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Abstract 
The Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome (OMIM 277000) is characterized by 
agenesis of the uterus and upper part of the vagina in females with normal ovarian function. 
While genetic causes have been identified for a small subset of patients and epigenetic 
mechanisms presumably contribute to the pathogenic unfolding, too, the etiology of the 
syndrome has remained largely enigmatic. A comprehensive understanding of gene activity in the 
context of the disease is crucial to identify etiological components and their potential interplay. 
So far, this understanding is lacking, primarily due to the scarcity of samples and suitable tissue. 

In order to close this gap, we profiled endometrial tissue of uterus rudiments in a large cohort of 
MRKH patients using RNA-seq and thereby provide a genome-wide view on the altered 
transcription landscape of the MRKH syndrome. Differential and co-expression analyses of the 
data identified cellular processes and candidate genes that converge on a core network of 
interconnected regulators that emerge as pivotal for the perturbed expression space. With these 
results and browsable access to the rich data through an online tool we seek to accelerate 
research to unravel the underlying biology of this syndrome.  
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Introduction 
Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome [OMIM 277000] is the second most 
common cause of primary amenorrhea with an incidence rate of about one in 4000 to 5000 
female births (1). It is defined by agenesis of the uterus and the upper part of the vagina in 
46, XX females with normal ovarian function and normal secondary sexual characteristics. The 
syndrome may occur either in an isolated form (type 1) or in association with extragenital 
abnormalities (type 2) such as renal or skeletal malformations (2, 3). 

The spectrum of malformation encountered in MRKH patients suggests the disease to originate 
from a developmental defect of the intermediate mesoderm during embryogenesis, yet the 
etiology of the syndrome remains largely enigmatic. While most cases are sporadic, familial cases 
exist and imply a genetic component in the etiology (4-6). Specifically, chromosomal aberrations 
in 1q21.1, 16p11.2, 17q12, and 22q11 as well as mutations in LHX1, TBX6, RBM8A, and 
WNT9B have been linked to MRKH. Additionally, mutations of WNT4 cause an atypical form 
of the syndrome characterized by hyperandrogenism (7). 

LHX1, WNT4, and WNT9B play important roles in the formation of the Müllerian Ducts (MD) 
from the coelomic epithelium in gestational week six (8, 9). The freshly formed MDs start 
growing caudally along the Wolffian Ducts. By week eight, both MDs begin to fuse and make 
contact with the uterovaginal sinus. In males, the MDs start to regress after week ten under the 
influence of AMH and WNT7A. In females, however, they differentiate into ovaries, uterus, 
cervix, and vagina under control of ESR1, HOXA and WNT genes. In this context, HOXA9, 
HOXA10, HOXA11, and HOXA13 are essential for correct tissue patterning. Their expression 
is tightly controlled through Wnt signalling and histone methylation marks (10-12) suggesting 
epigenetic principles to also play a role in the unfolding of the disease. 

Towards a better understanding of the etiology, examining perturbed gene activity on a genome-
wide scale promises to identify regulatory hubs on which genetic or epigenetic contributions 
converge. Attempts to identify the molecular mechanisms of the syndrome have been hampered 
by the lack of a comprehensive transcriptome profile for primary tissue in MRKH patients. This 
obstacle can partly be attributed to the fact that patients do not always have uterus rudiments 
with a complete endometrial layer and to the scarcity of uterine tissue resulting from challenging 
collection and biobanking efforts. 

In order to close this gap, we have assembled a large and unique cohort of MRKH type 1 and 
type 2 patients and profiled the transcriptome in endometrial tissue. The expression landscape 
that emerged along comprehensive differential and co-expression analyses of these data mapped 
known and novel candidate genes and identified regulatory networks that seemingly drive the 
underlying disease biology. By offering an online tool that allows navigating and downloading 
these rich data from single genes to pathways, we seek to provide a much-needed building block 
for the research community to understand the molecular pathomechanisms of MRKH. 
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Results 
Widespread transcriptome changes in endometrial tissue of MRKH patients 
To investigate disease-associated perturbations to the endometrial transcriptome of MRKH 
patients, we performed RNA-seq of uterine rudiments obtained from 39 patients (22 type 1 and 
17 type 2) as well as 30 controls. Throughout the analysis pipeline, stringent quality filters were 
applied, which also helped to identify a few outlier samples using clustering techniques 
(Supplementary Fig. 1A, B). 

 
Figure 1: MRKH patients exhibit wide-spread gene expression changes in endometrial tissue compared to 
unaffected controls. (A) Schematic diagram of three experimental groups (Ctrl, unaffected women; Type 1, patients 
with MRKH type 1; and Type 2, patients with MRKH type 2) indicating number of differentially expressed genes 
(DEGs) for each pairwise comparison. Fold change and significance cut-offs below. (B) Venn diagram comparing 
common and distinct DEGs between MRKH type 1 and 2. (C) Volcano plot showing magnitude and significance 
values of gene expression changes identified in endometrial tissue of MRKH type 1 (left panel) and MRKH type 2 
patients (right panel) compared to unaffected controls. Blue and red dots highlight DEGs according to the applied 
cut-offs (see a). The five most significant DEGs from each comparison are labeled. Grey gene labels indicate 
location of DEGs from the opposite comparison. (D) Expression levels for the most significant up- and 
downregulated DEGs as well as the lincRNA HOXA-A2 plotted as individual data points with mean ± SEM. 

As no obvious sequencing parameters differed for these samples and no batch effects were 
apparent, tissue composition differences resulting from the sample collection process were 
considered. After integration of the data with single-cell data from endometrial tissue that 
recently became available (13), the expression signature of cell type-specific markers, in particular 
for ciliated and unciliated epithelial cells, indeed distinguish the outlier samples from all other 
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samples (Supplementary Fig. 1C) and points to a different underlying cell type composition. Since 
it is difficult to assess the combinatorial complexity and effects of these convolutions 
computationally, the affected samples were removed from all subsequent analyses, which left a 
total of 60 high-quality samples with consistent expression signatures (Supplementary Fig. 2). 

In a first step, differential expression changes were determined between MRKH patients and 
control samples. According to thresholds of pBH ≤ 0.05 and |log2FC|≥ 0.5, a total of 1906 
differentially expressed genes (DEGs) comprising 1236 up- and 670 downregulated genes in 
MRKH type 1 and 1174 DEGs with 801 up- and 373 downregulated genes in MRKH type 2 
were identified when compared to controls (Fig. 1A). These numbers of affected genes in each 
disease type indicate profound transcriptome changes in the endometrium of MRKH patients. 

Largely similar endometrial expression profiles in MRKH type 1 and 2 patients 
Next, the DEG sets of each pairwise contrast were compared in order to better understand 
common and distinct expression changes for the disease subtypes. While overlapping the DEGs 
by name, about half of them first seemed exclusive for type 1 or type 2, respectively (Fig. 1B). 
Directly contrasting the subtypes in the differential analysis, however, identified only 15 DEGs 
(Fig. 1A, Supplementary Fig. 3), which suggested largely comparable perturbations in gene 
activity in type 1 and type 2. 

 
Figure 2: MRKH type 1 and 2 patients show largely similar perturbation patterns in endometrial gene 
expression. Expression profiles (log2 expression change relative to Ctrl group) of 2121 DEGs (union of DEGs 
indicated in Fig. 1B) across all samples. Rows hierarchically clustered by Euclidian distance and ward.D2 method. 
Cycle information (proliferative or secretory) and patient type (sporadic, familial, or control) on top. For details see 
Supplementary Table 1. 
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Despite similar magnitudes of expression changes in both disease types, affected genes in type 2 
samples separated less significantly from controls (Fig. 1C), pointing to a larger variability among 
type 2 samples and coinciding with the greater heterogeneity of clinical features in this disease 
type. Yet, the localization of the top most significant DEGs in the volcano plot (Fig. 1C) as well 
as the correlation of expression changes (spearman rank, r = 0.87) point at stark similarities 
between both types. Indeed, the most significant DEGs showed nearly identical expression 
changes on a gene and transcript isoform level in both disease types (Fig. 1D, Supplementary Fig. 
4). This high degree of concordance also becomes apparent from the per-sample expression 
profiles for the union of all DEGs (Fig. 2). Further, the expression changes were comparable 
between sporadic cases and patients from families with more than one affected sibling (Fig. 2). 
Hence, all subsequent analyses were based on the genes underlying this perturbance signature. 

 
Figure 3: Changes of gene expression in both types of MRKH point to regulators of cell adhesion and 
development. (A) Enrichment analysis identified several significantly overrepresented Gene Ontology terms among 
the 2121 DEGs (union indicated in Fig. 1B). Top five terms with number of associated genes are shown according 
to their significance. CC: cellular compartment, BP: biological process. (B) Comparison of predicted upstream 
regulators for the DEGs underlying the cell adhesion term (see A) as well as all 2121 DEGs (union from Fig. 1B) 
based on Ingenuity Pathway Analysis. Top three significant regulators for each gene set shown. (C) Expression 
changes for TGFB1 plotted as individual data points with mean ± SEM. (D) Transcript isoform-specific expression 
changes of TGFB1 across all conditions. Mean normalized read counts plotted; bold isoforms are protein-coding.  
(E) Among the 253 predicted interactors of TGFB1 differentially expressed in both types of MRKH, transcriptional 
regulators represent a largest subgroup. Interactors identified based on Ingenuity Pathway Analysis. 
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Endometrial gene expression changes during the menstrual cycle are disrupted in 
MRKH patients 
Upon closer inspection of the perturbation signature, the heatmap also shows patterning between 
the proliferative and secretory cycle stage in control samples for a subgroup of genes (upper part 
of Fig. 2). In MRKH patients, however, this menstrual cycle dependency seems to be largely lost. 
To better quantify this observation, we determined differential expression between the 
proliferative and secretory phase in control samples, which yielded 818 DEGs (Supplementary 
Fig. 5A). Their associated gene ontology (GO) terms were enriched most significantly for collagen-
containing extracellular matrix (Supplementary Fig. 5B), agreeing with remodeling processes of the 
extracellular matrix along the transitions between cycle stages (14). In contrast, only 116 genes 
were identified as cycle-dependent in MRKH type 1 (Supplementary Fig. 5A), indicating that 
cyclic expression adaptations were damped or lost entirely in these patients despite normal 
hormone profiles (Supplementary Table 1). Instead, the expression of cycle-dependent genes 
seemingly remained in the proliferative phase throughout the menstrual cycle (Supplementary 
Fig. 5C). The analogous analysis for type 2 was omitted due to the highly skewed sample 
distribution with respect to cycle stages. Together, these analyses are in line with previous reports 
that the endometrium of MRKH patients does not respond correctly to cycle hormones (15-18). 

Transcriptome changes point to regulators of cell adhesion and development 
To unravel the underlying biology of the endometrial MRKH signature, enrichment analyses 
were applied to identify potential key regulators as well as affected pathways and cellular 
processes. With respect to GO terms, plasma membrane part was the most overrepresented cellular 
comportment, and cell adhesion and biological adhesion emerged as most significant biological 
processes followed by anatomical structure development (Fig. 3A). 

Based on binding-site analyses, motifs of the differentially expressed transcription factors EGR1 
and KLF9 were most significantly overrepresented among the DEGs (Supplementary Fig. 6 A, 
B). In addition, approaches that integrate ChIP-seq data into such analyses and thereby account 
also for indirect binding events and factors with less clear motifs (19), suggested the DEGs to be 
highly enriched for EZH2 targets (Supplementary Fig. 6C, D). EZH2 (Enhancer of zeste 
homolog 2), a histone methyltransferase and a catalytic component of PRC2, showed a trend 
towards up-regulation in MRKH patients (Supplementary Fig. 6E). 

To extend the transcription factor-centered analyses to other regulatory mechanisms underlying 
the observed gene expression changes, we used curated interactome data and mined for 
regulatory enrichments. From these analyses, TGFB1 was predicted to be the top upstream 
regulator for the entire DEG set as well as for the subset of DEGs underlying cell adhesion as the 
most likely affected biological process (Fig. 3B). TGFB1 showed a down-regulation that resulted 
predominantly from the longer protein-coding transcript isoform (Fig. 3 C, D). Intriguingly, 
TGFB1 is known to interact not only with EGR1, KLF9, and EZH2, but also connects to more 
than ten percent of all DEGs (253 of 2121), many with regulatory capacity, too (Fig. 3E). These 
results hint at the regulatory neighborhood of TGFB1 as a key modulator of gene expression 
changes in MRKH. 

Co-expression analysis ranked disease relevance of TGFB1 interactors 
To further assess the regulatory relevance of the TGFB1 neighborhood identified along the 
differential expression analysis, in the next step, a co-expression approach was employed in order 
to capture groups of genes that change and often function together (20). 

Partitioning of the perturbed endometrial expression space using weighted correlation network 
analysis (21) led to 35 co-expression modules that ranged from 39 to 3,268 genes in size and 
totaled to 15,361 genes (Supplementary Fig. 7A). In this manner, the co-expression analysis 
reduced thousands of genes to a relatively small number of coherent modules that represent 
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distinct transcriptional responses. To quantify the overall relationship between modules and the 
disease, correlations with module eigengenes (summary expression profiles) were calculated (21). 
After filtering and correcting with pBH ≤ 0.05 and Bayes factor ≥ 3, twenty modules (six up- and 
14 downregulated) passed the significance cut-off (Fig. 4A and Supplementary Fig. 7B). 
Furthermore, the meta-analysis significance statistics ranked the modules by their overall 
association with the disease (Fig. 4A) and yielded a measure of module membership for all genes 
in all modules. The module membership measures how similar the gene expression profile is to a 
module’s eigengene. Genes whose profiles are highly similar to the eigengene are considered hub 
genes and have been shown to implicate relevant biological functions (21). 

According to these characteristics, TGFB1 located to the disease-associated module M13, 
correlated significantly with the disease (r = 0.68, p ≈ 10-9), and was among the top 50 hub genes 
of this module. Of the 253 TGFB1 interactors, 214 reached into all 20 significant disease-
associated modules (Fig. 4B). Genes annotated for transcriptional regulator constituted the largest 
subgroup of interactors, accompanied by all interacting cytokines found in high-ranking modules 
(Fig. 4B, C). Among them were WNT4 and WNT5A of the WNT signaling pathway as well as 
HOXA2 and HOXB5 as members of the HOX clusters (Fig. 4C, Supplementary Fig. 8), all of 
which have been associated with MRKH (7). In addition, TWIST2 identified as one of the genes 
with the most significant expression change (Fig. 1D) ranked highest among the interacting 
transcription regulators. 

 
Figure 4: Interactors of TGFB1 reach in all disease-associated co-expression modules. (A) Weighted gene 
correlation network analysis (WGCNA) identified 35 co-expression modules of which 20 were significantly 
associated with the disease. (B) Bar diagram depicting the number of TGFB1 interactors in disease-associated 
modules. Absolut number within bar as well as amount in percent shown on y-axis for each functional type. (C) 
Cytokines and transcriptional regulators predicted to interact with TGFB1 are in highly disease-associated co-
expression modules. Module of interactors indicated for significant modules only. 
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Transcriptome changes in MRKH converge on regulatory loops in the TGFB1 
neighborhood 
The combined approach of differential and co-expression analyses highlighted candidate genes 
that can explain large parts of the altered expression landscape in context of the MRKH 
syndrome. These novel candidates together with previously associated genes like FOXO1 (22) 
and pathways like WNT signaling (7) share direct links into the TGFB1 regulatory neighborhood 
(23) and reach into disease-associated co-expression modules. 

 
Figure 5: Regulatory loops around TGFB1 link important transcription factors and cytokines. Network of 
EZH2 as well as upstream interactors of TGFB1 among the 2121 DEGs, respectively. Interactions based on 
Ingenuity Pathway Analysis and filtered for transcription regulators and cytokines. All interconnections between 
genes shown. Genes color-coded by mean expression change observed in MRKH / Ctrl. Line width indicates 
number of curated interactions. 

Intriguingly, many interactors are not only targets of TGFB1, but often also upstream regulators, 
hence, forming regulatory loops (Fig. 5). Along such loops, the predicted transcriptional 
regulators EGR1, KLF9, and EZH2 are found, too. These loops are connected to a dense core 
network that emerges as pivotal in explaining the disease signature and comprises some of the 
most significantly altered genes with potent regulator capacity like TWIST2. 

To further disentangle the regulatory relations in the core network towards a potential point of 
origin, information from other regulatory layers or functional experiments is required. With 
respect to the former, epigenomic interrogations might yield additional insight given the 
prominent location of EZH2 and its role in development. With respect to the latter, the network 
might serve as starting point to select candidate genes for functional characterizations. To 
facilitate the selection process and put choices into perspective with respect to other gene 
expression changes, we offer an online tool that allows downloading, visualizing, and navigating 
through the endometrial transcription landscape from single genes to entire pathways that can be 
accessed here: http://mrkh-data.informatik.uni-tuebingen.de.  
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Discussion 
In this study, we assembled a large cohort of patients with type 1 and type 2 MRKH syndrome 
and profiled the endometrial transcriptome. The key goal of these efforts was to gain a genome-
wide understanding of expression changes in order to identify dysregulations and potential 
origins of the disease, as only a fraction of MRKH cases can be traced to genetic defects. 

Our analyses first revealed widespread perturbations of gene activity in the endometrium that 
were highly similar between type 1 and type 2 patients. The genes underlying this shared 
perturbance signature point to key regulators that are centrally linked to cell adhesion and 
developmental processes. The observed expression similarity between type 1 and type 2 cases 
agrees with previous microarray interrogations of myometrial tissue (24, 25). 

Despite highly similar expression perturbations, phenotypically MRKH type 1 and type 2 patients 
differ. Type 1 cases are characterized by utero-vaginal malformation only, while type 2 patients 
display a more complex phenotype that entails non-genital abnormalities. Specifically, the 
urogenital tract including the kidneys is frequently affected in type 2 (e.g. unilateral kidney 
agenesis, ectopia of one or both kidneys, and horseshoe kidneys). Furthermore, skeletal 
anomalies, hearing defects, cardiac, and digital anomalies as well as ciliopathies occur in type 2 
cases (3). The utero-vaginal malformations, however, are highly similar between both disease 
types. Uterus rudiments exist in both, although to a lesser extent in type 2. 

As the innermost lining layer of the uterus, the endometrium consists of multiple cell types in a 
basal and functional tissue layer. As the latter thickens and is shed during menstruation, the 
endometrium undergoes substantial modifications during the proliferative, secretory, and 
menstrual phase. The correct staging of these phases is governed by cyclic gene activity over the 
course of the menstrual cycle (14). In line, we observed expression changes between the 
proliferative and secretory phase in control samples. Intriguingly, these were largely lost in 
MRKH patients. Instead, the expression of most genes remained in the proliferative phase 
although the hormonal profiles indicate patients were in the secretory phase. This finding agrees 
with previous studies that describe lacking responsiveness of the endometrium to hormones in 
MRKH patients (15-18). The transcriptome data we provide now offer the opportunity to trace 
the phenomenon to individual genes and pathways and examine co-occurring effects. 

Developmentally, the uterus as well as the upper two thirds of the vagina originate from fusion of 
the Muellerian ducts. In context of the MRKH syndrome, this fusion seems inhibited in 
gestational week eight and only two uterine rudiments and a vaginal dimple are formed (18). They 
remain in this incomplete embryonic stage and do not undergo normal enlargement at the 
beginning of adolescence. As the malformation manifests early during embryonic development, 
associated pathways have been proposed to be key for MRKH syndrome. In keeping, we 
identified significant enrichments for cell adhesion and anatomical structure development among 
perturbed genes. In addition, developmental regulators like TGFB1 and EZH2 emerged as 
central from the analyses. 

TGFB1 was significantly downregulated in MRKH patients and belongs to the superfamily of 
transforming growth factor β (TGFβ), which is centrally involved in cell growth and 
differentiation as well as in regulation of female reproduction and development (26). While the 
uterus of Tgfb1 mutant mice are morphologically normal, embryos become arrested in the morula 
stage (27), suggesting critical roles of this gene. Furthermore, TGFβ signaling is crucial for the 
epithelial to mesenchymal transition (EMT), in which cells lose their epithelial characteristics and 
acquire migratory behavior (28). EMT is necessary for the development and normal functioning 
of female reproductive organs such as the ovaries and the uterus and dysregulation may cause 
endometriosis, adenomyosis, and carcinogenesis (29). 

TGFB1 is linked to Enhancer of zeste homolog 2 (EZH2) (30-32), the most overrepresented 
transcriptional regulator predicted to bind to the DEGs according to motif analysis and ChIP-seq 
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reference data. EZH2 is the rate-limiting catalytic subunit of the polycomb repressive complex 2 
that silences gene activity epigenetically through deposition of the repressive H3K27me3 histone 
mark (33). 

In MRKH patients, EZH2 showed a small but significant trend of upregulation, potentially 
remains of elevated activity earlier in life. If true, altered levels of EZH2 might have led to falsely 
deposited H3K27me3 marks in the genome during development which caused perturbations in 
gene activity and interfered with correct unfolding of the developmental program. The observed 
transcriptional perturbances at the time of profiling might hence be direct consequences or 
indirect adaptation attempts of the system. 

In mice, uterine EZH2 expression is developmentally and hormonally regulated, and its loss leads 
to aberrant uterine epithelial proliferation, uterine hypertrophy, and cystic endometrial 
hyperplasia (34). Furthermore, reduction of EZH2 and ultimately H3K27me3 levels result in 
increased expression of estrogen-responsive genes (35). 

In this context, exposure to environmental estrogens has also been proposed to reprogram the 
epigenome by inducing non-genomic ER signaling via the phosphotidylinositol-3-kinase (PI3K) 
pathway (36). The kinase AKT/PKB phosphorylates and inactivates EZH2 and thereby 
decreases H3K27me3 levels in the developing uterus. Consequently, estrogen-responsive genes 
become hypersensitive to estrogen in adulthood and cause hormone-dependent tumors to 
develop. Our results suggest the opposite effect might play a role in MRKH and failure of 
enlargement in organ size is a consequence of elevated EZH2 levels. 

Taken together and given that only a fraction of MRKH syndrome cases can be explained by 
genetic defects, these hints towards epigenetic dysregulation playing a potential role in the 
etiology should be further investigated. Towards these efforts, we consider our results and data to 
serve as reference point and resource for further exploration. 
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Methods 
Patient cohort 
Endometrial samples were prospectively collected at the Department of Obstetrics and 
Gynaecology of the University of Tübingen from rudimentary uterine tissue from patients with 
MRKH syndrome and uterine tissue from healthy controls. Tissue was taken from 39 patients 
with MRKH syndrome (22 MRKH type 1 and 17 MRKH type 2, see Supplementary Table 1 and 
2) at the time of laparoscopically assisted creation of a neovagina (37). As control group, 
30 premenopausal patients, less than 38 years of age, who underwent hysterectomy for benign 
disease, were included in the study (Supplementary Table 1 and 2). Samples were examined 
histologically and found to predominantly contain endometrial tissue without excluding 
myometrial residuals. Correlation with the individual cycle phase was achieved by taking 
standardized histories and by using hormone profiles from peripheral blood taken 1 day before 
surgery (see below). The study received prior approval by the Ethics Committee of the Eberhard-
Karls-University of Tübingen (Ethical approval AZ 397/2006, Nr.28/2008BO1, 205/2014BO1). 

Hormone levels and correlation with cycle phase 
Whole blood was taken from patients and controls one day before or after surgery. Blood serum 
was used to measure LH, FSH, P, and E2 with a chemiluminescence immunoassay (Vitros eci; 
Diagnostic Product Cooperation). Cycle phase 1 (proliferative phase) was assigned when P 
was < 2.5 ng/ml, cycle phase 2 (secretory phase) when P was > 5 ng/ml and the LH:FSH ratio 
was > 1.5 according to the standard of our central laboratory. 

RNA isolation and sequencing 
Total RNA from endometrium of rudimentary uterine tissue or normal uterus was isolated using 
the RNeasy Mini Kit (Qiagen) and used for paired-end RNA-seq. Quality was assessed with an 
Agilent 2100 Bioanalyzer. Samples with high RNA integrity number (RIN > 7) were selected for 
library construction. Using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina 
and 100 ng of total RNA for each sequencing library, poly(A) selected paired-end sequencing 
libraries (101 bp read length) were generated according to the manufacturer's instructions. All 
libraries were sequenced on an Illumina NovaSeq 6000 platform at a depth of around 40 mio 
reads each. Library preparation and sequencing procedures were performed by the same 
individual, and a design aimed to minimize technical batch effects was chosen. 

Quality control, alignment, and differential expression analysis 
Read quality of RNA-seq data in fastq files was assessed using FastQC (v0.11.4) (38) to identify 
sequencing cycles with low average quality, adaptor contamination, or repetitive sequences from 
PCR amplification. Reads were aligned using STAR (v2.7.0a) (39) allowing gapped alignments to 
account for splicing against the Ensembl H. sapiens genome v95. Alignment quality was analyzed 
using samtools (v1.1) (40). Normalized read counts for all genes were obtained using DESeq2 
(v1.26.0) (41). Transcripts covered with less than 50 reads (median of all samples) were excluded 
from the analysis leaving 15,131 genes for determining differential expression. Surrogate variable 
analysis (sva, v3.34.0) was used to minimize unwanted variation between samples (42). We set 
|log2 fold-change| ≥ 0.5 and BH-adjusted p-value ≤ 0.05 to call differentially expressed genes. 
Gene-level abundances were derived from DESeq2 as normalized read counts and used for 
calculating the log2-transformed expression changes underlying the expression heatmaps for 
which ratios were computed against mean expression in control samples. The sizeFactor-
normalized counts provided by DESeq2 also went into calculating nRPKMs (normalized Reads 
Per Kilobase per Million total reads) as a measure of relative gene expression (43). The sizeFactors 
further served in scaling transcript isoform abundances derived from Salmon (v0.11.4) (44). 
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Gene annotation, enrichments, and regulator analyses 

G:Profiler2 (v0.1.7) was employed to identify overrepresented Gene Ontology terms for 
differentially expressed genes (45). Upstream regulators as well as predicted interactions among 
DEGs were derived from Ingenuity Pathway Analysis (IPA, v01–16, Qiagen). Cytoscape was used for 
visualizing networks (46). Transcription factor binding site analyses were carried out in 
Pscan (v1.4) (47) on the H. sapiens genome considering −450 to +50 bp of promoter regions for 
motifs against the JASPAR 2018_NR database. TFEA.chip (v1.6) was employed with default 
parameters to determine transcription factor enrichments using the initial database version of 
ChIP-Seq experiments (19). Cell type-specific endometrial marker genes were taken from a 
preprint (13). 

Co-expression analysis 
Weighted Gene Co-expression Network Analysis (20) was used to identify gene co-expression. 
WGCNA is based on the pairwise correlation between all pairs of genes in the analyzed data set. 
As correlation method, biweight midcorrelation (48) was used with maxPOutliers = 0.1, thereby 
minimizing the influence of potential outliers. Correlations were transformed in a signed hybrid 
similarity matrix where negative and zero correlations equal zero, while positive correlations 
remain unchanged. This similarity matrix was raised to the power β = 7 to generate the network 
adjacency and thereby suppressing low correlations that likely reflect noise in the data. For a 
measure of interconnectedness, adjacency was transformed into a topological overlap measure 
(TOM) that is informed by the adjacency of every gene pair plus the connection strength they 
share with neighboring genes. 1-TOM was then given as an input to hierarchical clustering which 
identified modules, i.e. groups of co-expressed genes by applying the Dynamic Tree Cut algorithm 
(49). Each of these modules was summarized by its first principal component referred to as its 
eigengene, providing a single value for a module’s expression profile. In order to identify 
modules affected in MRKH, eigengenes were correlated with the disease trait. A joint Bayesian-
frequentistic algorithm combining Bayes Factor (BF) (50) and significance of a correlation was 
used to identify modules associated with disease status. Modules with an eigengene-trait 
correlation of pBonferroni = 0.05|BF < 3 were considered significantly associated with MRKH.  
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