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Abstract 

Curcuma amada or Mango ginger, a member of the Zingiberaceae family, has been revealed as a 

beneficiary medicinal plant having diverse pharmacological activities against a wide range of diseases. 

Due to having neuromodulation properties of this plant, the present study characterized the secondary 

metabolites of Curcuma amada for their drug-likeness properties, identified potent hits by targeting 

Acetylcholinesterase (AChE) and revealed neuromodulatory potentiality by network pharmacology 

approaches. Here in silico ADMET analysis was performed for chemical profiling, and molecular 

docking and molecular dynamics simulations were used to hit selection and binding characterizations. 

Accordingly, ADMET prediction showed that around 87.59% of compounds processed drug-likeness 

activity, where four compounds have been screened out by molecular docking. Guided from induced-

fit docking, molecular dynamics simulations revealed phytosterol and curcumin derivatives as the 

most favorable AChE inhibitors with the highest binding energy, as resulted from MM-PBSA 

analysis. Furthermore, all of the four hits were appeared to modulate several signaling molecules and 

intrinsic cellular pathways in network pharmacology analysis, which are associated with neuronal 

growth survival, inflammation, and immune response, supporting their capacity to revert the 

condition of neuro-pathobiology.  Together, the present in silico based characterization and system 

pharmacology based findings demonstrate Curcuma amada, as a great source of neuromodulating 

compounds, which brings about new development for complementary and alternative medicine for 

the prevention and treatment of neurodegenerative disorders. 

 
Keywords: Acetylcholinesterase, Curcuma amada, Molecular Docking, MD Simulations, Network 
Pharmacology. 
 

1 Introduction 

Acetylcholinesterase (AChE) is a hydrolase enzyme, which catalyzes neurotransmitter acetylcholine 

and some other choline ester into acetate and choline (1, 2). This catalyzing reaction terminates 

neuronal signals transmitted by these neurotransmitters (3, 4). Besides, AChE responses to several 

cellular insults like cellular stresses and also disrupts cell proliferation and differentiation (3). The 

active site of AChE is located in the deep and narrow gorge side of this enzyme, which consists of 

anionic and esteratic subsite acts as catalytic and choline-binding site respectively (5, 6). The 

substrate binds to the hydrophilic and uncharged anionic subsite (3). The positively charged 
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substrates have no interactions with the anionic negatively charged amino acid residues, however, 

interact with the anionic active site, containing 14 amino acids. Among these amino acids, TRP84  

plays a vital role in substrate binding (6). Since the AChE impedes the normal signaling system, its 

interference is necessary in order to maintain the ACh's persistence action. Due to its higher catalytic 

activity (25,000 reactions per seconds), AChE received considerable attention from researchers (3). In 

recent decades, treatments for neurological disorders have been designed to treat cholinergic 

dysfunction primarily based on AChE (AChE-I) inhibitors, which improve cholinergic efficiency and 

have persistent therapeutic effects (7). A recent study suggest that AChE inhibitors up regulate 

cholinergic function which was associated with the suppression of proinflammatory cytokine and 

lymphocyte proliferation (8). Several AChE inhibitors are available in the market, such as biperiden, 

donepezil, edrophonium, galantamine, huperazine, neostigmine, rivastigmine, tacrine, and trichlorfon 

(1, 9-12). These drugs are reported to improve cognitive function and approved for different 

neurodegenerative disease (NDDs) therapy such as Alzheimer’s Disease (AD), Parkinson’s Disease 

(PD), Multiple Sclerosis (PD), Huntington’s disease (HD) and prion diseases (4, 13-15). However, 

some of these drugs shows various side effects including, hepatotoxicity (tacrine) (16), anorexia, 

abdominal pain, diarrhea, gastrointestinal anomalies-nausea and bradycardia (donepezil) (17). 

Rivastigmine and galantamine causes anorexia, diarrhea, dizziness, headache, nausea, vomiting, 

abdominal pain, and syncope (18, 19), whereas biperiden causes bowels and bladder atonic states, 

confusion, agitation, mydriasis, red face, hyperthermia, dryness of mucous membranes, and 

hallucinations (20).  Thus there is a need for effective and safe AChE inhibitor, which can prevent 

neurodegeneration, block the disease progression at the primary stage or improving the cognitive 

impairment conditions to reduce the social and economic cost of caring NDDs patients and improving 

the quality of life. 

Natural products derived from resources have been proved as a very efficient therapeutic 

agents due to their antioxidant, antiapoptotic, antiamyloidogenic, and mitochondrial function 

modulatory effects  (21, 22) and some recent findings suggest that they have counter action on protein 

misfolding, also influence proteasomal breakdown, aggregates clearance and autophagy (23, 24). 

Plants provide a great source of alkaloidal, polyphenolic and terpenoid compounds with better 

therapeutic potentials likewise, anxiolytic and relaxant properties of Lippia citriodora derived 

compounds (25), nitric oxide and inflammation inhibition by Chionanthus retusus extracts (26), and 
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apoptosis inhibitory effect of Centella asiatica extracts (27). Curcuma amada Roxb., from the family 

of Zingiberaceae, was reported to show numerous pharmacological activity including antibacterial, 

antifungal, analgesic, anti-inflammatory, anticancer, antihyperglyceridemic, free radical scavenging, 

and also superoxide scavenging activities (28-30). 

This plant is similar to Curcuma longa and has raw mango-like aroma in rhizome and thus 

they also called mango ginger (31). The recently published report showed that the ethanol extract 

from the rhizome processed the depressant activity in CNS and potential antinociceptive activity (32). 

Besides, the hydroalcoholic extract was responsible for the neuroprotective activity (33), which 

ultimately indicates the presence of various classes of secondary metabolites such as steroidal 

lactones, phytosterols, sitoindosides and alkaloid in C. amada that may modulate the cognitive and 

memory function in brain by modulating expressions of cholinergic and glutamatergic systems. 

Therefore, the present study aimed to explore the acetylcholinesterase inhibitors from the various 

reported secondary metabolites of C. amada to prevent the development of cognitive impairment, 

improve the physiological condition of NDD patients. 

 

2 Materials and Methods 

2.1 Collection and preparation of ligands 

The information regarding the secondary metabolites of Curcuma amada was assembled from 

literature and web resources in order to develop an exclusive curated chemical library. In this regard, 

literature mining was done against international databases, including Google Scholar, Scopus, Web of 

Science, and PubMed. The obtained information was dual checked, corrected and respective chemical 

structures were obtained from available chemical databases, including 'Pubchem' and ChemSpider '. 

The chemical name, IUPAC name, plant part and structural information were also collected for the 

selected compounds. The structures, which are not available in the chemical databases, were drawn 

by the Chemdraw software. All structures were converted to three dimensional by using Ligand 

preparation wizard of Maestro 11.1 (34) with an OPLS 3 force field. Their ionization states were 

generated at pH 7.0±2.0 using Epik 2.2 in Schrödinger Suite (Schrödinger, LLC, New York, NY, 

USA) (35).  

 

2.2 Determination of ADMET properties 
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The QikProp program (QikProp, Schrödinger, LLC, New York, NY, USA) was used to calculate 

ADMET properties (36). Total of 48 molecular descriptors were calculated using this program in a 

normal mode. At first, QikProp generates physical descriptors and later calculate ADMET. The 

pharmacokinetic profiles of the compounds are determined by using an all-round ADME compliance 

parameter (indicated by # stars). The #stars parameter shows the number of property descriptors that 

QikProp estimates to fall outside the optimum range for 95% of recognized medicines (37).  

  

2.3 Virtual Screening  

Virtual screening was done by the molecular docking approach through AutodockVina software. 

Initially, the structure of AChE was retrieved from the RCSB protein databank (https://www.rcsb.org, 

PDB ID: 4EY7) and prepared by cleaning water molecules, ligands and energy minimizing by 

steepest descent and conjugate gradient techniques. GROMACS 96 43B1 parameters were used for 

all of these calculations in the in-vacuo system by the SWISS-PDB viewer (38). All 3D models were 

produced and minimized using UCSF Chimera software (Amber Force field) in the charged form 

(39).  In the Vina docking procedure, the number of binding modes and Exhaustiveness were set to 

100 and 25 respectively (40) The AutoDock tools from MGL software suite have been used to 

convert pdb file into pdbqt. The grid box size was kept at 58.8163, 61.2067, and 72.8274 respectively 

for X, Y, Z. axis in AutoDockVina and. Docking calculations were set to 50 runs. A population of 

150 individuals and 2,500,000 function evaluations were used. By using a genetic algorithm, the 

structure optimization was done for 27,000 generations. Maximum root mean square tolerance for 

conformational cluster analysis was 2.0 Å. AutoDockVina performed cluster analysis at the end of 

calculation (41). AutoDockVina developers provide shell script implementing through 

AutoDockVina. The results were evaluated binding energy values by sorting Kcal/Mol as a unit for a 

negative score of different ligand-protein complexes. 

2.4 Induced Fit Docking analysis 

To exceed the docking analysis with more accurate bioactive conformation, the Schrodinger’s 

Induced Fit Docking (IFD) was applied. After the virtual screening, IFD docking was carried out by 

using the IFD module of Schrödinger-Maestro v11.1 (42). By minimizing the receptor with an RMSD 

comprising limit 0.18 Å, the glide docking was run and a box size was generated automatically. For 

both the ligands, the van der Waals scaling factors were set to 0.50 and 0.70, respectively to soften 
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the potential of both ligands and receptors and the B-factor side chains were trimmed automatically. 

The number of maximum of 20 poses were kept during the docking simulation. To bind the domain 

flexibility, a cutoff of 5 Å was set for all residues of ligand poses which were refined using Prime 

molecular dynamics module and the side chains were again optimized. The best poses within 30.0 

kcal/mol were then re-docked generating overall 20 structures with the protein molecule by using the 

glide SP. Finally, for each ligand induced-fit receptor docking generate an IFD score in which the 

lowest IFD score containing poses were then selected for further study.  

2.5 Molecular Dynamics Simulations (MDS) 

Molecular dynamics simulation was run for the protein-ligand complexes derived from IFD, 

using YASARA dynamics software. The simulation protocol began with the hydrogen-bond network 

optimization, and subsequently, a cubic simulation cell in the periodic boundary condition was 

generated, where the protein of each complex was parameterized by the AMBER14 force field (43, 

44). The ligand was parameterized utilizing AutoSMILES (45) algorithm, which automatically 

creates topology of unknown organic molecules through semi-empirical AM1 calculation of mulliken 

point charges (45) in COSMO solvation model, assignment of atom and bond types to AM1BCC (46) 

and also assignation of GAFF (General AMBER Force Field) (47). Using the TIP3P water model, the 

simulation box was solvated by maintaining a density of 0.997 g/L. During solvation, the pH of the 

system was maintained at 7.4 to mimic the physiological conditions, and accordingly, the protonation 

states of each amino acid residue were determined in a combination of the H-bonding network and 

SCWRL algorithm, which employs dead-end elimination and graph theory (48). Furthermore, the 

solvation system was supplemented with Na+ and Cl- ions (49). In order to eliminate conformational 

stress, the energy minimization protocol used to minimize the initial structure through steepest 

descent without electrostatic interaction. After this, a steep descent minimization was incorporated to 

relax the structure, which was subject to the total potential reduction of energy over 5,000 cycles, 

until convergence was achieved. The energy per atom was enhanced in 5000 steps by less than 0.05 

kJ / mol. In order to describe long-range electrostatic interactions at a threshold distance of 8Å in 

physiological conditions (298 K, pH 7.4, 0.9 % NaCl), MD simulations were carried out using PME 

methods (50). The simulation time step interval was set to 2.0 fs together with multiple time step 

algorithm (51). MDS were done for 50 ns and the trajectories were saved in each 50 ps with a 

constant pressure and Berendsen thermostat. The subsequent trajectories were analyzed for 
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consistency with various analytical steps, including RMSD (Root Mean Square Deviation), RMSF 

(Root Mean Square Fluctuation) using YASARA developed into macros, VMD (52) and Bio3D (53) 

software. After that, the MM-PBSA binding free energy calculations were done by in built macro of 

YASARA dynamics software, where the resulted binding energy is calculated through following 

equation,  

Binding Energy = EpotRecept+ EsolvRecept+ EpotLigand+ EsolvLigand - EpotComplex- EsolvComplex 

2.6 Free Energy Landscape (FEL)  

Free Energy Landscape (FEL) is a mapping system of all possible conformations of molecules in a 

system which is used to bring out their corresponding energy levels especially Gibbs free energy. In 

this study, the protein stability is expressed through Gibbs Free Energy by determining the  function 

of protein enthalpy and entropy (54, 55). FEL analysis was also carried out to check the evaluation of 

the trajectory changes. In this study, the FEL was investigated by following equation: 

Gi = -KBTln (Ni/Nmax) 

Where, KB is Boltzmann’s constant, T is temperature (300K), Ni is the population of bin i and Nmax is 

the population of the most populated bin. Color code modes were utilized to discuss different energy 

levels.  

3 Results  

3.1 Database and In silico Chemical Profiling  

In our study, we curated 137 compounds from different parts of the C. amada that are extracted and 

reported in previous studies. The details of these compounds are depicted in the supplementary file 1 

with their chemical name, IUPAC name, and 2D structure. These compounds contain 81% essential 

oils, 7% phenol and terpene, 4% terpenoid and 2% curcuminoid (Figure 1a). The physical and 

chemical profiling of these compounds were analyzed, where the result revealed that the molecular 

weight of our isolated compounds was in the acceptable range (100%) (Figure 1b) whereas, 86.13% 

compounds (total 118 individual compounds) molecular weight was in this interval 100-200 (Figure 

1b). According to ‘rule of five’ postulated by Lipinski, Number of Hydrogen Bond Acceptor (HBA) 

and Number of Hydrogen Bond Donor (HBD) should not be above 10 and 5 respectively.  The HBA 

(Figure 1c) and HBD (Figure 1d) depicted that, all of our isolated compounds showed the acceptable 
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range of HBA and HBD, moreover, 37.23% and 62.77% compounds showed a peak value of 0 for 

both HBA and HBD. As higher polar compounds cannot pass blood brain barrier (BBB), therefore, 

the prediction of BBB penetration is necessary. Polarity based accession to CNS and BBB 

permeability of the compounds were indicated using log B/B (reference range -3 to 1.2) (56, 57).  

The QikProp analysis depicted that about 92.07% compounds have the ability to cross the BBB, 

while 87.59% compounds showed the ability to activity in CNS system (Figure 1e and 1j). The 

cardiac toxicity assessment is also necessary for a drug-likeness substance. Human Ether-a-go-go 

related gene (hERG) gene is responsible for maintaining the cardiac systolic and diastolic activity by 

maintaining the potassium ion channel. In this study, we estimated IC50 values to model in silico 

toxicity of the drug-likeness compounds for blocking the HERG K+ channel. About 94.89% of 

compounds were within the recommended range (logHERG > −5) (Figure 1f). The compound's 

bioavailability relies on the compounds absorption processes and their metabolism (56). The oral 

absorption assessment was predicted by calculating Human Oral Absorption (HOA). It was predicted 

that 75.91% of compounds have higher HOA (attributed to a value of 3), 3.65% compounds have 

medium HOA (attributed value is 2). The rest 20.44% of compounds have low absorption (Figure 

1g). Besides, to estimate oral abortion Madin-Darby canine kidney (MDCK) cells are widely used 

because they can express transporter proteins with low level of enzymes expression. Evaluation of 

MDCK cell permeability is an additional criteria for analyzing BBB penetration. About 86.13% 

isolated compounds have MDCK cell permeability (Figure 1i).  

The overall drug-likeness properties of C. amada compounds have been evaluated by #stars 

parameter. Distribution graph for this parameter shown in (Figure 1h). This graph depicted that 

overall 87.59% compounds have drug-likeness properties.  
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Figure 1: (a) Pi chart showing the classification of Curcuma amada compounds. Distribution cu
of (b) Molecular weight against count, (c) Hydrogen bond acceptor against count, (d) Hydrogen b
donor against count, (e) Calculated QP log BB against count (f) Plot of predicted logHERG va
against count, (g) Calculated percentage of Human oral absorption against count, (h) #stars ag
count, (i) Plot of logMDCK values against count, (j) Plot of CNS against count 

600

2

20

 curves 
n bond 
 values 
against 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.22.960732doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.22.960732
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 
3.2 Virtual Screening 

In the area of in silico drug design, virtual screening is a vital approach to screen out the notable hits 

from thousands of compounds (58, 59). Virtual screening is proposed to be a successful alternative 

methods of lead compound identification in drug discovery process (60, 61). 

It has received considerable interest in lead detection, since it looks like biological research using co

mputer technology that appear to be closer to true value (62). In this case, the docking protocol 

describes the ligand-binding site in the receptor and also the ligands specification in the particular 

location.  

All identified (137) compounds were imported for docking calculation where we found four 

compounds with lowest binding energy. These four compounds were selected for further analysis. 

According to docking score graph of isolated compounds from C. amada, more than 45 compounds 

showed docking score of -6 while, 40 compounds showed the docking score of -7. Again, there were 

30 and 8 compounds for the docking score of -8 and -9 respectively (Figure 2a). Among the four 

selected compounds, the highest docking score was found -14.523kcal/mol for curcumin, and 

demethoxy curcumin, bisdemethoxycurcumin, and β-sitosterol were scored -12.993 kcal/mol, -11.913 

kcal/mol, and -10.729 kcal/mol respectively (Table 1). Therefore, Curcumin and demethoxy 

curcumin showed higher binding affinity while bisdemethoxycurcumin and β-sitosterol showed lower 

binding affinity towards AChE. These compounds are considered for further analysis 

3.3 Binding interaction analysis by IFD study 

In docking calculations, the rigid receptor does not always provide the exact binding pattern 

of ligand on the active site. Because in reality, the protein undergoes some spatial changes. This 

mobility can be due to the flexibility of the active site residues, which is also complementary to their 

side chain. This can be considered in induced-fit process. IFD is a combination of both molecular 

dynamics and molecular docking, predicts accurately receptor natural conformation changes and 

ligand binding modes. Accordingly, the top 4 hits were allowed to the induced fit docking. Ligand 

pose having the lowest IFD score were selected for the molecular interaction analysis. The IFD 

docking scores are represented in Table S1. 

Figure 2b represents the molecular interactions between the curcumin and AChE, in which 

the oxygen atom of the 3-methoxy group at phenyl ring formed hydrogen bond with TYR124 at a 

corresponding distance of 2.32112 Å. This ring also formed pi-pi stacked bond with TYR341. The two 
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oxygen atoms of curcumin showed three hydrogen bonds with PHE295 and ARG296 residues with the 

bond lengths of 2.11364Å, 2.59759Å, 1.88951Å, respectively, here PHE295 involved in duel hydrogen 

bonding. In contrast, two hydrogen bonds were observed with HIS287 and pi-alkyl bond with LEU289 

at 7th (4-hydroxyl-3-methoxyphenyl) ring. The pi-alkyl bond also formed between curcumin and 

PHE338, TYR 337 residues. 

In demethoxy curcumin, PHE295, ARG296 hydrogen bond were seen in (Figure 2c) with the 

part of 1, 6-diene-3, 5-Dione whereas, PHE295 containing two hydrogen bonds observed with the 

distance of 2.03758Å, 2.48401Å. On the contrary, hydroxyl group formed hydrogen bond with HIS447 

and pi-alkyl bond formed with PHE338 and TYR337 at 3-methoxy group. Others residue, TRP286 was 

involved in pi-alkyl bond and LEU289 was involved in alkyl-alkyl bond at phenyl ring. 

In case of bisdemethoxycurcumin (Figure 2d), hydrogen bonds were observed at 1, 6-diene-3, 

5-Dione with PHE295 and ARG296 residues, while PHE295 formed two hydrogen bonds with the 

distance of 2.03758Å and 2.48401Å. Hydrophobic interactions were seen with TYR337, TYR341, 

PHE338, and TYR 337at the phenyl ring. Additionally, TRP286 formed hydrogen bond with 4 hydroxyl 

group and pi-alkyl bond with aromatic ring. Besides alkyl-alkyl bond was associated with LEU289. 

In beta-Sitosterol major hydrophobic interactions were observed with TRP86, TRP286, PHE297, 

TYR337, PHE338, and TYR341 residues by means of pi-alkyl bonding (Figure 2e). A single hydrogen 

bond was observed in cyclophenanthren-3-ol with the residue SER293 having the bond length of 

2.18947Å. 

The catalytic active site (CAS) is built by several amino acid residues including tryptophan, 

phenylalanine, glutamate, histidine, and serine.  

A hydrophobic region, the peripheral anionic site (PAS) traps ligands and sends them to the deep cat 

lytic region. Several studies have been conducted in noncompetitive AChE inhibition and the role of 

amino acid residues during this process (63-65). The inhibition requires binding of inhibitors to the 

active site george (63, 66). Some previous study related to AChE inhibition depicted that inhibitors 

interact with the following residues Trp86 and Phe338 of CAS and residues Trp286, PHE295, Tyr337, and 

Tyr341 of PAS (67-69). From the docking analysis, it can be concluded that all the studied compounds 

formed hydrogen and hydrophobic interactions with TYR337, TYR341 and Phe338 residues which are 

involved either in the peripheral site or in the ligand recognition mechanism by allosteric activation. 
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Our selected compounds also interacted with the previously studied active site residues. Thus, they 

can successfully block the active-site gorge of the AchE. To validate and reestablish the result of 

docking analysis and to see whether the interacted residues will be fully conserved or not, MDS was 

performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: (a) Docking score of selected compounds. Molecular interactions between AChE and 

selected compounds. (a) AChE-Curcumin, (b) AChE-Demethoxycurcumin, (c) AChE-

Bisdemethoxycurcumin, and (d) AChE-β-Sitosterol  
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3.4 Molecular Dynamics Simulation 

To evaluate the motion and trajectory of molecules, structural features and conformational change of 

molecules, we conducted MD simulation for 50 ns. In this study, four protein-ligand complexes of 

beta-sitosterol, bisdemethoxy carcumin, demethoxy curcumin and curcumin were subjected to MD 

simulation by means of RMSD analysis of the Cα-atoms, critical residues fluctuations analysis by 

RMSF, number of hydrogen bond and MM-PBSA for the analysis of binding free energies. 

3.4.1 Analysis of protein’s stability and compactness 

Protein’s overall stability and conformational difference after binding of the studied compounds was 

evaluated by RMSD analysis of the Cα-atoms of the respective protein (70). The protein will be 

stable if the deviation is shorter. According to the result, upon binding of four compounds, the 

stability of the AChE ranges between 0 to 2 Å. The average deviation for AChE-β-sitosterol, AChE-

Bisdemethoxycurcumin, AChE-Demethoxycurcumin and AChE-Curcumin were observed to be 1.4, 

1.25, 1.2 and 1.1 Å respectively, though the AChE-Curcumin complex showed more fluctuations 

throughout the simulation (Figure 3a). Thus the AChE-Curcumin complex showed lower RMSD 

with more fluctuations than the other three complexes indicating more significant binding. Again, all 

ligands appeared the same flexibilities during the simulation though the beta-sitosterol showed the 

highest deviation among the four ligands which became more flexible after 26 ns. The average 

RMSD values for Bisdemethoxycurcumin, De-methoxycurcumin and Curcumin ligands were 0.7, 0.5 

and 0.6 Å respectively and there were not many fluctuations after 26 ns for these (Figure 3b). 

Therefore, the overall result of ligand RMSD explains that despite the De-methoxycurcumin appeared 

the lower deviation from Curcumin, AChE was more stable when combining with curcumin rather 

than De-methoxycurcumin. 

The local fluctuations as well as differences in residue movements could be estimated by Root mean 

square fluctuations (RMSF). According to Figure 3c, AChE- Bisdemethoxy curcumin showed the 

highest RMSF values with the highest peak at 6.5 Å and the residues responsible for these increasing 

fluctuations are TYR-105, Phe-338 and VAL-379. AChE-Beta sitosterol, AChE- 

Demethoxycurcumin and AChE-Curcumin showed minimum RMSF, where the highest peaks were at 

5.2 Å between 538-540 residues and at 4.8 Å between 525 to527 residues and 4.6 Å between 534-536 
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residues than AChE- Bisdemethoxy curcumin. Moreover, beta-sitosterol decreased flexibility of 

AChE in 86, 285-29, 325, 400 and 475-476 residues where TRP-286 residue belongs to PAS. 

However, fluctuations were seen to reduce for Curcumin when binding to AChE with residues with 

residues 95-105, 200-205, 290-298, 323-325, 445-450 and 470-475, where the residue PHE-295 and 

ARG-296 also made hydrogen bond with AChE. The docking study of protein-ligand complex 

predicted hydrogen and hydrophobic interaction with TRP-286 and GLU-293, as it was indicated in 

RMSF plot for lower fluctuations in AChE-Curcumin complex in comparison with other three 

protein-ligand complexes. The result reveals that the interaction between AChE and 

Bisdemethoxycurcumin is weak while the interaction between AChE and Curcumin is strong. 

3.4.2 Ligand binding insights 

Hydrogen bonds are important mediator of ligand binding to the protein with high affinity and 

specificity (71). Therefore, this study also investigated hydrogen bond profiling of the studied 

complexes throughout the simulation and depicted in Figure 4a. From the figure 4a it was observed 

that, the four complexes exhibited around similar hydrogen bonding ranging from 0 to 3. AchE-

curcumin displayed 0 to 2 while AchE-demethoxycurcumin displayed 0 to 1 hydrogen bonds. 

Similarly, AchE-beta-sitosterol showed numbers of 0 to 1 hydrogen bonds and AchE-bisdemethoxy 

curcumin possessed the hydrogen bond value of 0 to 2 but less denser than AChE-Curcumin 

complex.  So, all the complexes are very much consistent with each other in case of hydrogen bonds. 

It can be concluded that AChE-Curcumin showed maximum hydrogen bonds, while beta-sitosterol 

showed minimum hydrogen bonding during the simulation and after 26 ns it didn’t show any 

hydrogen bond which showed several contact again after 45 ns with AChE. Furthermore, Figure 4b 

was plotted to show hydrogen bond occupancy where the residues are shown which were behaved as 

a donor or acceptor. According to figure 6, AchE-beta-sitosterol made H-bonds with several residues 

including TRP 286, GLU 292 and in which total H-bond occupancy was more than 5% while, AchE-

bisdemethoxy curcumin formed H-bonds with residues of PHE 295, ARG 296 and showed H-bond 

occupancy of more than 15% throughout the whole simulation. In addition, AChE- demethoxy 

curcumin formed H-bond with PRO-296, ARG 296 but AChE-Curcumin formed H-bonds with HIS 

447, PHE 295, ARG 296 residues where H-bond occupancy for PHE 295 was less than 40%. 
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However, AChE-Curcumin showed maximum H-bond occupancy with several residues in 

comparison with other three complexes.  

The binding energy was also calculated to see how ligands affect the structure of AChE. The results 

are plotted in Figure 3d. On average, the binding energy of AChE with beta-sitosterol was 240 

KJ/mol which was started to decline and after 20 ns it showed stability with binding energy of 150 

KJ/mol. Again, AChE with bisdemethoxycurcumin, demethoxycurcumin and curcumin showed 

similar binding energy during the simulation. On average the binding energy were 80 KJ/mol, 100 

KJ/mol and 50 KJ/mol, respectively. As more positive energy represents better binding, beta-

sitosterol showed stronger bond with AChE. These compounds are not only stable in silico but also 

showed positive effect on different types of animal model system depicted in Supplementary table 2.  

Overall, MD simulation study was carried out to execute the binding mechanism and dynamic 

stability of four compounds interacting with AChE. The whole analysis depicts that Curcumin is the 

best inhibitor for AChE among the four ligands because of lower RMSD value. Curcumin also 

showed lower RMSF due to greater hydrogen bonding with PHE 295 residue which shows also 

hydrophobic interaction with curcumin. Moreover, beta-sitosterol  showed pi-alkyl interaction with 

TRP 286 residue of peripheral anionic site and TRP 286 residue also showed highest binding energy 

which makes it stronger and caused little configuration changes of protein by several fluctuations 

during the whole MD simulation. However, proteins are flexible in nature and this character 

accomplishes ligand binding, ligand recognition or interaction. So it can be concluded that, along 

with curcumin, with more flexibilities and highest binding energy, beta-sitosterol could be a better 

inhibitor of Acetylcholinesterase. 

To interpret the conformational states related with different free energy states, the FEL was plotted by 

using Rg and RMSD to get the probability distribution P in Figure 5. The conformations with 

minimal free energy are found in the blue area which is more stable than the conformations with high 

free energy which is found in red area. Here, we made use of Rg and RMSD to get the probability 

distribution P. According to the figure, there was maximum number of basins in AChE-β-sitosterol 

complex with the highest energy conformational state while, The AChE-bisdemethoxycurcumin 

showed minimum energy basins among the four complexes with lowest energy conformational state 

having the most stable conformation. Furthermore, in curcumin, the presence of basins were bigger 
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than demethoxy-curcumin at Rg of 2.262~2.278 Å with RMSD of 2.05~2.085 Å and at Rg of 

2.269~2.2857 Å with RMSD of 2.06~2.095 Å respectively. Therefore, the FEL highlights the 

structural stability of bisdemethoxycurcumin and curcumin in complexes with AChE more than 

demethoxy-curcumin and β-sitosterol.  

 

 

 

 

 

 

 

Figure 3: Root Mean Square Deviation (a) Protein RMSD, (b) Ligand RMSD, (c) Root mean square 

fluctuation (RMSF). (d) Binding Free Energy graph where, in all cases Red, Blue, Yellow and Purple 

color denote Beta-sitosterol, Bisdemethoxycurcumin, Demethoxycurcumin and Curcumin 

respectively. 

 

 

 

 

Figure 4: (a) Number of hydrogen bond, (b) Hydrogen bond occupancy analysis, where in all cases 

Red, Blue, Yellow and Purple color denote Beta-sitosterol, Bisdemethoxycurcumin, 

Demethoxycurcumin and Curcumin respectively. 
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Figure 5: The Free Energy Landscape Plots for top four ligands (A) Curcumin, (B) 

Demethoxycurcumin, (C)Bis Demethoxycurcumin and (D) Beta-sitosterol. Here. blue regions 

describe the conformations with lower energy while, the red regions describe the conformations with 

higher energy. The color bar represents the relative free-energy value in kcal mol−1. 
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4. Discussion: 

Use of natural compounds to design new drugs has some tremendous advantages over the chemically 

synthesized drugs as they have minimal side effects, unique chemical structures, less long term 

toxicity, better bioavailability and biological activities. Natural products are being used from the 

Vedic periods. It is also true that about 80% of available drugs in the market are inspired from natural 

products (72). In western pharmaceutical company natural products got much attention during the 

period of 1970-1980 (73) and almost half of the drugs approved since 1981 are derived from natural 

products (74). C. amada has been used from the ancient period for biliousness, asthma, skin diseases, 

itching and inflammation (30). Besides, several research demonstrated that C. amada compounds 

have ability to fight against mouth and ear inflammation, ulcers, and stomatitis (75, 76). Molecular 

docking models the interaction between the ligand and receptor protein at their atomic levels and also 

provides us the information about the conformation and behavior of small molecules inside the 

macromolecules (77). Chemical profiling provides us the details information about the indigenous 

chemical compounds of any source and their detailed properties. The significant chemical compounds 

can be screened out from thousands of compounds by computer algorithms termed as virtual 

screening (78). In today’s drug discovery process virtual screening got much attention compared to 

the empirical screening due to the robustness, cost effective and time saving nature of this method 

(78). The virtual screening and precision docking of four ligands predicted the better binding affinity 

of curcumin towards AChE than demethoxycurcumin, bisdemethoxycurcumin and β-sitosterol. 

According to the docking interactions, curcumin formed two hydrogen bonds with the selective 

PHE295 residue, thus can inhibit the access of choline ester series. Promisingly, curcumin was able to 

form pi-alkyl bond with TYR337 residue of PAS site which is required for ligand recognition. In the 

same manner demethoxycurcumin, bisdemethoxy curcumin formed two hydrogen bonds with PHE295 

residue. But, In comparison with the above compounds, beta-sitosterol did not form any hydrogen 

bond but hydrophobic interactions with PAS site, selective and conserved residues. This compound 

formed three pi-alkyl interactions with PAS site residue TRP86 and two pi-alkyl bonds with selective 

TRP286 residue. As mentioned above, the PAS site residues TRP86, TYR133, TYR337 and PHE338 have 

significant role in ligand identification and allosteric activation (79, 80). The stability of the substrate 

in this site is achieved by pi-cation interaction whereas, the selectivity of the substrates is achieved by 

preventing the access of choline ester series, medicated by PHE295 and PHE297 (81).  A 
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comprehensive analysis of enzyme inhibitor complexes has shown that the indole ring of TRP286 

interacts directly with several inhibitors with a variety of modes of interaction that depend on the 

nature of ligands, including stacking, aromas, and p-cation (82, 83). Molecular dynamics simulation 

mimics what atoms do in real biological system and it is an effective way to understand the 

macromolecular structure to function relationship (84). MDS provides information about the 

interaction, stability of ligand inside the receptor proteins and conformational changes of ligand or 

macromolecules that may undergo inside the biological system in various conditions with the course 

of time (85). The structural analysis through MD Simulation also followed the Molecular docking 

prediction. In MD simulation, hydrogen bond is a major factor by which the stability of molecules. 

Curcumin showed the maximum hydrogen bond in complexed with AChE than other three ligands so 

that curcumin appeared the stable conformation than demethoxycurcumin, bisdemethoxycurcumin 

and  β-sitosterol as the higher the hydrogen bond, the stable the molecules. As the free energy 

conducts the molecular processes inside the biological system thus, binding free energy determination 

is one of the most important task in molecular studies. The MM-PBSA methods is widely used due to 

its robust and modular nature (86).  Though the β-sitosterol showed the highest binding energy with 

more fluctuations during the simulation, it could not be the best inhibitor against AChE because all 

other results such as RMSD, RMSF displayed higher values due to lower hydrogen bonding. Many 

new developed drugs failed to enter into the market due to their low pharmacokinetic activity  (87). 

Therefore, identifying lead compounds with better absorption properties, potent site of action without 

side effects are most preferable. The compounds bioavailability, drug likeness and toxicity were 

predicted by means of ADMET (absorption, distribution, metabolism, elimination and toxicity) (88, 

89) parameters. Due to low cost and time saving properties of computer-based ADMET technique 

compared to the standard laboratory experiment gained much attention to the scientists (49, 52). New 

leads or drug compounds prediction for CNS diseases must possess some vital physicochemical 

factors. These vital parameters acceptable values are depicted in table S-3 (56, 90). Molecular weight 

is an important factor to screen out probable drug compounds because higher molecular weight 

containing compounds can’t pass the blood brain barrier and also they have lower drug likeness 

activity (50). In our study we applied the drug likeness of the selected compounds was evaluated by 

Lipinski’s “Rule of Five”, ro5 (50). According this law our selected four compounds showed no 

violations of these rules, but one compound β-Sitosterol violate one parameter of “ro5” (shown in 
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supplementary table 4). The Molecular weight, HBD and HBA of these compounds were in the 

acceptable range. Above the standards range of these parameters the compounds have worse 

permeability. All of the compounds aquatic solubility and caco cell permeability were in acceptable 

range instead of compound β-Sitosterol. β-Sitosterol aqueous solubility was below the acceptable 

range. The HOA percentage result depicts that’s our selected compounds (Bisdemethoxycurcumin, 

Curcumin Demethoxycurcumin and β-Sitosterol have the following higher permeability 81.57%, 

87%, 79.57% and 100% respectively (supplementary table 4). The log B/B predicted result showed 

that all of our selected compounds were in the acceptable range (supplementary table 4). This 

assessment is necessary because higher polar compound can’t pass BBB (51, 52). The compounds 

distribution was simulated by human serum albumin binding affinities calculation (HSA). This 

calculation showed that a significant proportion of compounds can circulate freely through the blood 

stream and thus reach the drug target sites. Except, B-sitosterol all of our selected three compounds 

have this ability to move freely in the blood stream. This curcuma derived compounds can be used as 

a good AChE inhibitor for cognitive impairment treatment and could open a new door for NDDs 

treatment. Further, in future, potential inhibitor design research based on the improved and optimized 

structural similarity of curcumin, bisdemethoxycurcumin and demethoxycurcumin could be better 

option for NDDs treatment line. 

 

5. Conclusion: 

Neurodegenerative diseases are posing severe threats to human existence. The market available drugs 

have some serious side effects. So, search of new natural compounds which can fight against NDD 

with minimum side effects are mostly preferable. Hence, in our study Curcuma derived compounds 

are studied to inhibit AChE as the AChE monomers prolong the formation of Aβplaques and 

responsible for cognitive impairment. The MD simulation explained that the Curcumin was the most 

favorable inhibitor with higher binding free energy among the curcuma compounds. It showed the 

strongest configuration by binding interactions with the active site residue PHE 295 which is 

important for drug binding and activity. In addition, this study predicts that Curcumin, 

Bisdemethoxycurcumin and demethoxycurcumin was observed to hold potential for hERG toxicity 

while, Beta-sitosterol did not possess potential toxicity for hERG according to ADMET result. Thus, 

ADMET/T anticipated the curcumin and Bisdemethoxycurcumin were not toxic and can be more 
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stable while binding with AChE compared to ligand Beta-sitosterol and finally, inhibition of AChE 

by Curcumin as well as Bisdemethoxycurcumin ligands will play an important role in the treatment of 

NDD diseases.  
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