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Purpose: Accurate baseline modeling is essential for reliable MRS

analysis and interpretation — particularly at short echo-times, where

enhanced metabolite information coincides with elevated baseline

interference. The degree of baseline smoothness is a key analysis pa-

rameter for metabolite estimation, and in this study a new method

is presented to estimate its optimal value.

Methods: An adaptive baseline fitting algorithm (ABfit) is described,

incorporating a spline basis into a frequency-domain analysis model,

with a penalty parameter to enforce baseline smoothness. A series of

candidate analyses are performed over a range of smoothness penal-

ties, as part of a four stage algorithm, and the Akaike information cri-

terion is used to estimate the appropriate penalty. ABfit is applied

to a set of simulated spectra with differing baseline features and an

experimentally acquired 2D MRSI dataset.

Results: Simulated analyses demonstrate metabolite errors result

from two main sources: bias from an inflexible baseline (underfit-

ting) and increased variance from an overly flexible baseline (overfit-

ting). In the case of an ideal flat baseline ABfit is shown to correctly

estimate a highly rigid baseline, and for more realistic spectra a rea-

sonable compromise between bias and variance is found. Analysis

of experimentally acquired data demonstrates good agreement with

known correlations between metabolite ratios and the contributing

volumes of gray and white matter tissue.

Conclusion: ABfit has been shown to perform accurate baseline es-

timation and is suitable for fully-automated routine MRS analysis.
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1 | INTRODUCTION

A number of key metabolites may be detected using 1H Magnetic Resonance Spectroscopy (MRS), providing a non-

invasive measure of healthy and diseased brain tissue metabolism. Clinical applications include the assessment of

brain tumors, metabolic disorders and neonatal encephalopathy [1, 2] where the concentration of certain metabo-

lites may inform disease diagnosis or predict patient outcome. Further applications are present in the neuroscience

and psychiatry domains, with particular interest in the direct detection of neurotransmitter levels such as GABA and

glutamate — which have been shown to be abnormal in Schizophrenia [3] and modulate in response to tasks [4, 5].

MRS scans are typically performed at short (30 ms) or long (144 ms) TE’s, with short-TE scans being preferred

due to reduced T2 relaxation and dephasing of multiplets resulting in improved metabolite detection sensitivity [6].

However, short-TE scans are typically more susceptible to artefacts originating from insufficient water and scalp lipid

suppression, in addition, broad signals from macromolecules also become enhanced [7]. Residual water signals, lipid

signals and macromolecules all have the potential to bias metabolite measurements due to spectral overlap and inter-

ference. Therefore, appropriate analysis methodology is particularly important to achieve the full benefit of MRS at

short-TE.

Parametric fitting is currently the most widely used analysis method, and typically incorporates a set of simulated

metabolite signals — known as a basis set. One of themain distinctions between analysis methods is their approach for

mitigating metabolite estimation bias from broad signals not present in the basis set, usually referred to as “baseline

modeling”. One of the most popular baseline modeling methods incorporates a set of smooth spline functions into the

fitting procedure, with additional smoothness imposed by penalizing greater baseline complexity. The LCModel [8] and

AQSES [9] algorithms both use penalized spline baseline modeling, with analysis performed in the frequency-domain

and time-domain respectively.

An alternative approach to baseline modeling exploits the rapid decay of baseline signals in the time-domain

by omitting the preliminary data points during the fitting process, reducing their interference with the more slowly

decaying metabolites. The QUEST [10] and TARQUIN [11] methods both use this time-domain truncation approach.

The FITT [12] algorithm combines the wavelet transform with Lowess filtering in the frequency-domain to separate

metabolite and baseline signals.

Control over the level of baseline flexibility (or smoothness) is a common and necessary requirement of each of the

baseline modeling methods outlined above. In spline based approaches, a combination of the number of spline func-

tions for a given frequency range and the smoothness penalty parameter control the baseline flexibility. For LCModel,

the frequency spacing between the spline basis functions is dependent on data quality, and is set at maximum of 1.5

times the estimated full width at half maximum (FWHM) of the metabolite resonances or 0.1 ppm [8]. Similarly, for

the FITT algorithm a fixed Lowess filter smoothing value is used and wavelet coefficients with scales less than twice

the FWHMare excluded from the baseline model to ensure smoothness [12]. In the time-domain truncation approach

baseline flexibility is primarily determined by the number of initial data points to be omitted from the fit evaluation.

For QUEST and TARQUIN the number of truncated data points, and therefore degree of baseline flexibility, is set at

a default value that may be adjusted by the user.

Automated methods to determine the correct degree of baseline flexibility are important for obtaining accurate

metabolite levels independently of the analyst. Furthermore, the manual adjustment of baseline flexibility for each

individual spectrum is impractical for MRSI studies — where hundreds of spectra may be acquired in a single scan.

Whilst LCModel provides automated adjustment of baseline flexibility, a growing number of analysts choose to man-

ually override the default analysis settings by adjusting the spline spacing parameter (DKNTMN). The first reported

use of this manual adjustment was to improve the modeling of macromolecular resonances in rat brain at 9.4 T [13].
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More recently, this parameter has been adjusted to encourage flatter baselines [14, 15, 16], suggesting the default

LCModel baseline flexibility may not be optimal in some cases.

Finding the optimal degree of baseline flexibility is a crucial question in MRS analysis research, yet few studies

have investigated this topic in detail. Using simulated data, Ratiney et al. demonstrated how the interference between

metabolite and baseline signals was reduced by increasing the number of omitted data points, but this came at the

cost of inflating errors due to noise [17]. More recently, Near et al. showed how the estimated baseline in LCModel

can depend strongly on spectral SNR and metabolite FWHM, and that errors caused by baseline instability may dom-

inate over errors from spectral noise in some cases [18]. The influence of baseline flexibility has also been explored

using experimentally acquired data, with a recent study demonstrating a 15% difference in metabolite levels when

comparing between a default and less flexible baseline model [19]. Baseline flexibility has also been shown to have a

strong influence of the measurement of 2-hydroxyglutarate [20].

In this study, we introduce a new method to automatically determine the optimal degree of baseline flexibility

for a frequency-domain spline based fitting algorithm. Firstly, background is given on the use of penalized splines

for optimal data smoothing. A fully-automated fitting algorithm is presented, incorporating a novel method to auto-

matically estimate the optimal level of baseline flexibility. Finally, the new method is validated with simulated and

experimentally acquired MRSI data.

2 | THEORY

2.1 | Penalized spline smoothing

Baseline signals have a characteristically smooth spectral appearance, and must to be accurately modeled to avoid

biasing metabolite estimates. In good quality 1H MRS of brain tissue baseline signals have a low intensity, relative to

the primary metabolite resonances, and are therefore challenging to estimate in the presence of noise. Estimating a

smooth function from noisy data is known in statistics as “scatterplot smoothing”, and a number of approaches have

been developed [21]. In this section we briefly outline the method of penalized splines in the simpler context of

scatterplot smoothing, before describing their use as part of an MRS fitting algorithm.

A spline is a piecewise function made up of one or more polynomial segments joined together at points known

as “knots”. A wide range of spline functions are possible, however Basis-splines, more commonly known as B-splines,

are a popular choice for smoothing applications due to their favorable numerical properties [22]. The degree of a B-

spline function determines its overall smoothness, and third degree (or cubic) B-splines are often used for smoothing.

A cubic B-spline basis is show in Figure 1A with an offset added in the y-axis for clarity. B-spline bases consist of

regularly spaced overlapping spline functions, spanning the full range of x values.

A B-spline basis may be used to obtain a smooth estimate of a signal using simple linear regression. Figure 1B

shows the result of a spline regression, where each spline function has been optimally weighted, such that the sum

of the functions (spline fit line) is the least squares fit to the data. The desired smoothness of the fit is controlled

by adjusting the spline knot spacing, which in turn changes the density of spline functions. In the case of Figure 1B,

15 functions were found to give a reasonable level of smoothness. Increasing the density of spline functions allows

more detail to be captured by the fit, however too many functions results in an increased sensitivity to noise and the

smooth estimate begins to exhibit random fluctuations. Conversely, insufficient density of spline functions results in

the spline fit being unable to model genuine smooth trends present in the data.

An alternative to adjusting the number of spline basis functions to achieve a desired level of smoothness is to

introduce a penalty parameter into to spline regression model. The smooth estimate ŷ, of our data y, is calculated
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FIGURE 1 A) Cubic B-spline basis of 15 components with each component offset vertically to reduce overlap. B)

P-spline regression of a noisy signal with an underlying smooth trend.

as: ŷ = B â, where B is a B-spline basis in matrix form, and â is a vector of corresponding spline weightings to be

determined. In simple spline regression â is found by solving the normal equations to minimize the sum of the squared

differences between y and ŷ. In penalized spline regression, the minimization function QB is adjusted to incorporate

an additional term to enforce smoothness in the estimate:

QB = ‖y − B â‖2
2
+ λ ‖D â‖2

2
. (1)

The λ parameter controls the degree of smoothness by penalizing solutions for â that interact with the difference

matrix D. The difference matrix may be constructed to penalize the first, second or higher orders of differences

between â values. Here, we exclusively use a second order difference matrix, which acts to minimize the second

derivative of the smooth estimate.

D =



1 −2 1 0 0 0 . . .

0 1 −2 1 0 0 . . .

0 0 1 −2 1 0 . . .

0 0 0 1 −2 1 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.



(2)

An example of the second order difference matrix is given in (2), which shows how increased differences between

adjacent weighting factors in â consequently increase the penalty term in Equation (1). The minimization function QB

represents a compromise between minimizing the fit residual and smoothness, where a value of zero for λ results in
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simple spline regression. Larger values of λ encourage a smoother ŷ, to the point where ŷ becomes a straight line fit

for very large penalties when using a second order difference matrix. The solution to Equation (1) may be found by

augmenting B and y:

[
y

0

]

≈
[

B
√
λ D

]

â =

[
ŷ

0

]

, (3)

and regressing the augmented y vector on the augmented B matrix to yield â.

The general approach for penalized spline regression is to over-specify the number of B-spline basis functions, and

primarily control the smoothness through the adjustment of λ acting on a difference matrix. We refer to this approach

as “P-splines”, first introduced by Eilers and Marx [23]. Whilst the value of λ has a direct effect on smoothness, it is an

unintuitive parameter to interpret, as the optimal value often varies by several orders of magnitude. In addition, λ has

a complex dependence on the density of the spline functions, the number of data points and other factors unrelated

to smoothness. A more intuitive measure of the smoothness of a P-spline model is known as the effective dimension

(ED), proposed by Hastie and Tibshirani [24]. For a given value of λ, B-spline basis B and difference matrix D, we

calculate ED as follows:

H =

[
B

√
λ D

]−1 [
B

0

]

, (4)

ED = tr(H), (5)

where tr denotes the trace of a matrix. For a small value of λ, ED approaches the number of spline functions in

the basis B, and for large values, ED approaches 2 when using a second order difference matrix.

Using simulated data we investigate the relationship between λ, ED and the optimal level of smoothness. The top

left panel in Figure 2A shows a simple sine function with added normally distributed noise, shown in red and black

respectively. Candidate P-spline smoothers, with differing values of λ, are shown in the remaining 5 panels. Since the

true shape of the underlying smooth function is known, the error of the P-spline estimate may be calculated as the

sum of squared differences between the true function and the estimate. A plot of the error as a function of λ is shown

in Figure 2B. The sum of squared differences between the P-spline estimate and noisy data (residual) and the ED are

also shown as a function of λ in part B.

Inspection of the error plot reveals the optimal λ to be approximately 20 — corresponding to an ED value of

12, and this can be intuitively verified from part A. For larger values of λ, the estimate approaches a straight line fit —

failing to capture the details in the sine cure and resulting in an increasing fit residual and fit error (part B). Models with

insufficient freedom to adapt to genuine trends in the data result in biased estimates and this is known as “underfitting”.

Conversely, too much freedom in the smoothing model (small λ) results in the estimate becoming overly sensitive to

random fluctuations in the data resulting in “overfitting”. In least-squares fitting, there is a temptation to equate the

smallest residual with the optimal fit, however Figure 2B clearly shows an increase in the error for λ values of less

than 20 — despite a steady reduction in the residual.

Determining the optimal value for the smoothness parameter is one of the primary challenges for P-spline smooth-
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FIGURE 2 A) Penalized spline smoother applied to a simulated sine function over a range of smoothness penalties

λ. B) Plots of the fit residual, smoother effective dimension (ED), fit error and Akaike information criterion (AIC) as a

function of λ.
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ing. A careful balance between instability from overfitting, and bias from underfitting, must be made for the most

accurate estimate, and searching for the smallest fit residual is a useful, but insufficient metric of quality. Numerous

approaches have been proposed to find the optimal smoothing value [21], and in this study we use Akaike’s information

criterion (AIC) [25]:

AIC = ln
[
‖y − ŷ‖2

2

]
+ 2ED/n, (6)

where ln denotes the natural logarithm and n is the number of data points. The AIC is typically used to compare

models, with lower values indicating an improved balance between bias and instability. A plot of the AIC as a function

of λ is shown in the lower panel of Figure 2B, and the λ value with the lowest AIC shows good agreement with the

true minimum error.

2.2 | MRS baseline estimation using P-splines

In 1H MRS analysis, the baseline signal must be estimated in the presence of numerous overlapping metabolite lipid

and macromolecule signals. Fortunately, these non-baseline signals have a known molecular origin and are therefore

well characterized and accurately simulated from established parameters [26]. We can update Equation 3 to incorpo-

rate these additional molecular components by arranging into columns of the basis matrix M, and appending to the

P-spline basis B:

[
y

0

]

≈
[

B M
√
λ D 0

]

â =

[
ŷ

0

]

, (7)

As with Equation 3, we regress the basis matrix on y to yield â, however since metabolite signal amplitudes are

always positive, analysis stability may be improved by enforcing a non-negative constraint on the subset of â values

corresponding to the weightings on the molecular basis (âM ≥ 0). The active-set method developed by Lawson and

Hanson [27] is used herein to find the least-squares solution under the non-negative constraint — while still allowing

the â values corresponding to the spline basis (âB ) to remain unconstrained.

A simulation study was performed to investigate the relationship between baseline smoothness, the accuracy of

metabolite estimates and the AIC. Metabolite signals were simulated from known parameters [26] at levels consistent

with normal brain tissue [28] — listed in Supporting Information Table S1. An experimentally derived macromolecule

profile was also included in the simulation and basis matrix to yield a realistic spectrum [29]. Simulated experimental

conditions consisted of a field strength of 3 T, and semi-LASER localization (TE=28 ms). 1024 complex points were

generated at a sampling frequency of 2000 Hz, 6 Hz Gaussian line-broadening was applied prior to zero-filling to

2048 points and Fourier transform to the frequency-domain. Ideal pulses were assumed and relaxation effects were

not considered.

Ideal spectra were distorted with normally distributed noise resulting in a spectral SNR of 54 — with signal mea-

sured as the highest data point from the compound NAA resonance at 2.01 ppm. A broad Gaussian resonance was

added at 1.3 ppmwith a linewidth of 100Hz to simulate baseline distortion originating from scalp lipids. The degree of

P-spline baseline flexibility is defined as the baseline ED (effective dimension) per ppm, which is more easily compared

across analyses due to its independence from the number of points in the fit and the number of spline basis functions
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used. Metabolite level estimates (â) were calculated using Equation 7 from real-valued data points in spectral region

between 0.2 and 4 ppm, over a range of 10 levels of baseline flexibility. 32 spectra were generated at each level of

baseline flexibility with differing noise samples drawn from the same distribution. The metabolite estimation error

was calculated from the sum of the squared differences between the true and estimated values for each spectrum.

The mean and standard deviation of metabolite estimation errors was calculated across the 32 spectra at each level

of baseline flexibility to evaluate accuracy and consistency.

Metabolite estimation errors are shown in Figure 3A, displaying a comparable shape to the simpler model in

Figure 2B. Over the range of baseline flexibility studied, underfitting with an inflexible baseline results in much greater

metabolite estimate errors compared to overfitting — which can be verified by inspecting the fit result plots in Figure

3 parts C-F. Good agreement is also seen between the metabolite estimate error and the AIC curve (part B), with a

low AIC values corresponding to the most accurate level of baseline flexibility.

From the results presented in following sections, it was found that the AIC had a tendency to slightly overestimate

the optimal level of baseline flexibility, and that a simple modification to Equation 6 improved accuracy:

mAIC = ln
[
‖y − ŷ‖2

2

]
+ 2m ED/n . (8)

Settingm to a value of 5 was found to be a good compromise between bias and variance, placing a greater penalty

on overly flexible baseline models — resulting in a smoother baseline estimate relative to the standard AIC (Figure 3B).

3 | METHODS

3.1 | Adaptive Baseline Fitting Algorithm

In this section we describe a fully-automated 1H MRS analysis method based on the P-spline fitting approach pre-

sented in the Theory section. The emphasis of the design is to automatically adapt the baseline flexibility for improved

accuracy, and we refer to the full algorithm as: Adaptive Baseline fitting or ABfit. The algorithm consists of 4 main steps,

which will be described in order of execution:

1. Coarse frequency alignment.

2. Approximate iterative fitting.

3. Baseline smoothness estimation.

4. Detailed iterative fitting.

3.1.1 | Coarse frequency alignment (step 1)

Unprocessed MRS data typically have an unknown and erroneous frequency offset fo that displaces all resonances

equally. The first step of ABfit is to estimate fo (measured in Hz) to ensure the basis set of known signals are approxi-

mately matched to the acquired data. Raw MRS data is digitally sampled at a frequency of fs Hz in the time-domain,

and defined a vector of N complex data points:

yTD = y(t), t = (t1 = 0, t2 = 1/fs, . . . , tN = (N − 1)/fs), (9)
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FIGURE 3 P-spline MRS baseline estimation of simulated data with a broad artefact at 1.3 ppm. A) metabolite

estimate error as a function of baseline flexibility. Error bars represent standard deviations, increased by a factor of

5 to aid visualization. B) AIC and modified-AIC as a function of baseline flexibility. C) - F) Fit results with the baseline

shown (black) underlying the simulated data (black) and fit (red). The fit residual is shown above the data and fit

results are presented for the following values of baseline ED per ppm: C) 1, D) 4.2, E) 6.0, F) 25.
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yFD = y(f), f = (f1 = −fs/2, f2 = −fs/2 + fs/N , . . . , fN = fs/2 − fs/N ), (10)

where superscript TD and FD denote time and frequency-domain signal representations — calculated with the

discrete Fourier transform. We simulate a reference data set rTD, with twice the number of data points 2N sampled

at fs, containing three resonances corresponding to the main singlet metabolites typically present in 1H MRS data at

2.01, 3.03 and 3.22 ppm. The acquired data yTD is zero-filled to twice the original length — before convolving with

rTD to estimate the frequency offset fo .

3.1.2 | Approximate iterative fitting (step 2)

The goal of this stage of the algorithm is to find estimates of the three parameters with the largest influence on the

fit residual: 1) the signal phase φ0; 2) an approximate lineshape parameter dg and 3) an improved estimate of fo . The

phase and frequency offset are applied to the acquired data as follows:

y′TD = yTDe iφ0+2i πfo t (11)

The lineshape parameter applies Gaussian line-broadening to each signal in the basis setM, and the scaling factor

β is introduced to define dg as the Full Width at Half Maximum (FWHM) measured in Hz:

β = − (πgd /2)2
ln(1/2) , (12)

M′TD
= MTD

⋆ e−β t
2

, (13)

where⋆ denotes element-wise multiplication of the line-broadening function for each column of the basis matrix.

Combining the modified basis with the P-spline basis and solving for â in the least-squares sense with the same

constraints as the previous section:

[
y′FDs

0

]

≈
[

B M′FD
s√

λ D 0

]

â =

[
ŷ

0

]

. (14)

Note that following parametricmodification in the time-domain, the data and basis of known signals are zero-filled

to twice their original length before being transformed to the frequency-domain. Only the real valued data points in

frequency domain between 1.8 and 4 ppm are fit in this stage of the algorithm (denoted by subscript s ) to reduce

the influence of any contaminating lipid signals around 1.3 ppm. The parameters: φ0, dg and fo are estimated using

Nelder-Mead simplex algorithm with bound constraints [30], minimizing:
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‖y′FDs − ŷ‖2 . (15)

A λ value corresponding to 1 ED per ppm is used with a P-spline basis with 15 components per ppm. Constraints

are placed on the optimization algorithm to restrict the linebroading parameter to be positive and produce additional

line-broadening of less than 15 Hz FWHM. The frequency offset is specified to be less than 10 Hz different from the

coarse frequency alignment (step 1).

3.1.3 | Baseline smoothness estimation (step 3)

Following the determination of the frequency offset, spectral phase and approximate lineshape the next step of ABfit is

to estimate the optimal value for λ. A set of candidate fits are performed with differing level of baseline smoothness,

whilst maintaining the three main fitting parameters constant at their optimized values. The maximum candidate

baseline flexibility is set to a λ value corresponding to 7 ED per ppm, and the minimum value set to an ED of 2 —

equivalent to straight line fit. 20 candidate fits are performed with logarithmic intervals between the maximum and

minimum values, and the mAIC is calculated for each fit (Equation 8). The optimal λ value is found by selecting the

candidate fit with the lowest mAIC. In contrast to the previous step, a wider spectral range of 0.2 to 4 ppm is analyzed

to include the majority of conventionally measured metabolites.

3.1.4 | Detailed iterative fitting (step 4)

In the final stage of ABfit, the overall lineshapemodel is refined alongside fo , φ0 andminor adjustments to the frequen-

cies and linewidths of the known basis signals. An asymmetric lineshape model is generated in the frequency-domain

by smoothly adjusting the Gaussian linewidth parameter as a function of frequency — as described by Stancik and

Brauns [31]:

lFD =

√
4 ln 2

π
exp

[
−4 ln 2

(
f

s(f)

)]
, (16)

s(f) =
2dg

1 + exp(ag f) . (17)

Note, the frequency dependence on the linewidth function is eliminated that when the asymmetry parameter

ag = 0, leading to s = dg and pure Gaussian broadening. lFD is transformed to the time-domain and applied to each

of the molecular basis signals. Minor individual changes in the frequency offset and linewidth are applied to each

molecular signal in the basis to accommodate variations in the acquired data:

M′TD
= MTD

⋆ lTD ⋆ e (2i πfi−πdi)t, (18)

where fi is a column vector of frequency adjustments measured in Hz, and di a column vector of additional
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Lorenzian line broadening terms measured at FWMH in Hz. Both parameter vectors fi and di are the same length

as the number of molecular basis signals. Each of the global (fo , φ0, dg , ag ) and molecular basis signal specific (fi,

di) parameters are estimated using the Levenberg–Marquardt algorithm [32] implemented with bound constraints,

with the same objective function defined in Equations 14 and 15. The optimal baseline smoothness parameter λ,

(determined in step 3) is used, and the spectral range of 0.2 to 4 ppm included in the iterative optimization procedure.

The same parameter constraints were used as in step 2, with the additional lineshape asymmetry parameter ag being

bound between ±0.25, fi bound between ±1 Hz and 2 ≥ di ≥ 0 Hz.

3.2 | Validation with simulated data

A series of simulations were performed to evaluate the performance of ABfit across a range of common baseline

features. For each test, ABfit was performed as described in the previous section — where the baseline flexibility is

automatically determined in step 3. Additionally, ABfit was performed with the baseline flexibility set manually (omit-

ting step 3) across a range of 15 values for ED per ppm between 0.53 and 15 to compare with the automated result.

Simulated spectra and metabolite estimation errors were calculated as described in section MRS baseline estimation

using P-splines unless stated otherwise.

In the first simulation study a broad simulated peak with a Gaussian lineshape (FWHM 100 Hz) at 1.3 ppm was

combined with metabolites and the macromolecular signal with a spectral SNR of 54. The second simulation study

was identical to the first, however the broad simulated peak was removed to yield a perfectly flat baseline. The third

simulation study was identical to the first, however the amplitude of the simulated broad resonance was increased by

a factor of 2. The data for the fourth simulation study was identical to the second, with a perfectly flat baseline and

an experimentally derived macromolecular signal. However, the experimentally derived macromolecular signal was

removed from the fitting basis set and replaced with the set of simulated lipid and macromolecular signals commonly

used by default in the LCModel and TARQUIN algorithms, as listed in Supporting Information Table S2. The final

simulation study was identical to the first, however 12 Hz linebroading was applied to the molecular basis rather than

6 Hz — resulting in a spectral SNR of 34.

3.3 | Validation with experimentally acquired data

MR data was acquired from a healthy adult male with a 3 T SiemensMagnetom Prisma (Siemens Healthcare, Erlangen,

Germany) system using a 32-channel receiver head coil-array. T1-weighted MRI was acquired with a 3D-MPRAGE

sequence: FOV = 208 x 256 x 256 mm, resolution = 1 x 1 x 1 mm, TE/TR = 2 ms/2000 ms, inversion time = 880 ms,

flip angle = 8 degrees and GRAPPA acceleration factor = 2. MRSI data was acquired using 2DMRSI: FOV = 160 x 160

x 15 mm, nominal voxel resolution 10 x 10 x 15mm, TE/TR = 40 ms/2000 ms, complex data points = 1024, sampling

frequency = 2000 Hz. The MRSI slice was aligned axially in the subcallosal plane with an approximately 1 mm gap

from the upper surface of the corpus callosum. The semi-LASER method [33] was used localize a 100 x 100 x 15

mm ROI, central to the FOV, 4 saturation regions were placed around the ROI prescribing a 100 x 100 mm interior,

and an addition 4 saturation regions were positioned to intersect the four corners of the semi-LASER ROI to provide

additional scalp lipid suppression.

Following acquisition, the four corner voxels were excluded from the central 8 by 8 grid, and ABfit was performed

on the remaining 60 voxels. The percentage of white matter, gray matter and CSF contribution to each voxel was

measured from segmentation of the T1MRI using the FAST method [34] as implemented in the FSL software package

(v6.0.1). The gray matter fraction was calculated as the percentage volume of gray matter divided by the sum of gray
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and white matter volumes, and compared with metabolite ratios.

The study was conducted with the approval of an Institutional Ethics Board.

3.4 | Software implementation

The ABfit analysis algorithm was implemented in the R [35] programming language, freely licensed under the GPL

and integrated into the SPectroscopy Analysis Toolkit (spant) package (v1.0.0) — available from the Comprehensive R

Archive Network. All analyses were performed using the 64-bit version of R (v3.6.2) running under Ubuntu 18.04.3.

All code and data required to reproduce the presented figures and results are freely available from:

https://github.com/martin3141/abfit_paper and https://github.com/martin3141/spant.

4 | RESULTS

4.1 | Simulation

The first simulation test contained a baseline distortion to mimic a spurious signal from scalp lipids, and the results of

ABfit analyses are shown in Figure 4. The metabolite estimation error plot as a function of baseline flexibility shows

the same characteristics as the simpler analysis model used in Figure 3A, however the errors are elevated due to the

increased number of parameters in the ABfit model — necessary to handle variations common in acquired MRS data,

such as phase and linewidth. The automated estimate for the baseline flexibility (dashed vertical line) represents a rea-

sonable trade-off between bias introduced by insufficient flexibility (part B) and instability — evidenced by increasing

standard deviation error bars for greater baseline flexibility (part D). A fit corresponding to the automatically deter-

mined baseline flexibility is shown in part C, where the true shape of a broad Gaussian peak centered at 1.3 ppm is

apparent from the baseline estimate.

The baseline distortion was removed for the second simulation study to test the ABfit approach for ideal spectra

where the molecular basis alone is sufficient for accurate analysis. The error plot is shown in Figure 5, illustrating the

absence of bias due to baseline underfitting. A compromise between bias and variance is unnecessary in the ideal

case, as the correctly determined baseline flexibility has the lowest error and variability.

In the third simulation test the amplitude of the broad distortion at 1.3 ppm was doubled compared to the first.

A reasonable estimate of the optimal baseline flexibility is found using the ABfit method (Figure 6A) with comparable

levels of accuracy relative to the reduced amplitude baseline distortion (Figure 4A).

In the fourth simulation test a set of independent broad lipid and macromolecular signals in the basis were used

to model the experimentally derived macromolecular profile. Figure 7A shows the lowest mean errors are obtained

at higher levels of baseline flexibility (part D) — indicating a stronger bias at lower level of flexibility (parts B, C)

compared to the previous simulations. This is likely explained by inadequate modeling of the broad macromolecular

components around 3.8 ppm since these are not present in the commonly used individual macromolecular and lipid

basis (Supporting Information Table S2).

In the final simulation test, the first test was repeated with broader metabolite signals to evaluate the efficacy

of the automated baseline determination for poorly shimmed data. Errors are larger compared to the first test, due

to the reduction in SNR and spectral resolution, however a reasonable estimate of the optimal baseline flexibility of

approximately 4 ED per ppm is found (Figure 8A).

https://github.com/martin3141/abfit_paper
https://github.com/martin3141/spant
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FIGURE 4 ABfit analysis results for simulated data with broad baseline distortion at 1.3 ppm. A) metabolite

estimate error of ABfit, with the automatically determined level of baseline flexibility shown as a dotted vertical line.

ABfit results with baseline flexibility of B) 0.5, C) 4.1 and D) 15.0 ED per ppm.
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FIGURE 5 ABfit analysis results for simulated data without baseline distortion. A) metabolite estimate error of

ABfit, with the automatically determined level of baseline flexibility shown as a dotted vertical line. ABfit results

with baseline flexibility of B) 0.5, C) 4.5 and D) 15.0 ED per ppm.
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FIGURE 6 ABfit analysis results for simulated data with broad baseline distortion at 1.3 ppm and twice the

amplitude compared to Figure 4. A) metabolite estimate error of ABfit, with the automatically determined level of

baseline flexibility shown as a dotted vertical line. ABfit results with baseline flexibility of B) 0.5, C) 5.1 and D) 15.0

ED per ppm.
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FIGURE 7 ABfit analysis results for simulated data without baseline distortion, but with the true macromolecular

basis signal replaced with individually simulated lipid and macromolecular signals. A) metabolite estimate error of

ABfit, with the automatically determined level of baseline flexibility shown as a dotted vertical line. ABfit results

with baseline flexibility of B) 0.5, C) 1.6 and D) 15.0 ED per ppm.
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FIGURE 8 ABfit analysis results for simulated data with broad baseline distortion at 1.3 ppm and metabolite

FWHM of 0.1 ppm. A) metabolite estimate error of ABfit, with the automatically determined level of baseline

flexibility shown as a dotted vertical line. ABfit results with baseline flexibility of B) 0.5, C) 4.1 and D) 15.0 ED per

ppm.
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FIGURE 9 ABfit results from a 2D MRSI semi-LASER acquisition. A) Orthogonal T1 MRI slices intersecting the

analysis region — shown as a colored tNAA / tCr metabolite map overlay. Linear regression of key metabolite ratios

with the gray matter fraction are shown in parts B, C and D. The line of best fit is plotted in blue with the 95%

confidence region in gray.

4.2 | Experimental

The results of ABfit applied to experimentally acquired 2D MRSI data are shown in Figure 9. A strong correlation

between metabolite levels and the underlying tissue contribution is visually apparent from part A, with an increased

tNAA / tCr ratio in white matter compared to gray matter (tNAA = NAA + NAAG, tCr = PCr + Cr, tCho = GPC + PC,

Glx = Glu + Gln). A linear regression of select metabolite ratios with the gray matter fraction is plotted in Figure 9

parts B, C and D, with strong correlations observed — in good agreement with high field observations [36, 37]. The

mean full-width at half maximum resolution across the voxels analyzed was 0.032 ppm, measured from the tNAA

resonance. The mean SNR was 85, with the noise region defined as the real valued data points between -0.5 and -2.5

ppm.

Two example fits from one of the voxels in the MRSI data set are shown Figure 10. In part A, the ABfit method

is applied as described previously, and in part B the lineshape asymmetry parameter (ag ) is heavily constrained to

enforce a symmetric lineshape model. A smaller fit residual in the tNAA spectral region is found for the asymmetric

lineshape model, justifying the minor increase in modeling complexity associated with an additional fit parameter.



20 Wilson

FIGURE 10 ABfit result plot for a voxel within a 2D MRSI semi-LASER acquisition with an asymmetric lineshape. A)

default analysis with an asymmetric lineshape fit model, B) analysis with the lineshape asymmetry parameter (ag )

restricted to ±0.0001.

5 | DISCUSSION AND CONCLUSIONS

A new algorithm to automatically determine the optimal level of baseline flexibility has been developed and validated

using simulated and acquired MRS data. LCModel is currently the most widely used approach for automatically esti-

mating the optimal baseline flexibility, where the optimal penalty parameter (αB ) is chosen by gradually increasing its

value until the boundary of the 50% confidence region for the fit is achieved — estimated by comparing successive

fits to the first in the series [38, 8]. In contrast to LCModel, the method presented here uses a modification to the AIC

to determine the optimal penalty factor — as part of a four-step fitting procedure. An additional difference is the use

of P-splines in ABfit compared to smoothing spline approach [39] used in LCModel.

Sima and Van Huffel proposed the use of the classical generalized cross-validation (GCV) criterion, combined with

a golden-section search, to determine the optimal penalty parameter value [40]. High accuracy was demonstrated for

simulated data, however the method was only tested with good starting values for the non-linear fitting parameters,

which are not typically available for experimentally acquiredMRS. In ABfit, these non-linear parameters are estimated

using a simplified initial fit (step 2) and subsequently refined (step 4). More recently, Zhang and Shen showed that

a measure of the baseline uncertainty is also a useful criterion to determine baseline smoothness for simulated and

experimentally acquired data [41].

ABfit was shown to find a reasonable compromise between bias and variance for the majority of simulation tests.

However, in the fourth simulation test, where the macromolecular basis signals were not identical to those in the

simulated data, the optimal flexibility was less easily determined. This is likely due to the bias associated with overly

rigid baseline being approximately matched with greater fitting instability from an overly flexible baseline. Reduced

SNR would likely enhance the fitting instability and therefore a more rigid baseline would be automatically chosen

in this case — resulting in greater bias. This represents a significant challenge for automated baseline selection, as

data with poor SNR will have more biased metabolite levels compared to data with high SNR — a problem previously

identified by Near et al [18] using the LCModel package.

Potential solutions to reduce metabolite estimation bias associated with variable data quality include the use of
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more accurate macromolecular modeling [29] and opting to use a fixed level of baseline flexibility. Whist the default

approach for ABfit is to automatically select the level of baseline flexibility, fitting options are implemented to specify

a fixed degree. Each of these approaches has advantages and weaknesses and should be justified depending on the

study aims. For example, in functional-MRS a small change in metabolite levels is generally sought, and therefore

a less flexible baseline may be preferred — since any metabolite estimation bias is eliminated when the change is

normalized to a well determined signal.

In conclusion, new MRS analysis method with adaptive baseline modeling is presented and validated on simu-

lated and experimentally acquired data. The approach is fully-automated and integrated into a free and open-source

software package — providing a transparent and reproducible platform for future MRS studies [42].
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