joint information among modalities. Multimodal fusion can 

uncover cross-information beyond what can be detected by each single modality (85). For example, Qi et al. 

proposed a supervised multimodal fusion approach named MCCAR+jICA, which can detect co-varying 

multimodal imaging patterns (84). In a three-way fusion simulation, the method identified four multimodal 

brain signatures located in the salience network, central executive network and default mode network, which 

were successfully used to predict multi-domain cognition in two independent cohorts (87) (Figure 4B). The 

use of brain signatures derived from multimodal fusion approaches to predict cognition can promote the 

identification of neuromarkers and inform our understanding of how functionally and structurally connected 

brain systems contributed to cognitive function. 

Validating biomarkers in independent data sets 

Many existing studies detecting neuromarkers predominately focus on revealing new findings for a 

cascade of novel behavioral measures. However, additional effort should also be devoted to testing the 

generalizability and reproducibility of the constructed predictive models (88), especially for those developed 

on dataset with an insufficient sample size. Considering a potentially inflated false-positive rate due to the low 

statistical power, concerns have been raised about the reliability and reproducibility of neuroimaging findings 

(89, 90). However, very few studies have tested brain models on external validation/replication datasets due 

to generalization failure or lack of additional independent data. One potential solution to this issue is to 

encourage individual projects to share their neuroimaging data so that researchers can leverage the publicly 

available data. The shared big-data sources can serve as benchmark data sets, allowing people to establish 

reproducible imaging-based biomarkers (91). Moreover, the neuroimaging community should raise awareness 

that replication and validation are as important as novelty (89). 

Using participants’ performance in a task to assess a trait 
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In practice, assessments of behavioral measures can be based either on subjective report or on objective 

behavioral recordings. The self-reported measures are usually derived from subjects’ ratings of a conventional 

scale according to their personal experience or judgement on a specific item. This means that the measured 

scores rely largely on individuals’ subjective appraisal of the trait. Consequently, such measures are likely to 

be influenced by unknown factors and are not stable. In contrast, behavioral measures assessed using 

participants' performance in a task where participants are incited to reach a high score (92), objectively reflect 

ones’ inherent traits and relate to more reliability, placing an upper limit on the maximum detectable effect 

size (93). Some studies have reported that objective variables can be better predicted than subjective ratings 

(94, 95). In addition, it has also been suggested that cognitive tasks amplified trait-relevant individual 

differences in functional connectivity patterns and integrating different tasks into a single predictive model 

did improve cognition prediction (21, 96, 97). Therefore, we encourage future studies to use task performance 

to measure individuals’ behavioral scores and combining multiple task connectomes to investigate brain-

behavior relationships. 

 

Figure 4. Using multimodal data to predict cognition promotes the biomarker identification. (A) Jiang et al. 

achieved an improved prediction performance of intelligence scores by integrating FCs and cortical thickness. 

More importantly, the study suggested that these two types of neuroimaging features provided unique evidence 

of the neurobiological correlates of intelligence from distinct perspective. Specifically, prediction with cortical 

thickness explored more gender difference in the lateralization of predictive brain regions, while prediction 
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with FCs detected more gender difference in the specification of contributing functional networks. (B) Sui et 

al. predicted the cognitive composite scores for subjects from three independent cohorts based on 

neuromarkers derived from a supervised multimodal fusion approach (Adapted from ref. (86), and (87)). 

Applying deep learning methods 

Recent studies have started to use deep learning methods to predict individual differences in behavioral 

phenotypes and brain maturity. Based on neural networks, deep learning serves as an extension of traditional 

machine learning methods (98). Deep learning can automatically learn a higher level of abstract representation 

through the application of consecutive nonlinear transformations to raw input data in “hidden” neural network 

layers, making this approach ideally suited to detecting complex, scattered and subtle brain patterns (99). One 

advantage of deep learning is that it can remove the reliance on time-consuming pre-processing and prior 

feature selection, avoiding the related model-dependent decisions (100). However, compared to other fields, 

the application of deep learning methods to predictive modeling in neuroimaging is relatively modest. There 

are two main reasons, one being the lack of interpretability and the other being the need for extensive amounts 

of data. Specifically, one study suggested that, lacking large quantity of data, deep learning models may not 

outperform classical machine learning approaches in cognition predictions (101). Therefore, many efforts are 

required to overcome these drawbacks before the full potential of deep learning in behavior prediction is 

explored. 

Developing longitudinally predictive models 

The vast majority of predictive studies have focused on cross-sectional predictions, that is, the MRI data 

and the behavioral measure of interest are acquired at the same time or within a short time interval. Although 

there is evidence showing that certain brain imaging features are unique and stable over months to years (102), 

to what degree these features will show predictability for behavioral phenotypes consistently across time still 

remains largely unexplored. To benefit educational or healthy practices, longitudinal predictive models should 

be developed to predict long-term outcomes using baseline neuroimaging data (2, 11). Biomarkers derived 

from such applications commonly relate to more biological significance and clinical utility, since individuals 

can benefit from early invention and treatment. 

Conclusions 

In this study, we reviewed recent advances in the field of predictive modeling that employs regression-

based machine learning approaches to decode individual differences in behavioral phenotypes from brain 

imaging data. Although this burgeoning field is still immature with many issues being solved and not quite 

ready for integration into clinical use, we are optimistic about the development of brain models that can be 

eventually integrated into clinical applications as this area matures. 
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Neuroimaging-based Individualized Prediction of Cognition and Behavior for Mental 

Disorders and Health: Methods and Promises 

 

Supplementary File 

Table S1. Summary of 122 regression-based prediction studies 
Method Behavior measure Number of Subjects Prediction accuracy Reference 

fMRI 

Simple/multiple 
linear regression 

General ability 
Flexibility 
Memory 

2013 HC 
0.31 
0.06 
0.15 

(1) 

Fluid intelligence 
515 HC 
571 HC 

0.3578 
0.351 

(2) 

Fluid intelligence 606 HC 0.22 (3) 

Fluid intelligence 316 HC ~0.20 (4) 

Fluid intelligence 126 HC 0.50 (5) 
Fluid intelligence 100 HC 0.72 (6) 
Intelligence 267 HC 0.61 (7) 
Verbal IQ/Full IQ 
Verbal IQ/Full IQ 

226 HC 
202 ASD 

0.54/0.26 
0.27/0.10 

(8) 

General intelligence 
Training: 844 HC 
Testing: 100 HC 

0.68 (9) 

Intelligence 
298 HC 
591 HC 
Train: 591 HC, test 298 HC 

0.28 
0.32 
0.31 

(10) 

Fluid intelligence 
General executive ability 
Processing speed 

810 HC 
0.29 
0.41 
0.20 

(11) 

Sustained attention 
Sustained attention 
ADHD-rating scale 
Sustained attention 
Sustained attention 

25 HC 
25 HC 
Train 25 HC, test:113 ADHD+HC 
Train: 113 ADHD+HC, test: 25HC  
Train: 113 ADHD+HC, test: 25HC  

0.49 
0.87 
0.34 
0.80 
0.49 

(12) 

Attention: 3 components 
Attention: 4 components 

41 HC 
44 HC 

0.49/0.68/0.34 
0.62/0.63/0.31/0.35 

(13) 

Sustained attention 140 HC 0.402 (14) 

Sustained attention 
25 HC 
41 HC 
72 HC 

0.663 
0.31 
0.34 

(15) 

Reading recall 
Discovery: 19 HC  
Validation: 19 HC 

0.826 
0.592 

(16) 

Inhibitory control 
72 HC 
83 HC 

0.34 
0.59 

(17) 

Inhibitory control 34 HC 0.61 (18) 

Cognitive flexibility 
Discovery: 550 HC 
Validation: 233 HC 

0.11 
0.23 

(19) 

Creativity 

Discovery: 163 HC 
validation 1: 39 HC 
validation 2: 54 HC 
validation 3: 405 HC 

0.30 
0.35 
0.28 
0.13 

(20) 

Neuroticism/Extraversion 114 HC 0.27/0.22 (21) 
Loneliness 
Neuroticism/Extraversion 

75 HC 
0.244 

0.45/0.22 
(22) 

Narcissism 155 HC 0.247 (23) 
SRS-total 
SRS-communication 
SRS-motivation 
SRS-mannerism 
SRS-awareness 
SRS-cognition 
ADOS-total 
ADOS-social affect 
ADOS-generic total score 
ADOS-severity score 
ADHD index score 
ADHD inattention score 
ADHD hyperactivity score 
ADHD inattention 
ADHD index score 

352 ASD+HC 
352 ASD+HC 
352 ASD+HC 
352 ASD+HC 
260 ASD+HC 
260 ASD+HC 
79 ASD 
79 ASD 
79 ASD 
79 ASD 
112 HC+ADHD 
112 HC+ADHD 
112 HC+ADHD 
65 ADHD+HC 
65 ADHD+HC 

0.32 
0.30 
0.23 
0.37 
0.27 
0.27 
0.43 
0.53 
0.40 
0.60 
0.39 
0.40 
0.30 
0.31 
0.32 

(24) 

ADAS-Cog 19 HC+29 MCI+11AD 0.49 (25) 
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ADOS 58 ASD 0.44 (26) 
MMSE 133 AD+ 198 HC 0.79 (27) 

LASSO 

Intelligence 

Discovery: 360 HC 
Discovery: 174 HC 
Discovery: 186 HC 
Validation 1: 125 HC 
Validation 1: 75 HC 
validation 2: 42 HC+SZ+BP  
validation 2: 78 HC+SZ+BP 

0.51 
0.72 
0.46 
0.29 

0.253 
0.40 
0.23 

(28) 

Fluid intelligence 830 HC 0.24 (29) 
Musical features: 5 domains 15 HC 0.49/0.32/0.31/0.46/0.38 (30) 
UPDRS-III medication-on 
UPDRS-III medication-off 

62 Parkinson’s disease 
0.65 
0.54 

(31) 

Temperament traits: 4 domains 
Neuroticism/Extraversion 

Discovery: 360 HC 
Validation: 155 HC 

0.61/0.57/0.61/0.50 
0.31/0.22 

(32) 

Ridge regression 

Fluid intelligence 

515 HC 
571 HC 
Train:515, test 571 
Train 571, test 515 

0.436 
0.356 
~0.28 
~0.28 

(33) 

ORRT 
Impulsivity 
Fluid intelligence 
PVT 

577 HC 

0.2918 
0.2398 
0.21 
0.21 

(34) 

Morality bias 25 HC 0.84 (35) 
Decision making 18 HC 0.56 (36) 
SRS 27 ASD 0.38 (37) 
Mental rotation 
Vocabulary 
ORRT 
PVT 

862 HC 
862 HC 
953 HC 
953 HC 

0.20 
0.22 
0.40 
0.42 

(38) 

Elastic net 

General intelligence 884 HC 0.457 (39) 
Working memory 
Story comprehension 
ORRT 
PVT 
Cognitive flexibility 

419 HC 

0.30 
0.30 
0.38 
0.40 
0.29 

(40) 

Fluid intelligence 
Openness 
Superordinate Personality factor 

884 HC 
0.26 
0.24 

0.272 
(41) 

Grip strength 
ORRT 
PVT 
Spatial orientation 
Grip strength 

794 HC 
794 HC 
794 HC 
794 HC 
160 HC 

0.57 
~0.32 
~0.35 
~0.2 

~0.55 

(42) 

RVR 

Unified PD Rating Scale-III 84 PD 0.35 (43) 

Aphasia quotient score 
77 low-grade gliomas 
49 high-grade gliomas 

0.299 
0.521 

(44) 

Visuospatial divergent thinking 
Visuospatial divergent thinking 
Verbal divergent thinking 
Verbal divergent thinking 

242 HC 
260 HC 
242 HC 
260 HC 

0.21 
0.20 
0.29 
0.19 

(45) 

Trust 
Horizontal collectivism 

83 HC 
0.27 
0.31 

(46) 

Deception 47 HC 0.48 (47) 

Openness/Extraversion/Neuroticism 
310 HC 
151 HC 

0.17/0.29/0.20 
0.29/0.23/0.42 

(48) 

SVR 

Distractibility 32 HC 0.48 (49) 
Multitasking ability 106 HC 0.40 (50) 
Interoception intensity 
Anxiety feeling 

122 HC 
0.2576 
0.2471 

(51) 

Self-Rating Anxiety/Depression Scale 
44 HC: time 1 
44 HC: time 2 

0.748/0.757 
0.727/0.751 

(52) 

HDRS 24 Depression+29HC 0.91 (53) 
Fluid intelligence 677 HC 0.347 (54) 
Fluid intelligence 
Cognitive flexibility 
Inhibition 

105 HC 
0.418 
0.490 
0.307 

(55) 

Fluid intelligence 
ORRT 
Grip strength 
Anger-aggression 

472 HC 

0.431 
0.425 
0.512 
0.258 

(56) 

PANSS positive/negative 
PANSS positive /YMRS 

76 SZ 
55 BP 

0.50/0.35 
0.35/0.51 

(57) 

YBOCS (obsessive compulsive scale) 41 OCD 0.528 (58) 
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YBOCS change 
DOCS (OCD severity): 2 dimensions 
DOCS change 

0.374 
0.333/0.337 

0.359 

PLSR 

Sustained attention 

Discovery: 25 HC 
Validation 1: 86 HC 
Validation 2: 41 HC 
Validation 3: 113 ADHD+HC 

0.908 
0.576 
0.631 
0.413 

(59) 

BDI-II 
SHAPS 
PANSS  

58 MDD+65HC 
0.5416 
0.591 
0.563 

(60) 

PLSR Long-term memory 55 MCI 0.641 (61) 

GSR 

Inhibition control 36 HC 0.49 (62) 
State anxiety scores 
Mood and Anxiety Symptom 
HDRS for Anxiety 

82 distressed adults, 72 HC  
0.28 
0.28 
0.24 

(63) 

Deep learning 

Working memory 
Relational performance 
Language performance 
Social performance 

473 HC 
457 HC 
471 HC 
473 HC 

0.536 
0.357 
0.375 
0.28 

(64) 

Sparse linear 
regression 

Working memory 17 HC 0.8567 (65) 

Working memory 
Train: 17 HC, test: 474 HC 
Train: 17 HC, test: 58 SZ  

0.110 
0.248 

(66) 

Multiple Kernel 
Learning 

Negative affect personality 34 HC 0.52 (67) 

Energy-Manic Symptom Severity 
56 distressed adults 
36 distressed adults 

0.42 
0.33 

(68) 

sMRI 

Simple/multiple 
linear regression 

Inhibition 42 HC ~0.6 (69) 
Anxiety score 76 HC 0.40 (70) 

Inhibitory control 
Discovery: 214 HC 
Validation: 117 HC 

0.3237 
0.46 

(71) 

SVR 

OCD Symptom severity: 2 tests 37 OCD 0.49/0.44 (72) 
ADOS 82 ASD 0.362 (73) 
IQ 164 HC 0.718 (74) 
Learning success 34 HC 0.74 (75) 
Resilience 41 Ultra-high Risk subjects 0.42 (76) 
3 reading components 253 HC 0.26/0.23/0.24 (77) 

RVR 

MMSE 
DRS 
AVLT 
MMSE 
DRS 
MMSE 
ADAS 
MMSE 
ADAS 
MMSE 
MMSE 
ADAS 
AVLT 

73AD+91HC 
73AD+91HC 
73AD+91HC 
73AD 
73AD 
113 AD+351 MCI+122 HC 
113 AD+351 MCI+122 HC 
39 AD+92 MCI+32 HC  
39 AD,92 MCI+32 HC 
Train: 164, test: 234 
Train: 234, test: 164 
Train: 586, test: 164 
Train: 164, test: 586 

0.7 
0.73 
0.60 
0.44 
0.54 
0.48 
0.57 
0.47 
0.49 
0.56 
0.60 
0.62 
0.40 

(78) 

HDRS 
MADRS 

20 Depression 
0.5071 
0.5441 

(79) 

MMSE 
Boston Naming Testing 

23 AD+74 MCI+22 HC 
22 AD+31 MCI+16 HC 

0.7386 
0.5891 

(80) 

PANSS total score 50 ultra-high risk subjects 0.34 (81) 
BDI 30 MDD 0.694 (82) 
Cognitive flexibility 100 HC 0.41 (83) 

LASSO Learning biases 41 HC 0.58 (84) 

Ridge regression 

Motor: 2 domains 
Language 
visuospatial memory 
verbal memory 
Attention 

117 Stroke 
124 Stroke 
98 Stroke 
98 Stroke 
101 Stroke 

0.73/0.51 
0.66 
0.41 
0.2 

0.58 

(85) 

Effortful control 246 HC 0.24 (86) 
Fear of pain 99 HC 0.41 (87) 
Attention 
Visual memory 
Verbal memory 
Language 
Motor 

80 Stroke 
79 Stroke 
79 Stroke 
98 Stroke 
91 Stroke 

0.6708 
0.6033 
0.6450 
0.7148 
0.4837 

(88) 

Elastic net 

RAVLT Immediate 
RAVLT-Percent Forgetting 

186 AD+394 MCI+226HC 
180 AD+393 MC+226HC 

0.50 
0.43 

(89) 

ORRT 
PVT 
ORRT 

Discovery: 507 HC 
Discovery: 507 HC 
Validation 1: 372 HC 

0.40 
0.43 
0.28 

(90) 
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PVT 
Reading decoding 
Vocabulary 

Validation: 1: 372 HC 
Validation 2: 41 HC+25 Dyslexia 
Validation 2: 41 HC+25 Dyslexia 

0.34 
0.24 
0.20 

ADOS symptom 156 ASD 0.51 (91) 
PLSR IQ 78 HC 0.55 (92) 

Deep learning 

ADAS 
MMSE 
ADAS 
MMSE 

198HC+326MCI+145AD 
198HC+326MCI+145AD 
256HC+311MCI+23AD 
256HC+311MCI+23AD 

0.60 
0.52 
0.68 
0.55 

(93) 

NG-L21 
MMSE;  
RAVLT: 5 domains 
logical memory 

179 AD+205 HC 
0.7574 

0.65/0.59/0.56/0.61/0.46 
0.707 

(94) 

G-SMuRFS 
ADAS total scores 
MMSE 
RAVLT: 3 domains 

197 HC+349 MCI+172 AD 
0.644 
0.554 

0.526/0.474/0.395 
(95) 

CORNLIN 

ADAS 
MMSE, 
RAVLT: 3 domains 
TRAILS: 3 domains 

171 AD+222 HC 

0.767 
0.758 

0.633/0.608/0.598 
0.562/0.607/0.525 

(96) 

MMR 
Fluency 
RAVLT 
TRAILS 

225HC+393MCI+186AD 
0.5427 
0.8865 
0.5796 

(97) 

FGL–MTFL 

ADAS 
MMSE 
TOTAL 
ANIM 

173 AD+225 HC+390 MCI 

0.667 
0.548 
0.522 
0.399 

(98) 

dMRI 

Linear regression 
ORRT 
PVT 
Line orientation 

1065 HC 
0.3020 
0.2622 
0.2536 

(99) 

Ridge regression Trait anxiety 72 HC 0.25 (100) 

LASSO 
Episodic memory 
Spatial orientation 

840 HC 
838 HC 

0.0977 
0.0951 

(101) 

SVR 
YTO-L 
YTO-A 

39 HD 
0.6613 
0.622 

(102) 

RVR Dispositional worry 59 HC 0.41 (103) 

Deep learning 
Bayley-III motor  
Bayley-III cognition 

168 HC 
0.31 

0.188 
(104) 

Multimodal 

Simple/multiple 
linear regression 

IQ 
160 HC 
166 HC 

0.45 
0.45 

(105) 

MCCB composite 
MCCB social cognition 
PANSS positive 
PANSS negative 

47 SZ+50 HC 
47 SZ+50 HC 
47 SZ 
47 SZ 

0.70 
0.7084 
0.7785 
0.7804 

(106) 

Cognitive composite 
Speed of processing 
Cognitive composite 
Speed of processing 

Discovery: 147 SZ+147 HC 
Discovery: 147 SZ+147 HC 
Validation: 46 SZ+42 HC 
Validation: 46 SZ+42 HC 

0.463 
0.470 
0.406 
0.351 

(107) 

Working memory 
Verbal learning 
Composite cognition 

94SZ+83HC 
0.235 
0.25 

0.256 
(108) 

Ridge regression Trait anxiety 531 HC 0.26 (109) 

Elastic net Creativity 
Discovery: 138 HC 
Validation: 98 HC 

0.5238 
0.267 

(110) 

SVR 

Working memory 46 HC 0.64 (111) 
MMSE 
ADAS-Cog 
MMSE 
ADAS-Cog 
MMSE 
ADAS 

51 AD+52 HC 
51 AD+52 HC 
99 MCI+52HC 
99 MCI+52HC 
99 MCI 
99MCI 

0.685 
0.668 
0.456  
0.470 
0.584 
0.556 

(112) 

MMSE 
ADAS-Cog 

88 MCI 
0.786 
0.777 

(113) 

Western Aphasia Battery: 4 domains 
Aphasia quotient 

90 Aphasia result from Stroke 
0.746/0.483/0.619/0.584 

0.694 
(114) 

RVR 

MMSE 
ADAS-Cog 

51 AD+99 MCI+52 HC 
0.80 
0.78 

(115) 

Long-term memory 
Short-term memory 
Semantic retrieval  
Manipulation 

80 HC 
85 HC 
75 HC 
80 HC 

0.41 
0.45 
0.46 
0.35 

(116) 

PLSR Sustained attention 
Discovery: 25 HC 
Validation 1: 44 HC 

0.86 
0.66 

(117) 
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Validation 2: 24 HC 0.41 

Processing speed 60 multiple sclerosis 0.88 (118) 
Random forest Picture naming 53 Stroke 0.66 (119) 

GGML 

MMSE 
ADAS-Cog 
MMSE 
ADAS-Cog 

50AD+52HC 
50AD+52HC 
97 MCI+52 HC 
97 MCI+52 HC 

0.745 
0.740 
0.392 
0.472 

(120) 

M3T 
MMSE 
ADAS-Cog 

45 AD+91 MCI+50 HC 
0.697 
0.739 

(121) 

MKMTL 

ADAS 
MMSE 
FLUANIM 
TRAILS: 2 domains 
RAVLT Total 
RAVLT: 3 domains 

756 AD 

0.721 
0.574 
0.512 

0.445/0.589 
0.637 

0.593/0.575/0.479 

(122) 
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