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ABSTRACT Regulatory T cells (Treg) are suppressor cells that control self-reactive and excessive effector
conventional helper T cell (Tconv) responses. Breakdown of the balance between Tregs and Tconvs is a hallmark
of autoimmune and inflammatory diseases. Due to the positive dependency of both populations on Interleukin-2
(IL-2), it is subtle leverage to restore the healthy immune balance. By employing a mechanistic mathematical model,
we studied the IL-2 therapy in order to increase and stabilize Treg population and restrict inflammatory Tconv
response. We introduced an adaptive control strategy to design the minimal IL-2 dosage. This adaptive strategy
allows for an individualized therapy based on the feedback of immune kinetics of the patient. Our in silico results
suggest that a minimal Treg population is required to restrict the transient side-effect of IL-2 injections on the effector
Tconv response. The combination of IL-2 and adoptive Treg transfer therapies is able to limit this side effect in our
simulations. Implications of our in silico results are discussed in the context of autoimmunity and transplantation.

Introduction

Among numerous factors that control immunological
tolerance, the balance between regulatory T cells (Treg)
and conventional T helper cells (Tconv) is indispensable.
By suppressing Tconv through various mechanisms (1),
Tregs can control magnitude and duration of inflam-
matory responses in order to maintain healthy immune
homeostasis and protect the host from immune-mediated
pathology. Manipulation of homeostasis and interplay
of Treg and Tconv is a therapeutic approach in the
context of autoimmunity, transplantation, and cancer
where inflammation works against the patient. In cancer,
enhanced Treg homeostasis is deleterious, while quantita-
tive and qualitative defects in the Treg compartment are
implicated in multiple autoimmune diseases in humans
and mice (2).

In the absence of foreign antigens (Ag), the homeo-
static number of Tregs and Tconvs is under control of
homeostatic proliferation and thymic export. Activa-
tion of both, Treg and Tconv, via their T cell receptor
(TCR) is stimulated by antigen presenting cells (APCs)
(3, 4). Interleukin-2 (IL-2), a monomeric glycoprotein,
is characterized as a proinflammatory cytokine that is
predominantly produced by activated Tconvs, but not
Tregs. IL-2 acts as an autocrine T cell growth factor and
is necessary for the survival of Tregs and proliferation of
both Tregs and Tconvs (5–8). Given that the biological

factors impacting survival, activation, and proliferation
of Tregs and Tconvs are mostly shared, immunother-
apeutic perturbations using such factors impact both
populations and demand caution. For example, with the
premise that IL-2 stimulates the effector T cell popula-
tion, high dose of IL-2 administration were extensively
used in cancer patients, despite poor safety profile due
to side effects (9). The therapeutic outcome was only
partially successful and the unintended impact of IL-2 on
Treg expansion, at least in part, may explain the failure
of this therapy in some cancer patients (10–13).

Benefits of low-dose IL-2 administration were shown
in patients with HCV-induced vasculitis (14), type 1 dia-
betes (15), and chronic graft-versus-host disease (GVDH)
(16), which resulted in significant Treg proliferation and
resolving the deficiency of Treg numbers in the context
of autoimmune and alloimmune inflammatory diseases.
Such results motivated search for optimal doses and
frequencies of IL-2 administration (15, 17, 18).

Due to the subtle role of IL-2 in regulating both ef-
fector and suppressor arms of the immune system, IL-2
therapy could act like a double-edged sword and result in
unintended adverse outcomes. Mathematical modeling
is a candidate approach to explore IL-2 therapy. In this
study, by employing a mechanistic mathematical model
of T cell responses, we conducted an in silico analysis of
IL-2 therapy as an approach to increase and stabilize the
size of either T cell subset. We introduced a feedback
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Figure 1: Scheme of the T cell response model and adaptive dosing IL-2 therapy. IL-2 concentration and the population
of two T cell subsets, Tconvs and Tregs, are the immune variables considered in the mathematical model (1). Näıve Tconvs
and resting Tregs originated from thymic selection are under homeostatic turn-over in the periphery. Upon Ag-stimulation
provided by APCs, näıve Tconvs and resting Tregs become activated. In contrast to activated T cells, activated Tregs do
not secrete IL-2, but both activated populations proliferate in dependence on the presence of IL-2. Activated Tregs suppress
activated Tconvs in a cell-contact dependent and cytokine-driven manner. In contrast to Tregs, activated T cells undergo
Fas-induced apoptosis by interacting with each other (fratricide). All cells undergo natural cell death and IL-2 is degraded. In
the context of IL-2 therapy, the control unit provides the next optimal IL-2 dose according to a feedback from the current
status of the immune variables. The control unit calculates the IL-2 dose that is needed to keep T cell numbers and systemic
IL-2 concentration in a pre-defined range (clinical constraints). Adoptive Treg transfer is the therapeutic process of increasing
Treg numbers in the immune system by transiently transferring Tregs to the individual.

control scheme to calculate a time-resolved adaptive IL-2
dosing for each individual in silico patient. This scheme
is based on the ”impulsive zone model predictive control
(iZMPC)” algorithm (19, 20). The adaptive algorithm
calculates proper IL-2 doses at each injection episode
based on (1) feedback from the current status of the
patient’s immune response, (2) prediction of how the
immune response progresses according to the mathemat-
ical model for a limited time horizon, and (3) predefined
desired range and constraints for the immune variables
(Tconvs, Tregs and IL-2). We provided qualitative re-
sults as a proof-of-principle for our methodology in the
context of transplantation as a use-case scenario. In
this scenario, restricting acute/chronic effector responses
against the graft by increasing and stabilizing Treg num-
bers is the main goal. But the adaptive IL-2 dosing
algorithm is general and can be employed in other in-
flammatory contexts, such as cancer where increasing
the number of effector T cells is desired.

Materials and methods

Mathematical description of T cell responses
We described the dynamic interplay of activated Tconv
(T) and Treg (R) populations under the influence of
IL-2 (I) as depicted in Figure 1 by the following set of

ordinary differential equations (ODE) (21)

dT

dt
= aIT − bT − cT 2 − γRT + βN,

dR

dt
= εaIR− bR+ βN̂,

dI

dt
= dT − eI(T +R)− fI,

(1)

where N and N̂ denote näıve T cells and resting Tregs,
respectively, and follow

dN

dt
= N0 − gN − βN,

dN̂

dt
= N̂0 − gN̂ − βN̂.

(2)

The definition and values of parameters are given in
Table 1. We assume that activation of Tconvs and
Tregs in the presence of sufficiently strong Ag-stimulation
(large β) occurs much faster than other processes such

as proliferation. Then, the variables N and N̂ have
faster dynamics compared to T , R and I, and can
be treated in the quasi-steady-state approximation(
Ns = N0

g+β and N̂s = N̂0

g+β

)
, by replacing N and N̂ with

Ns and N̂s, respectively. The parameter values of the
model are tuned to mathematically obtained regimens
where T cell dynamics show qualitative similarities to
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Table 1: Parameters of immune activation model.

Parameter Value Description Dimension

a 0.4 Proliferation rate of activated T cells molecule−1time−1

b 0.1 Natural death rate of activated T cells and Tregs time−1

c 10−5 Fratricide death rate of activated T cells cell−1time−1

d 0.01 IL-2 secretion rate by activated T cells molecule
cell−1time−1

e 0.01 IL-2 consumption rate by activated T cells and Tregs cell−1time−1

f 1 IL-2 decay rate time−1

g 0.1 Natural death rate of näıve T cells and resting Tregs time−1

β 0.05 Ag-stimulation of näıve T cells and resting Tregs time−1

γ 0.1 Treg-mediated suppression rate cell−1time−1

ε 0.6 Ratio of proliferation rates of Tregs to Tconvs -
λ 0.006 Ratio of renewal rates of resting Tregs to naive T cells -
N0 4 Renewal rate of näıve T cells cell time−1

N̂0 λN0 Renewal rate of resting Tregs cell time−1

the experimentally observed T cell kinetics. Therefore,
numerically obtained variables and times are given in
arbitrary units, and the results shall be interpreted qual-
itatively. The parameter tuning process is based on a
hierarchical modeling approach described in (21).

Mathematical description of IL-2 therapy After
intravenous administration of a drug, instantaneous
jumps are observed in the drug concentration in plasma
and target organ (22). In the framework of mathemat-
ical modeling, systems with discontinuities in their dy-
namics can be categorized as impulsive systems and
allows for application of control engineering design tools
(19, 20, 23–31). Among these methods, model predic-
tive control (MPC) techniques have been widely used
(19, 20, 23–28) due to their ability to consider systemic
constraints, which confine the dynamics of the system
variables or the external control input. In the context of
pharmacodynamics, the control input is the administered
drug.

MPC algorithms follow a receding horizon strategy
to construct a feedback control law, here, the amount
of the administered drug. At each administration time,
system variables are measured and provided to the MPC
algorithm. Given the horizon parameter N , MPC pre-
dicts the system dynamics for the next N steps using the
current measurement as the initial value of the dynamics.
Then, it calculates the next N optimal doses by solving
a constrained optimization problem aiming at steering
the system dynamics to the desired and predefined equi-
librium points. After calculation of the N optimal doses,
only the first dose is kept and administered. This pro-
cess is repeated at each next drug administration time
point. In this study, we employed the iZMPC algorithm
(19, 20), an advanced version of MPC, in which system
dynamics are moved toward a desired equilibrium set or

space (instead to an equilibrium point) no matter which
point inside the set.

Suppose an IL-2 administration scheme where IL-2
doses are sequentially injected intravenously at time
intervals τi, where i is an increasing sequence of positive
integers. We assume equidistant IL-2 injection times,
i.e., τi+1 − τi = δ. For t 6= τi, variables T (t), R(t) and
I(t) follow equation (1). At the moment of IL-2 injection
(τi), we assume a sudden change in the amount of IL-2,
i.e.

∆I(τi) = I(τ+i )− I(τi) =

∫ τi+ε

τi−ε
dIL−2δ(t)dt = dIL−2,

(3)
where τ+i denotes the time instance after τi, δ(t) is Dirac
delta function, ε → 0, and dIL−2 is the dose of IL-2
injection. Considering the mathematical description
of T cell responses under IL-2 therapy Figure 1, the
problem of finding adaptive doses is formulated as the
calculation of dIL−2.

By employing iZMPC, the optimal IL-2 doses are ob-
tained by repeatedly solving a constrained optimization
problem at each injection time using the current mea-
surement of the system dynamics T , R and I. During
the treatment, the amount of T , R and I should be
kept in the allowed physiological ranges (X ). To have
a successful treatment, system dynamics should remain
in the therapeutic target window (X Tar). In addition,
the injected dose should be confined to a range U pre-
defined by the safety or toxicology limitations. The
physiological and therapeutic ranges as well as the safety
considerations are implemented in the iZMPC and the
optimal dose is calculated if the optimization problem is
feasible. Infeasible cases can be solved by enlarging the
constraining ranges or reducing the drug administration
time interval. For more details about the iZMPC algo-
rithm and the inclusion of design constraints, see the
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Supplemental Information (SI).

Results

Dynamics of T cell responses under chronic Ag-
stimulation

To evaluate the effect of IL-2 therapy on the dynamics
of activated Tregs and Tconvs (the term ”activated”
is omitted hereinafter), a scenario without therapy is
considered at which the T cell response model (1) is
stimulated with a sufficiently high chronic Ag-stimulation
(a high constant value for β) such that a substantial
proliferative Tconv response is initiated. It is assumed
that the model starts from a healthy initial condition,
i.e. all cells are in non-activated state. This scenario
could represent the immune challenge in transplantation
where the Ag-stimulation starts and stays chronic after
the surgery.

In the absence of IL-2 therapy, the interplay of Tregs
and Tconvs results in an oscillatory response (limit cy-
cles) in all variables (see Figure 2). The initial (acute)
response of Tconvs consists of an initial rise that resulted
from the activation of näıve Tconvs by Ag-stimulation as
well as the proliferation associated with the secreted IL-2.
Tregs that are activated with the same Ag-stimulation
cannot efficiently proliferate and suppress Tconvs until
the concentration of IL-2 secreted by Tconvs rises. When
Tregs proliferate, the number of Tconvs declines due to
the direct suppression as well as IL-2 consumption by
Tregs. The delay between the peaks of Tconvs and Tregs
in the model results from the dependence of Tregs on
IL-2 for proliferation and their inability to secrete this
growth factor. The persistent stimulation of T cells with
Ag (constant β) is responsible for re-initiation of another
Tconv responses after having been suppressed by Tregs.
This type of oscillatory responses reflects relapse-and-
remission form of autoimmune diseases due to chronic
stimulatory factors.

IL-2 therapy alone cannot avoid acute Tconv re-
sponse, but controls further relapses

A fixed-dose of IL-2 injections was employed at the
time of Ag-stimulation within equidistant intervals. The
time evolution of the system variables were obtained in
the presence and absence of IL-2 injection (Figure 2).
With IL-2 therapy, the initial proliferative response of
Tconvs starts earlier and reaches a higher peak than
without therapy (see Figure 2A). The continuation
of IL-2 injections keeps the number of Tregs high and
prevents re-initiation of Tconv responses.

The undesired consequence of IL-2 therapy in our sim-
ulation scenario is the stronger and earlier acute Tconv

response. This effect resulted from the augmentation of
external IL-2, raising the total systemic IL-2 concentra-
tion to a higher value than without the therapy. However,
once the number of Tregs increased to a sufficient level,
IL-2 injections can maintain a Treg population sufficient
to suppress Tconvs. The suppression relies on the contin-
uation of IL-2 injections for as long as the Ag-stimulation
persists.

Restricting acute Tconv responses with adoptive
Treg transfer

According to the T cell response model, the IL-2 ther-
apy may control re-initiation of the Tconv response after
transiently boosting the first Tconv response. This ini-
tial boosting is due to the absence of sufficient Tregs in
the early time points needed to suppress Tconvs and
compete for IL-2. Therefore, in the context of transplan-
tation where suppression of the acute Tconv response
is a necessity for graft accommodation, IL-2 therapy
alone may not be a safe immune suppressive strategy.
One solution to restrict the rise of the Tconv popula-
tion in the early episodes of IL-2 injection is to raise
the initial number of activated Tregs, by adoptive Treg
transfer. This combined strategy is implemented in the
numerical simulation by assuming a nonzero initial value
for Tregs (i.e. R(t = 0) = R0 > 0). Simulations with
different level of transferred Tregs were performed to
observe the quantitative impact of the therapy on the
peak of Tconv responses. A higher amount of adoptively
transferred Tregs resulted in a larger reduction of the
Tconv peak (Figure 3A) and, consequently, a reduced
peak of the systemic IL-2 concentration due to less IL-2
secretion (Figure 3B). After the IL-2 and Tconv peak,
all variables converged to a similar range as determined
by the IL-2 dose alone. The simulations differ only in
the initial Treg value and, therefore, only a transient
impact is induced. The speed of convergence decreases
with more adoptively transferred Tregs, which is due to
less secreted IL-2 by Tconvs and, thus, lower systemic
IL-2 concentrations.

These results suggest that the combined strategy of
IL-2 therapy with an one-time adoptive transfer of Tregs
is able to restrict the undesirable effect on Tconv prolif-
eration and the systemic increase of IL-2.

Fixed versus adaptive IL-2 dosing

So far, IL-2 doses were fixed irrespective of the state
of the immune response. In other words, no information
of the state of the system was used and, therefore, the
knowledge about the interplay between variables of the
system is fully neglected. We addressed the possibility of
adapting IL-2 doses automatically, taking into account
the state of the T cell response at the time of each
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Figure 2: Immune response with and without IL-2 therapy.
The T cell response model equation (1) was numerically
solved in the presence (red) and absence (black) of IL-2
injections. The values of (A) Tconvs, (B) Tregs and (C) IL-2
concentration were normalized to their maximum value in
the absence of IL-2 injections. For IL-2 therapy, constant
doses of 0.5 (arbitrary unit) are administered every unit of
time (δ = 1). The initial conditions are set to zero.

IL-2 injection as well as pre-defined constraints on the
immune variables.

We casted the problem of adaptive IL-2 dosing in
the framework of feedback control systems in order to
profit from advanced tools in the control engineering
discipline. First, at each IL-2 injection, measurements
of immune variables (T , R and I) are needed. These
measurements are used as an input to the control unit
for calculation of the best IL-2 dose with the iZMPC
algorithm, as described in the SI. Figure 1 shows the
scheme of the closed loop feedback system between the
immune variables and the control unit.

The calculated IL-2 dose is applied to the system at
t = τi (via equation (3)). At the next IL-2 injection
(i.e. t = τi+1) the same calculation is repeated. This
procedure continues until the variables of the system are
steered in the desired ranges (pre-defined constraints).
Thus, the IL-2 doses are optimal, in the sense that the
control unit proposes the minimum IL-2 dose sufficient
to force and keep the variables of the system within
the target ranges. The variable IL-2 doses reflect the
adaptation of IL-2 doses to the behavior of the system
and takes advantage of our knowledge about the immune

Figure 3: IL-2 therapy combined with adoptive Treg trans-
fer. Equation (1) was solved for the cases of IL-2 therapy
alone (black) and in combination with different levels of
adoptive Tregs transfer at t = 0 (colors). The values of (A)
Tconvs, (B) Tregs and, (C) IL-2 concentration were normal-
ized to their maximum value for the case of IL-2 therapy
alone. The administration frequency is 1. Low, medium and
high adoptive Tregs correspond to initial values of R of 0.01,
0.04 and 0.5, respectively.

response as captured in equation (1).

In Figure 4, the behavior of the immune variables
with fixed versus adaptive dose IL-2 therapy, each com-
bined with adoptive Treg transfer, are compared. While
adaptive doses reduced the peak response of Tconvs, the
steady state value of Tconvs settled at a higher level and
Tregs at a lower level (Figure 4A-B). The advantage
of the adaptive method becomes evident by noting the
kinetics of systemic IL-2 at the time of the Tconv peak
response as well as the dose of injected IL-2 (Figure
4C-D). The control unit reduced the IL-2 dose when the
contribution of Tconvs to IL-2 secretion is increased, as
well as at later time points when the Treg population is
stabilized. This is also reflected in the lower amplitude
of IL-2 oscillations.

These results suggest that the proposed strategy of IL-
2 dosing is able to limit systemic IL-2 levels by adaptively
reducing the dose when external IL-2 is not needed.
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Figure 4: Adaptive IL-2 dosing strategy. The kinetics of (A) Tconvs, (B) Tregs, (C) IL-2, and (D) IL-2 dose is shown for fixed
(black) and adaptive dose IL-2 therapy (red), each applied at every time unit (δ = 1) and combined with adoptive Treg transfer
(R(t = 0) = 0.5). The physiological range was X = {(0, 0, 0) < (T,R, I) < (40, 30, 2)} and the therapeutic target window was
X Tar = {(0, 19, 0) < (T,R, I) < (1, 22, 1)}. IL-2 doses were constrained to U = {0 < dIL−2 < 0.7}. For the fixed dose therapy,
the maximum allowed dose (i.e., 0.7) was administered. The calculated adaptive doses successfully enforced variables to the
therapeutic target window (horizontal dashed lines). (E-H) Same, assuming different IL-2 injection frequencies δ of 1, 2, and 5
time units, corresponding to high, medium and low frequency, respectively. The control unit selects the corresponding suitable
doses in each case. The value of Tconv, Tregs and IL-2 is normalized to its maximum value for the uncontrolled case (without
IL-2 therapy, Figure 2, black curves). For low frequencies higher doses are required. Therefore, the maximum allowed IL-2 dose
was increased to 2.5 to make the optimization problem feasible. The IL-2 dose is normalized to the dose in (D) fixed-dose
value, and (H) maximum dose value in low frequency.

IL-2 therapy: frequency versus dose

In addition to dose, the frequency of IL-2 injections
(δ) is a free parameter for designing the therapy. To
evaluate the impact of the IL-2 injection frequency on
the dynamics of T cells, the frequency was altered and
adaptive IL-2 dosing was calculated (see Figure 4E-H).
In order to control the Tconv response with low frequency
IL-2 injections, higher doses of IL-2 are needed. This
results in a higher peak of systemic IL-2 concentration.

Discussion

Feedback control design provides a level of robustness
in achieving objectives and constraints in uncertain and

complex conditions. It has been successfully applied
in engineering applications within multiple aspects of
human daily life. Physiology of the human body it-
self contains many feedback control loops to regulate
processes under uncertain and stochastic environmental
conditions (32). Feedback control concepts are less com-
mon in medicine and therapeutic design. Therapeutic
interventions based on feedback allow for adaptation
to the unforeseen and unavoidable disturbing factors
that are imposed to an individual. Using measurements
prior to each therapeutic intervention and evaluating a
mathematical model-based prediction of system state-
trajectory allows for informed adjustments of the therapy.
This approach would lead to a more robust therapeutic
outcome than a protocol-based treatments which are
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typically based on one-fits-all approach. In this study, a
novel feedback control scheme inspired from the control
engineering field was assessed in silico for IL-2 therapy
with the aim to regulate T cell responses. The control
scheme was applied to a mathematical model of T cell
responses that relies on established principles of Tconv
and Treg activation, proliferation and regulation (21).

In the context of immune tolerance induc-
tion/breakdown, antigen-specific interventions are
typically desired. Such interventions require targeting
a particular subset of Tconv and Treg clones with
high specificity to the antigen. However, IL-2 therapy
is an antigen-nonspecific immune intervention that
influences all specificities of T cells, and also targets
both Tconvs and Tregs. Therefore, violation of tolerable
concentration of IL-2 could cause significant dose-related
morbidity, such as in application to cancer (33).
According to our in silico results, a fixed IL-2 dose
ignoring the contribution of the endogenously secreted
IL-2 would lead to an unwanted increased systemic
IL-2 concentration (Figure 2C). The adaptive IL-2
dosing scheme could limit this side-effect by taking
into account the measured IL-2 concentration prior to
injection episodes, as well as enforcing the system to
a confined range of IL-2 concentration determined by
clinical constraints (Figure 4C).

The presented methodology is general and can be
adapted to different design requirements, such as increas-
ing Tconv number that would be beneficial in cancer
applications. In this study, we targeted tolerance induc-
tion with the objective of increasing and stabilizing Treg
numbers with specificity to an antigen, such as graft-
specific antigen in transplantation. Tconvs and Tregs are
both activated by their TCR recognizing the specific anti-
gen. However, once Tregs are activated, their suppressive
function is antigen-nonspecific and could suppress Tconv
responses against unrelated antigens (34). This bears the
risk of unwanted tolerance induction against pathogenic
agents (35). Therefore, the converging number of Tregs
upon long-term IL-2 treatment and its impact on im-
munity against other antigens is a therapeutic design
concern. In the presented adaptive control scheme, the
therapeutic target window of variables can be imposed
to the control unit reflecting such clinical constraints
(Figure 1). As an example, we showed that by confining
the Treg numbers to a specific range, even a lower number
of Tregs compared to the fixed-dose IL-2 therapy ensures
a similar extent of Tconv suppression during the acute
phase (compare fixed- and adaptive-dose therapies in
Figure 4A-B). Therefore, the proposed control scheme
has the flexibility to enforce such clinical constraints into
the therapy design (IL-2 dosing).

IL-2 therapy as an antigen-nonspecific approach is
often used in conjunction with the antigen-specific ther-

apies of adoptive (Tconvs/Tregs) cell transfer with the
aim to sustain the vitality and efficacy of the transferred
cells (36, 37). The frequency of antigen-specific cells
in patients, in particular of Tregs, is typically low and
ex vivo expansion protocols are required to increase the
cell number. In the context of transplantation, our in
silico results showed that the peak of Tconv response is
inversely related to the number of adoptively transferred
Tregs that was initially provided to the system (Figure
3A), suggesting that increasing the number of adoptively
transferred Tregs specific to the graft-antigens increases
the chance of graft accommodation. However, prolonged
in vitro expansion of endogenous antigen-specific Tregs
is shown to impair their suppressive function (38). Using
chimeric antigen receptors (CARs) to change the speci-
ficity of T cells (39) is a promising method to construct a
sufficient number of antigen-specific cells. Our adaptive
control scheme can incorporate CAR Tregs and then be
employed to optimize the IL-2 therapy with the aim to
regulate and stabilize their number after transfer to the
patient. Note that the adaptive control design is not
directly linked to the amount of adoptively transferred
cells, as it just temporarily change the initial condition of
the system and influences the transient immune response.
However, the designed IL-2 dosing changes accordingly
to enforce the transient T cell response to the predefined
physiological ranges of the system variables (clinical con-
straints). The long-term state of the system is only
dictated by long-term therapies.

Despite attractive benefits of using the presented
methodology, its application for an individual patient
is challenged by different sources of uncertainty that
requires further investigation. The performance of the
control design in action relies on the accuracy of the
mathematical representation of the system. The mathe-
matical model that we used here contains a low degree
of freedom, which simplifies parameter inference from
experimental and clinical data. In principle, there is
a trade-off between model complexity and parameter
identifiability. On the one hand, increasing the model
complexity leads to a better representation of the mul-
tiple interactions existing in real T cell responses and,
thus, increases the control performance. On the other
hand, most experimental and clinical measurements are
limited by the accessibility of the immune variables, as
well as the availability of biomarkers, which may not
directly or uniquely be linked to the considered immune
variables in the model. This limitation leads to uniden-
tifiability and poor individualization of the model pa-
rameters for the patient and, consequently, weakens the
control performance. Another source of uncertainty is
the environmental or internal disturbing factors that are
imposed on the patient during the therapy, such as infec-
tions. Due to the nature of feedback control design, the
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adaptive therapy is calculated according to the current
state of the system, and therefore, the therapy would
be robust to such disturbing factors. However, such an
infection might interfere with the T cell dynamics of the
system, which is not reflected in the current model. The
employed mathematical model represents a monoclonal
T cells response. The impact of the IL-2 therapy on
polyclonal or concurrent T cell responses needs further
investigations.

We provided qualitative in silico results for an adaptive
control scheme in IL-2 therapy, as a proof-of-principle to
motivate further investigations in this direction. There
are more and more promising results from IL-2 therapies
in experimental studies and clinical trials, which calls
for an interdisciplinary approach to bring the presented
methodology to a quantitative level and pave the way for
ultimate incorporation and validation in translational
studies and clinical trials.
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Supplemental Information (SI)

Algorithm of adaptive IL-2 dose calculation

In the following, the steps toward calculation of adaptive doses of IL-2 using iZMPC are explained.
Consider the nonlinear system

dx(t)

dt
= f (x(t)) , (S1)

where x ∈ Rn is the vector of system dynamics (here, x = [T,R, I]). Suppose u ∈ R is the drug dose (here, dIL−2)
which affects the system at the discrete time intervals τi, i = 1, 2, by sudden changes in the state variables

∆x(τi) = x(τ+i )− x(τi) = Bu, (S2)

where τ+i denotes the time instant after τi. B ∈ Rn models the impact of u on the states, and the amplitude of the
sudden pulses at τi is equal to Bu. We assume equidistant pulses, i.e., τi+1 − τi = δ, i = 1, 2, .... Thus the full system
is modeled in the template of nonlinear impulsive systems (22) as an augmentation of equations (S1) and (S2).

Depending on the considered biological framework, different constraints may arise; e.g., drug doses are constrained
within the physiologically approved limits and also states should be kept within their functional regions. With

U = {u : u 6 u 6 ū},
X = {x : x 6 x 6 x̄},

and an arbitrary target set X Tar ⊂ X (therapeutic target window), the aim is to compute u ∈ U to force x moving
from its initial value x(0) to a point in X Tar. Calculation of u is based on the iZMPC (23). In what follows, we
delineate the preliminary steps toward using iZMPC. A detailed description, the mathematical basis of the steps and
some other biological application of iZMPC can be found in (19, 20, 24, 25).

Step 1: finding equilibrium points (xs, ueq)
Augmented system of (S1) and (S2) can be reformulated as ẋ = f(x) + Buδd(t− τi) where δd(t− τi) is the Dirac
delta function

δd(t− τi) =

{
+∞, t = τi
0, t 6= τi

Assume continuous delivery of the drug and calculate u = ueq ∈ U and xs satisfying the steady state condition
f(xs) +Bueq = 0.

Step 2: finding equilibrium levels (xs, us)
Find u = us such that the impulsive system (augmented equations (S1) and (S2)) with ∆x = Bus and impulse
frequency δ reaches almost the same equilibrium level as xs. Note that, different δ result in different us.

Step 3: linearization

Calculate A = ∂f(x)
∂x at x = xs.

Step 4: shift constraints

Calculate shifted sets Uo = U − us, Xo = X − xs and X Taro = X Tar − xs.

Step 5: feasible generalized control equilibrium zone (set)
Compute two new sets X ◦s and X •s such that

X ◦s , {x ∈ Xo : x = G◦u for some u ∈ Uo},
X •s , {x ∈ Xo : x = G•u for some u ∈ Uo},

where
G◦ = (In −Ae)−1B◦, Ae = eδA, B◦ = B,

G• = (In −Ae)−1B•, B• = eδAB,

and In is the identity matrix of dimension n. X ◦s and X •s implicitly generate the input equilibrium set

Us , {u ∈ Uo : (G◦u,G•u) ∈ (X ◦s ,X •s )}.
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Step 6: generalized equilibrium zone (set)

Compute X ◦s
Tar , X ◦s ∩ X Taro and X •s

Tar , X •s ∩ X Taro . Correspondingly, we can obtain UTars , {u ∈ Uo :
(G◦u,G•u) ∈ (X ◦s

Tar,X •s
Tar)}. If X ◦s

Tar or X •s is empty, the control problem is not properly formulated and X Tar
must be increased or δ should be decreased. There is a free set computation toolbox ”mpt3” in MATLAB which can
be downloaded at http://people.ee.ethz.ch/mpt/3/.

Step 7: MPC input
At each t = τi, we use the current state of the system of augmented equations (S1) and (S2) x and provide x− xs as
input to the iZMPC algorithm (see Step 8) which determines u.

Step 8: iZMPC problem
MPC is a finite time-horizon optimization problem which receives the current state of the system and returns
U = {u(0),u(1), ...,u(N − 1)} (with N the control horizon). It predicts the next N states of the system using the
sampled current state and calculates the next N control actions (here, IL-2 doses). Only the first calculated input, i.e.
u(0) is applied to the system and this process is repeated at every sampling time.

iZMPC is an MPC which at each impulse τi, i = 1, 2, ... (i.e., the sampling times) takes x(τi) and calculates U
for the impulsive system. Note that, iZMPC is mainly developed for linear impulsive systems. Using the method of
linearization around equilibrium levels makes it possible to apply iZMPC to linearized impulsive systems which are
originally nonlinear. In the case that errors due to linearization are not acceptable, one may have to stretch out for
nonlinear impulsive MPC (20).

The optimization problem to be solved at each τi by iZMPC is given by

min
U,xa,ua

VN

(
x− xs,Xo,Uo,X •s

Tar,U•s
Tar; U, xa, ua

)
subject to

x•(0) = x− xs,
x•(j + 1) = Aex

•(j) +B•u(j), j = 1, 2, ..., N − 1

x•(j) ∈ Xo, u(j) ∈ Uo, j = 1, 2, ..., N − 1

x•(N) = xa,

xa = Aexa +B•ua, or ((xa, ua) ∈ (X •s ,Us)) ,

(S3)

where
VN

(
x− xs,Xo,Uo,X •s

Tar,U•s
Tar; U, xa, ua

)
=
N−1∑
j=0

(x•(j)− xa)
T Q (x•(j)− xa) + (u(j)− ua)

T R (u(j)− ua)

+P
(

distTarX•
s

(xa) + distUTar
s

(ua)
)
,

and Q, R and P are positive definite matrices and positive numbers respectively. The transit behavior of the system
under iZMPC can be tuned using these weighting matrices and parameters. In addition, distY(x) = miny∈Y‖x− y‖.

Note that, x − xs,Xo,Uo,X •s
Tar,U•s

Tar are given parameters in the optimization problem, whereas U =
{u(0),u(1), ...,u(N − 1)}, xa and ua are the optimization variables. When the iZMPC problem (S3) is solved,
the optimal drug dose u in the system of augmented equations (S1) and (S2) (or dIL−2 in (3)) is obtained by
u = u(0) + us.
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