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We consider the problem of single-molecule identification in super-
resolution microscopy. Super-resolution microscopy overcomes the
diffraction limit by localizing individual fluorescing molecules in a
field of view. This is particularly difficult since each individual molecule
appears and disappears randomly across time and because the total
number of molecules in the field of view is unknown. Additionally,
data sets acquired with super-resolution microscopes can contain a
large number of spurious fluorescent fluctuations caused by back-
ground noise.

To address these problems, we present a Bayesian nonparamet-
ric framework capable of identifying individual emitting molecules in
super-resolved time series. We tackle the localization problem in the
case in which each individual molecule is already localized in space.
First, we collapse observations in time and develop a fast algorithm
that builds upon the Dirichlet process. Next, we augment the model
to account for the temporal aspect of fluorophore photo-physics. Fi-
nally, we assess the performance of our methods with ground-truth
data sets having known biological structure.

1. Introduction. Super-resolution microscopy (SRM) is an imaging
methodology that allows researchers to overcome the diffraction limit im-
posed by conventional light microscopy [Betzig et al., 2006; Rust, Bates
and Zhuang, 2006]. SRM resolves photoswitchable fluorophores in a field
of view by sparsely and randomly activating individual emitters and then
localizing them with sub-diffraction precision. This technique has the poten-
tial to revolutionize the field of cellular microscopy by enabling the study
of intracellular proteins within cellular compartments at nanometer resolu-
tion [Hansen et al., 2018], cellular modifications present in disease states [Li
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et al., 2016], the organization of the actin cytoskeleton in neuronal axons
and dendrites [Xu, Zhong and Zhuang, 2013], the structure of receptors and
scaffolding proteins at synapses [Specht et al., 2013], and the study of the
protein complexes that form the nuclear pore [Szymborska et al., 2013], to
cite a few examples. In this article, we focus on two of the key statistical
challenges in super-resolution data analysis: the localization of individual
point-source fluorophores and the estimation of the number of fluorophores
present in the sample. These tasks must be carried out with only rough
prior knowledge of the number of activated fluorophores and the dynamics
of their activation.

Of the many techniques that have been developed to achieve super-
resolution imaging, we focus on a class of methods that are generally referred
to as single-molecule localization microscopy (SMLM). These techniques in-
clude stochastic optical reconstruction microscopy (STORM) [Rust, Bates
and Zhuang, 2006], photoactivation localization microscopy (PALM) [Bet-
zig et al., 2006] and other variants. SMLM techniques rely on the ability of
photo-activatable fluorescent proteins [Lippincott-Schwartz and Patterson,
2009] or photo-switchable fluorophores [Heilemann et al., 2005; Dempsey
et al., 2011; van de Linde, Heilemann and Sauer, 2012] to alternate be-
tween a fluorescence-emitting state and a dark state. By only activating a
subset of the total number of fluorophores within the field of view, the emit-
ting molecules can be individually localized, thereby breaking the diffraction
limit of light.

In principle, SRM is poised to enable accurate counting of single molecules,
thereby permitting the study of protein stoichiometry and dynamics un-
der physiological conditions. Counting is, however, highly dependent on the
characteristics of the molecule used as a fluorescent tag, and, in order to
obtain an accurate count, several obstacles must be overcome. For example,
fluorophore photophysics result in molecule over-counting when fluorescent
molecules “blink” by transiently alternating between non-emitting dark and
emitting light states [Heilemann et al., 2009; Roy et al., 2011]. Even more
troublesome is the possibility that photoconvertible probes can be reacti-
vated after a lengthy stay in the dark state [Annibale et al., 2010, 2011].
Furthermore, the actual number of photoactivatable probes, referred to as
the photoactivation efficiency, is a missing parameter in all SMLM exper-
iments that—in the absence of a second fluorescent probe that does not
blink—can only be corrected computationally [Durisic et al., 2014; Zanacchi
et al., 2017]. Many algorithms have been devised to compensate for blinking,
ranging from semi-empirical approaches [Annibale et al., 2011] to more ro-
bust procedures that account for a single dark state [Lee et al., 2012; Rollins
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et al., 2015], many dark states [Hummer, Fricke and Heilemann, 2016] or the
presence of many fluorophores and binding sites within a diffraction limited
spot [Nino et al., 2017]. An ideal workflow designed to analyze SRM data
sets would be capable of accounting for the different blinking properties of
fluorophores while separating each fluorophore in space.

We devise a statistical approach to analyze STORM or PALM localiza-
tions computed by any conventional detection software [Holden, Uphoff and
Kapanidis, 2011; Sergé et al., 2008; Ovesnỳ et al., 2014] and to infer the most
likely fluorophore arrangement in the field of view. We model the observa-
tions as arising from a Poisson process endowed with a constant background
density[Taddy et al., 2012; Kottas and Sansó, 2007] and we use Bayesian non-
parametric (BNP) priors to model the number of fluorophores present in the
sample [Blei et al., 2006; Broderick et al., 2013; Huggins and Wood, 2014].
Our approach involves two stages. First, we collapse observations across time
and use a Dirichlet process (DP) mixture model to infer fluorophore events
in the field of view. The DP is a BNP prior with the flexibility of accounting
for an unbounded number of fluorophores. The model is scalable and fully
amenable to approximate Bayesian posterior inference through the use of
variational mean field methods. Moreover, by exploiting the locality of the
problem and using a quadtree [Finkel and Bentley, 1974] data structure,
we are able to build a high-performance implementation capable of analyz-
ing millions of points in minutes on a standard laptop computer. Posterior
inference using this model creates proposals for more complex algorithms.

Second, to model time dependencies between fluorophore observations,
we incorporate the photo-physical properties of the fluorophores. We incor-
porate a hidden Markov model (HMM), which has been shown previously
to accurately reflect fluorophore dynamics when the states of the fluorescent
molecules are described by transitions between an inactivated state, a light-
emitting state, a dark state resulting from radiating decay, and, finally, a
bleach state in which the fluorescent molecule is unable to emit light [Lee
et al., 2012]. To discover fluorophore positions and to assign observations
to each active fluorophore jointly, we propose a model based on the Marko-
vian Indian Buffet process [Gael, Teh and Ghahramani, 2009]. The entire
set of fluorophores is shared among observations present at each time-point.
Individually, however, only a subset of fluorophores is active and able to
emit observations at each time-point. Our model decouples the probability
of fluorophore appearance at each time point from the probability that an
observation is assigned to the fluorophore. By doing this, we are able to
assign many observations to each active fluorophore (presumably due to du-
plicate fluorophore localizations) and to account for background noise (i.e.,
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spurious observations).
The paper is organized as follows. In Section 2, we begin by presenting the

SMLM data sets analyzed in this work. In Section 3 we review the Dirichlet
process and discuss a time-independent model for pointillistic data that
has been pre-processed by deconvolution algorithms and we present a mean
field inference algorithm to estimate the parameters of the model. Then,
in Section 4, we extend the model to include fluorophore photophysics and
create a time-dependent formulation based on the Markovian Indian Buffet
process. In Section 5, we describe related work. In Section 6 we explore
the performance of our algorithms on biological data sets and assess the
accuracy of our method. We conclude in Section 8.

A list of notational conventions and further details on our algorithms and
experiments can be found in the Supplementary Material [Gabitto et al.,
2019].

2. Experimental Datasets. In this work we consider real biological
data sets obtained using STORM imaging. The first data set consists of a 3D
DNA origami scaffold equipped with multiple handles for the attachment of
different molecules [Zanacchi et al., 2017]. The scaffold is 225 nm long and
consists of a 12-helix bundle with 6 inner and 6 outer helices. It contains
15 attachment points, separated by a distance of 14 nm, that project out-
ward and provide site- and sequence-specific positions to which fluorophores
or proteins of interest can be functionalized (Figure 1A). First, at handle
position 14, TAMRA fluorophores are attached to enable identification of
the DNA scaffold under wide field imaging. Next, complementary handle
sequences labeled with Alexa Fluor 647 were attached to handles 1, 7 and
13 of helix 0 to permit identification of single fluorophores (Figure 1B-D).
STORM data sets generated using the scaffold were kindly provided by the
authors of the original work [Zanacchi et al., 2017] for the demonstration of
our method. We localized individual molecules present in single frames and
used these positions as the input to our analysis. A second data set consist
of super-resolution STORM imaging of the nuclear pore complex (NPC)
in nuclear envelopes. NPCs provide access to the cell nucleus, thereby per-
mitting the transport of proteins and RNA through the nuclear envelope.
The function of the NPC is not limited to molecular trafficking, they are
also involved in diverse cellular processes [D’Angelo and Hetzer, 2008]. The
nuclear pore possesses a highly stereotyped configuration: proteins within
NPCs are arranged in an eight-fold symmetric, cylindrical assembly consist-
ing of approximately 30 different proteins of the nucleoporin (Nup) family
[Kim et al., 2018]. Here, we analyzed a nuclear pore complex data set in

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2020. ; https://doi.org/10.1101/2020.02.15.950873doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.950873
http://creativecommons.org/licenses/by-nc-nd/4.0/


A BAYESIAN APPROACH TO SUPER-RESOLUTION MICROSCOPY 5

1 7 13
84 nm

0
1

23

4
5 6

7

89
10

11

DNA Origami Sca�oldA

B

AF-647

Tamra

C

On

O�
0 5k 10k

D

-40 0 40-50

100

AF-647 AF-647

Fig 1. Super-resolution imaging of a DNA origami scaffold a) DNA origami scaf-
fold representation. Left, cross section depicting the double helix barrels, sequence specific
handles protrude outward from outside helices. Right, the scaffold is 225 nm long and pos-
sess 15 handles. Fluorophores with handle complementary sequence are attached to handles
1, 7 and 13. At handle position 14, TAMRA fluorophores are joined for visualization un-
der wide field fluorescent microscopes. b-c-d) Example of super resolution imaging of DNA
origami scaffold in which sequence specific Alex Fluor 647 fluorophores are attached to han-
dles 1,7 and 13. b) Fluorophore localizations smoothed with a Gaussian kernel (width =
10nm) and aggregated across the time series. c) x-y positions of fluorophore observations.
d) Time traces depicting the frames in which each of the three fluorophores is observed.

which the Nup-107 protein is tagged with Alexa Fluor 647 in the nuclear
pore membrane of U-2 OS cells and imaged using dSTORM on a commercial
Leica SR GSD 3D microscope (kindly provided by the Reiss Lab, data from
Li et al. [2018])(Figure 2A). Nup-107 proteins belong to the best-studied
module within the NPC, the Y-complex (its name describes the shape in
which proteins in the module assemble). Nup-107 surrounds the NPC, lo-
calizing to the nuclear rim and forming an eight-fold symmetrical ring [Beck
and Hurt, 2017] (Figure 2B). This highly reproducible symmetrical ring pro-
vides a ground-truth structure to which we can compare in order to evaluate
our algorithms.
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Fig 2. Super-resolution imaging of the nuclear pore complex a) Example field of
view in which nuclear pore complexes are imaged with super-resolution microscopy. Nuclear
pore complexes are identified by template cross-correlation and enclosed by blue rectangles.
b) Nuclear pore complex schematic. Left, cross-section of the nuclear pore complex on
the nuclear membrane indicating in black, Nup-107. Right, top view of the nuclear pore
complex highlighting Nup-107 octagonal symmetry labeled with Alexa Fluor 647.

3. A Time-Independent Model of Fluorophore Locations. A va-
riety of existing techniques produce pointillist representations of fluorophore
centers [Holden, Uphoff and Kapanidis, 2011; Sergé et al., 2008; Ovesnỳ
et al., 2014]. These locations are prone to error due to their lack of correction
for temporal effects (i.e., blinking) and their failure to integrate measure-
ment uncertainty into the analysis. Moreover, spurious fluorophore locations
can be created as the result of inaccurate modeling of the microscopic point
spread function and the nuances of optimization algorithms. Our approach
addresses these limitations within a Bayesian framework; moreover, to ac-
count for uncertainty in the number fluorescent proteins in the sample, our
modeling formulation is based on a Bayesian nonparametric approach. We
begin this section by briefly reviewing the BNP prior that we used to model
fluorophore centers.

3.1. The Dirichlet Process. The Dirichlet process (DP) [Ferguson, 1973]
can be understood as an infinite-dimensional analog of the Dirichlet distri-
bution. The DP is a normalized random measure characterized by a scaling
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parameter α and a base measure G0 defined on the set Θ. We denote a
draw from the DP as G ∼ DP(α,G0). The DP is defined by its possession
of Dirichlet marginals; that is, for any finite partition A1, ..., AK of Θ, we
have:

G(A1), ..., G(AK))|α,G0 ∼ Dir(αG0(A1), ..., αG0(AK)).(3.1)

It can be shown that G is an atomic measure with probability one. Sethu-
raman [1994] provided an explicit representation of a draw from a DP, via
a stick-breaking construction:

G =
∞∑
k=1

πkδθk ,(3.2)

where δθk is an atom located at θk ∈ Θ, and the random weights πk depend
on α as follows:

νk ∼ Beta(νk; 1, α)(3.3)

πk = νk
∏
j<k

(1− νj) k = 1, 2, . . . .

The random sequence (πk) sampled according to Equation (3.3) is said to
follow a GEM distribution [Ewens, 1990].

The atomic nature of the DP has been exploited by many authors by using
a DP as a prior for Bayesian mixture models. In this setting, the random
weights of the atomic measure correspond to mixing proportions, and the
locations of the atoms represent the parameters of the mixture components.

3.2. Model overview. Our observed data is a set of two- or three- di-
mensional fluorophore locations (i.e., putative fluorophores at different time
frames). We begin our analysis by collapsing across time and inferring fluo-
rophore centers in this collapsed data set. These inferences can be performed
quickly, and they provide a seed for our more complex time-dependent
model, described below in Section 4. Each observation xn has an associated
localization accuracy σn that informs confidence in the estimated location
(σn is obtained by typical pre-processing steps). We model these observa-
tions as arising from a non-homogeneous spatial Poisson process defined on
the observation box R = [a1, b1] × [a2, b2] × [a3, b3], with intensity λ(x) for
x ∈ R. For such random processes, the following holds true:

i. For any bounded set S ∈ R, the number of points in S is Poisson dis-

tributed, N(S) ∼ Po(Λ(S)) = Λ(S)N (S)e−Λ(S)

N(S)! , where Λ(S) =
∫
λ(x)dx.
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Fig 3. Time-independent and time-dependent Graphical Models for super-
resolution localization. a)Time independent graphical model. b) Different states for the
hidden Markov model used to model storm or palm data sets. c) Time dependent graphical
model.

ii. GivenN(S), the point locations within S are i.i.d. with density λ(x)∫
λ(x)dx

.

The intensity λ(x) can be specified in terms of two independent factors—
a total scalar intensity λ0 and a spatial density f(x), λ(x) = λ0f(x)—
allowing the Poisson process likelihood to be written in separable form,
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thereby transforming the problem into one of density estimation:

p(x|λ) ∝ e−
∫
R λ0f(x)

∏
n

λ0f(x)

∝ e−λ0λN0
∏
n

f(x).(3.4)

Placing a gamma prior on λ0 permits its inference in a manner that is
independent of the spatial density. Next, we specify a prior for the process
density f(x) with the domain restricted to the observation window R. We as-
sume that every observation arises either from a constant background noise
distribution or is a fluorophore which is distributed according to a trun-
cated Gaussian distribution with mean µ denoting the fluorophore position.
Building on Rubin-Delanchy et al. [2015], we propose a mixture of two com-
ponents: spatially random background noise with constant density 1

V ol(R) ,
and a Dirichlet process containing an unbounded number of fluorophores.
This prior is consistent with the idea that not every fluorophore is observed
during the imaging experiment and that the number of fluorophores would
increase if the experiment would have continued.

The graphical model representation is summarized in Figure 3. Defining
π̄ = (π1, π2 . . . ), the overall model specification is summarized as follows:

µk ∼ G0 k = 1, 2 . . .

G ∼ G(α,G0) =
∞∑
k=1

πkδµk

π0 ∼ Beta(a0, b0)(3.5)

zn ∼ Categorical(zn;π0, (1− π0)π̄)

xn|zn = 0 ∼ 1

V ol(R)

xn|zn = k ∼ Normal(xn;µk, σ
2
n)I(xn ∈ R)∏

i=x,y,z[φ((bi − µik)/σin)− φ((ai − µik)/σin)]
,(3.6)

where n ∈ {1, . . . , N} in the last three equations, I is an indicator function, φ
is the standard Gaussian cumulative function needed to normalize the trun-
cated Gaussian and σ2

n denotes a diagonal covariance matrix which ensures
the factorization of the normalization constant. These modeling assumptions
define a joint distribution p(x, z, µ, ν|σ) on the data and the latent structure
of our model, where we use ν for the stick-breaking representation (3.3).
After observing data (x, σ), our inferential goal is to obtain the posterior
distribution of the fluorophore locations µ and assignments z. We refer to µ
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and the parameters of the stick-breaking prior as global parameters because
they generalize to new observations, in contrast to the states zn, which are
local to a specific observation.

3.3. Mean field variational inference. Exact posterior inference is in-
tractable in our model. We therefore resort to computing an approximation
to the posterior distribution using a variational mean field method [Wain-
wright et al., 2008]. Let Q be a family of distributions on Θ = (π0, ν, z, µ),
the space of latent variables. For q ∈ Q, we search for a family of distribu-
tions that maximizes the evidence lower bound (“ELBO” = L(q)):

log p(x) = log

∫
p(x,Θ)dΘ = log

∫
p(x,Θ)

q(Θ)

q(Θ)
dΘ = logEq

[
p(x,Θ)

q(Θ)

]
≥ Eq [log p(x|Θ)]−DKL (q(Θ), p(Θ))

=: L(q).(3.7)

We seek a distribution q over the latent variables that is close to the true
posterior and also lies within a factorized family, q(Θ) = q(π0)q(ν)q(µ)q(z).
Each of the factors belongs to a particular member of the exponential fam-
ily, except for the truncated normal distribution that characterizes the flu-
orophore centers. For the latter, we make use of the fact that our problem
contains strong spatial information. In particular, we possess a priori infor-
mation regarding the scale of the variance of each fluorophore center, given
by the average uncertainty of the observations. By augmenting the size of
the bounding box, we can assume the terms φ(a−µσ ) ∼ 0 and φ( b−µσ ) ∼ 1, re-
moving the need to explicitly truncate. Numerical exploration of the validity
of this approximation is performed in the supplemental material [Gabitto
et al., 2019].

By approximating the generative model in an unconstrained space, we re-
strict our subsequent analysis to a variational distribution with the following
factorized density:

q(Θ) = q(π0)

N∏
n=1

q(zn)

K∏
k=1

q(vk)q(µk),(3.8)

where

q (zn) ∼ Categorical (zn;rnk)

q (vk) ∼ Beta (vk;αk1, αk2)

q(µk) ∼ Normal(µk; µ̃k, ˜̄σk)

q(π0) ∼ Beta(π0; ã, b̃).(3.9)
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3.4. Inference. The computational task for our posterior inference algo-
rithm is to find a set of parameters that maximizes the ELBO. Our algorithm
updates free parameters in the variational distribution via coordinate ascent
variational inference (CAVI). We present updates for global and local factors
that converge to a local maximum. To simplify calculations, the ELBO is
arranged into three terms that account for data generation, global variables
characterizing our stick-breaking construction and an entropic term:

L(q) = Eq
[
log p(x|Θ) + log p(Θ)− log q(Θ)

]
= L(q)Data + L(q)Global +H,(3.10)

where

L(x, r, µ̃)Data = Eq
[
log p(x|z, µ) + log

p(µ)

q(µ)

]
H(z) = −Eq

[
log q(z)

]
L(r, ν̃)Global = Eq

[
log p(z|π) + log p(ν)− log q(ν) + log p(π0)− log q(π0)

]
,

and where all expectations are taken according to the variational distri-
bution. Due to the conjugate exponential family terms in the ELBO, the
CAVI updates are easy to compute; see the supplemental material for the
details [Gabitto et al., 2019].

Finally, we treat the hyper-parameter α0 as random in both the generative
model and the variational distribution [Blei et al., 2006]:

α0 ∼ Gamma(α0; γ1, γ2).(3.11)

3.5. Scalable inference by exploiting spatial constraints. Standard varia-
tional inference assigns to each data point a positive posterior probability
rnk, effectively assuming that each data can arise from any fluorophore. This
instantiates matrices that demand dense memory storage and computation
that scales with the total number of clusters. Our problem presents certain
advantages due to the locality of its fluorophore assignments. This advan-
tage translates into near certainty that only a few clusters have meaningful
posterior mass for any given observation. Unlike approaches that instanti-
ate a fixed number of clusters [Rubin-Delanchy et al., 2015], our approach
assigns non-zero mass to clusters residing within a certain spatial distance
of each observation; this distance acts as a threshold and is the only tunable
parameter.
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Fig 4. Performance of quadtree acceleration. For three different data sets, containing
100, 12 × 103 and 1.2 × 106 points, respectively, the algorithm was initialized with three
initial conditions that gave rise to different numbers of initial clusters. a) Computational
time for one iteration for each of the three data sets. b) Total time to compute 20 complete
iterations, including local and global steps. By varying the threshold distance every quadtree
query returns a different number of clusters k′ < K for each point. c) Average number of
points per center and d) average number of centers per point. Thresholds lower than 150
nm return an equal number of centers independently of the size of the data set.

We harness the spatial locality to speed up computations by making use
of a quadtree, a tree-like data structure that recursively subdivides two-
dimensional space into four quadrants [Finkel and Bentley, 1974]. We exploit
quadtree decomposition during the computation of local assignments. This
step computes the posterior probability of assigning an observation n to
fluorophore k for each observation rnk. Our CAVI algorithm optimizes r̄n
by fixing global fluorophore parameters according to the following objective:

Ln(rn) = Eq[log p(x|µ)] + Eq[log π]− rn log(rn),(3.12)

subject to the constraint that
∑

k rn,k = 1 and rn,k > 0. The first two
terms represent the log posterior assignment of observation n to cluster k.
Following Rubin-Delanchy et al. [2015], we replace the variational objective
with a new one that dynamically limits the number of clusters to which an
observation can be assigned. Instead of instantiating rn as a dense vector, we
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A BAYESIAN APPROACH TO SUPER-RESOLUTION MICROSCOPY 13

compute only the non-zero mass entries for each observation n as determined
by the clusters found within a certain distance of the observation. The new
optimization problem can be written as:

r∗n = arg maxrnLn(rn)

s.t.
∑
k

rn,k = 1, rn,k ≥ 0, ∀k ∈ Sk,(3.13)

where the set Sk is computed dynamically at each iteration by querying a
quadtree structure built on the locations of the K fluorophores. Observations
that return no fluorophore centers are automatically designated as noise.
Selecting the threshold distance results in a tradeoff between execution speed
and inferential accuracy. In our case, the tradeoff is a favorable one, due to
the strong locality of the observations arising from each cluster. This new
constrained optimization problem can be solved by exponentiation of the log
posterior assignment and normalization of the subset of active fluorophores.
See Figure 4 for a numerical example of quadtree scaling.

3.6. Reliable Bayesian inference via state space adaptation. Variational
inference algorithms converge to local optima. We thus implement a multiple
trial procedure that yields an algorithm that has the flexibility to improve
initial assignment estimates. Specifically, we develop a series of fluorophore
proposals aimed to obtain improvements in the ELBO. We interleave pro-
posals that randomly split or merge observations assigned to fluorophores.
We also create proposals that create or delete fluorophores by removing or
assigning points to noise. To evaluate proposals rapidly, we simplify ELBO
calculations for the gap between old and new fluorophores’ configurations.
These calculations are reproduced in the supplementary material [Gabitto
et al., 2019].

4. A time dependent model of fluorophore locations. We turn
to the second phase of our single molecule localization procedure. Here we
consider each individual observation in space and time, taking into account
the photo-physical properties of each emitting molecule. In this formulation,
a large number of fluorescent molecules is present in the sample but only a
fraction of them are visible at each time point. We design a statistical model
capable of analyzing spatio-temporal localization by relating observations at
each time point to a collection of K fluorescent time series, where K is un-
known and subject to posterior inference. Major challenges include the need
to distinguish observations from background noise and the possibility of as-
signing more than one observation to a given time series at each time point.
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Fig 5. State space exploration through different proposal configurations. a) Car-
toon representation showing how different configurations can evolve under birth, death,
split, and merge proposals. b). ELBO evolution with and without state space exploration
on a data set of 12000 points.

To address these challenges we based our model on a Bayensian nonparamet-
ric prior representing an unbounded number of components, each consisting
of a Markov chain. At each time point, observations can be assigned to
only one of the active chains. Our model is based on the Markovian Indian
Buffet process (M-IBP)[Gael, Teh and Ghahramani, 2009; Valera, Ruiz and
Perez-Cruz, 2015] together with a time-dependent Dirichlet distribution.

4.1. A dynamic prior that shares features across time points. In this
section we derive a prior distribution over binary matrices with a finite
number of columns, each column representing a Markov chain model of
a fluorophore. This formulation is closely related to the M-IBP, having a
temporal dynamics that is specialized to the time evolution of fluorophores.
We begin by introducing a latent state variable skt , representing the state of
the fluorophore k at time point t. The dynamics of this variable is governed
by a transition matrix A such that:

skt |skt−1 = askt−1,s
k
t

A =


a00 a01 0 0
0 a11 a1b a1d

0 ab1 abb 0
0 0 0 1

(4.1)

with prior distributions given by:

ak01 ∼ Beta(ak01;α0/K, 1), ai ∼ Dir(ai, α), i = 1, b.(4.2)

The transition matrix models an inactive state (0), a light-emitting state
(1), a blinking state (b) and an dead state (d). Next, we introduce a feature
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vector f tk associated with the presence (f tk = 1 or skt = 1, on) or absence
(f tk = 0 or skt = 0, 2, 3 inactive, blinking or dead) of fluorophore k at
time point t. This feature vector represents a binary matrix having as many
columns as there are fluorophores present in the sample. Each feature vector
follows a time evolution generated through the latent states:

P (fkt ) ∼ Bernoulli

(
fkt ; a

[Sk
t−1=0]

01 a
[Sk

t−1=b]

b1 a
[Sk

t−1=1]

11

)
.(4.3)

By introducing a set of count variables, c, to indicate the number of transi-
tions between two states (e.g., c01 is the number of transitions from the state
0 to 1) we can write the probability of the entire binary matrix as follows:

P (F |A) =
∏
k

a
ck01
01 (1− a01)c

k
00a

ckb1
b1 (1− ab1)c

k
bba

ck11
11 a

ck1b
1b (1− a1b − a11)c

k
1d

(4.4)

In a similar vein as the M-IBP, we calculate the marginal over the matrix
F by integrating out transition probabilities:

P (F |α0, α) =
αK0
KK

∏
k

Γ(ck00 + 1)Γ(ck01 + α0
K )

Γ(ck00 + 1 + ck01 + α0
K )

Γ(2α)Γ(3α)

Γ(α)5

∗
Γ(ckbb + α)Γ(ckb1 + α)

Γ(ckbb + ckb1 + 2α)

Γ(ck11 + α)Γ(ck1b + α)Γ(ck1d + α)

Γ(ck11 + ck1b + ck1d + 3α)
.(4.5)

This represents the probability of each binary matrix defined by our time-
dependent prior. Next, we use this matrix to assign observations at each
time point to one of the active chains (fkt = 1). We do so by associating
to each chain a gamma variable (γk). Then, at each time point, we form a
Dirichlet distribution by normalizing the gamma variables over the space of
active chains:

πkt |γk, fkt =

{
γk∑
l γ

lf lt
, if fkt = 1.

0, otherwise.
(4.6)

Finally, observations at time t are assigned to active chains by using a cat-
egorical distribution (cat(πt)).

In the supplemental material we show the infinite, i.e., nonparametric,
limit of our model [Gabitto et al., 2019]. To obtain this model, we need to
define two infinite mathematical constructs. In the first one, we derive a
BNP prior over binary matrices that follows the fluorophore dynamics. The
prior is exchangeable in the columns and it is also Markov exchangeable in
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the rows. In the second construct, we use the language of completely random
measures (CRM) to show that a thinned CRM based on the Gamma process
represents our model in the infinite case [Foti et al., 2013].

4.2. Model overview. Our model relies on the Markovian dynamics of
our time-dependent binary matrix prior to generate a sparse set of active
fluorophores at each time point, from which observations can be drawn We
present our time-dependent fluorophore model as a graphical model in Fig-
ure 3, and we provide the full specification as follows:

1. Draw parameters:

π0 ∼ Beta(a0, b0), ai ∼ Dir(ai, α), i = 1, b

2. For k = 1 . . .K, draw chain parameters:

µk ∼ Normal(µ0, σ0) γk ∼ Gamma(
Γ0

K
, 1) ak01 ∼ Beta(ak01;

α0

K
, 1)

3. For each time point t = 1 . . . T :
For k = 1 . . .K:

skt |skt−1, A
k ∼ akst,st−1

πkt |γk, skt =

{
γk∑

l γ
l[slt=1]

, if skt = 1.

0, otherwise.

For nt = 1.... Nt:

ztnt
∼ Categorical(zn,t;π0, (1− π0)π̄t)

xtnt
|ztnt

= 1 ∼ 1

V ol(R)

xtnt
|ztnt

= k ∼ Normal(xtnt
;µk, σ

t,2
nt

)

4.3. Mean field variational inference. In this section, we develop a vari-
ational inference algorithm to approximate the posterior distribution of the
temporal model. We leverage the fact that a correspondence exists between
the assignment of an observation at a particular time point to a fluorophore
only if the fluorophore is active. Our approach employs the time-independent
model as a seed, or initial condition, and we refine this solution through in-
cremental move proposals. In particular, we propose a distribution from a
factorized family, q(Θ) = q(π0)q(µ)q(γ)q(z)q(S)q(a), restricting our analysis
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to distributions q with the following dependence:

q(Θ) = q(π0)q(a)

K∏
k=1

q(Sk)q(aki )q(γk)q(µk)

T∏
t=1

Nt∏
nt=1

q(ztn),(4.7)

where

q
(
ak01

)
∼ Beta

(
ak01; ν̃k1, ν̃k2

)
q (ai) ∼ Dir

(
ai; α̃

k
)

q
(
γk
)
∼ Gamma

(
γk; η̃k1, η̃k2

)
q(µk) ∼ Normal(µk; µ̃k, σ̃k)

q (π0) ∼ Beta
(
π0; ι̃t1, ι̃

t
2

)
q
(
ztn
)
∼ Categorical

(
ztn;r

t
nk

)
.(4.8)

Lastly, we fit the state-variable dynamics via a structured variational pro-
posal with Markovian structure [Hughes, Kim and Sudderth, 2015]:

q(Sk) ∼
[ m∏
j=1

(
ψk0i

)δS0
k=i][ T∏

t=1

m∏
i=1

m∏
j=1

(φktij

ψkti

)δSt
k=i,δSt−1

k =j]
ψkti =

m∑
j=1

φktij ,(4.9)

where the variational parameter φktij represents the joint probability φktij =

q(st+1=j
k , st=ik ) and ψkti defines the marginal probability ψkti = q(st=ik ).

4.4. Inference. We turn again to ELBO computation for the spatio-
temporal model. In particular, we optimize the parameters of the fully factor-
ized variational proposal amounts via coordinate ascent (CAVI). We arrange
the ELBO into three terms accounting for data generation, the entropy and
the KL divergences between our global parameter prior distributions and
the corresponding variational proposals:

L(q) = Eq
[
log p(x|Θ) + log p(Θ)− log q(Θ)

]
= L(q)Data +H+ L(q)Global,

(4.10)

where

L(x, σ, r, µ̃, σ̃, η̃, ι̃)Data = Eq
[
log p(x, σ, z|γ, z, µ, S, π0)

]
, H(r) = −Eq

[
log q(z)

]
L(µ̃, σ̃, ν̃, α̃, η̃, ι̃)Global = Eq

[
log

p(µ)

q(µ)
+ log

p(γ)

q(γ)
+ log

p(a01)

q(a01)

+ log
p(π0)

q(π0)
+ log

p(S)

q(S)

]
.(4.11)
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We compute the ELBO for this new model and take partial derivatives
with respect to each variational parameter to derive the coordinate ascent
updates. Most of the updates are straightforward to compute due to the
conjugate exponential family factors. To optimize the local variables involved
in the likelihood equation, we relax our generative model by introducing a
variable ε� 1 :

P (xtn, σ
t
n, z

t
n|γ, st, µ) =

K∏
k=0

P (xtn, σ
t
n|µztn)[ztn=k][stk=1]P (ztn|γ, st)[ztn=k][stk]

=

(
1

R
π0

)[ztn=0] K∏
k=1

P (xtn, σ
t
n|µztn)[ztn=k][stk=1]

∗
[
(1− π0)

(γk)[stk=1]ε[1−s
t
k=1]∑

l γ
l[stl = 1] + ε[stl = 0]

][ztn=k]

(4.12)

This relaxation smooths the ELBO and helps convergence. Finally, as noted
by [Sun, Paisley and Liu, 2017] in a similar setting, the gamma normaliza-
tion term presents computational difficulties, and we follow those authors in
introducing an auxiliary variable ξt to further lower bound this term: [Sun,
Paisley and Liu, 2017].

− log

(∑
l

γl[s
t
l = 1] + ε[1− [stl = 1]]

)
≥ − log ξt

−
∑

l γl[s
t
l = 1] + ε[1− [stl = 1]]− ξt

ξt
.(4.13)

To obtain the value of ξt, we differentiate the lower bound and set to zero,
which yields the following update rule:

ξt =
∑
l

Eq(γl[stl = 1] + ε[1− [stl = 1]]).(4.14)

We reproduce the entire list of CAVI updates in the supplemental mate-
rial [Gabitto et al., 2019].

4.5. Algorithmic work flow. To summarize, the analysis of a particu-
lar data set, based on a given set of fluorophore localizations in space and
time, proceeds as follows. First, we collapse observation in time and select
an initialization. We refine this initialization through our time-independent
model. We interleave birth-death, split-merge proposals to explore differ-
ent configurations of the state space and prune existing clusters. The final
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configuration of our time-independent algorithm seeds our time-dependent
model. Finally, clusters are refined by split-merge moves that help to sepa-
rate time-overlapping clusters. We approximate the entire time evolution of
each fluorophore state when splitting or merging fluorophores in this model.
To efficiently propose split moves, we calculate the posterior number of flu-
orophores inside clusters with an unusually high number of observations,
and evaluate split proposals. The calculation of the posterior number of flu-
orophores given blinking statistics is detailed in the supplementary material
[Gabitto et al., 2019]. Finally, at the end, for each fluorophore we compute
the time evolution of each fluorescent trace.

5. Related work. There has been a great deal of previous work on the
development to software to deconvolve super-resolution movies [Small and
Stahlheber, 2014; Holden, Uphoff and Kapanidis, 2011; Sergé et al., 2008;
Ovesnỳ et al., 2014]. Most of this work focuses on computationally efficient
algorithms for detecting the Gaussian shape of the point spread functions
without attempting to explicitly model latent temporal dynamics. Software
that incorporates temporal information is extremely computationally costly
and is prone to producing artifacts [Rosten, Jones and Cox, 2013]. Recently,
deep generative models have been used to identify fluorophores from SR
images, taking into account different PSF shapes [Sun, Archer and Panin-
ski, 2017; Speiser, Turaga and Macke, 2019; Nehme et al., 2019]. Some of
these approaches are complementary to ours and of similar computational
complexity; others are significant more costly computationally. Our soft-
ware builds upon fast single-frame deconvolution algorithms to incorporate
temporal information into the localization analysis. Furthermore, we use
spatially sensitive data structures to speed up calculations and facilitate
scalability.

More broadly, identifying the number of different time series and assign-
ing observations at each time point is a difficult task when the number of
observations does not match the number of time series. This problem has
been partially addressed by different authors. Several BNP approaches that
capture time evolution—most based on the Hierarchical Dirichlet Process
(HDP) [Teh et al., 2006]—have been developed in the setting of topic mod-
els. The HDP assumes that the probability of topics and the proportion
of words explained within each document are coupled. This is undesirable,
however, when there are rare topics explained by a large proportion of words
in a small number of documents. A similar problem has been encountered
in sparse topic modeling [Williamson et al., 2010; Faisal et al., 2012; Ar-
chambeau, Lakshminarayanan and Bouchard, 2014] where it is important
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to distinguish the probability that a topic belongs to a document from the
probability of inclusion of the topic into the analysis. To address this issue,
the authors proposed the use of a compound Indian buffet process-Dirichlet
process. However, their work did not consider the dependency of the features
across time and is limited by the sampling scheme developed.

The use of Bayesian nonparametric feature models for the modeling of
time series was initiated by Fox et al. [2009]. Their work focused on motion
capture data, a domain without the complexities and the scale of single-
molecule imaging domain that is our focus. There has been significant follow-
up work in this vein, including the use of a time-dependent beta process as
a Bayesian nonparametric prior for feature allocation models [Perrone et al.,
2016]. Again, however, the focus has been on small-scale problems and the
methods are not directly applicable to the single-molecule imaging problem.

6. Realistic Simulation Studies. In this section we present studies
assessing the performance of our algorithm on data sets derived from the
DNA origami platform and the nuclear pore complex. Both data sets were
presented in Section 2.

6.1. Data preprocessing and data sets construction. To create realistic
SMLM data sets we make use of the DNA origami platform introduced in
Section 2. Raw images of every data set were preprocessed with Thunder-
storm [Ovesnỳ et al., 2014]. Briefly, raw images were imported into FIJI [Schin-
delin et al., 2012] and the Thunderstorm plugin was run with camera param-
eters and default approximate and sub-pixel molecule localization parame-
ters. Next, observations with an unusual variance, uncertainty or intensity
value (five standard deviations above or below the mean) were filtered out.
We use these raw localizations to generate realistic data sets.

We isolated single fluorophores present in the data set in which fluo-
rophores are attached to handle complementary sequences (Figure 2A). We
verified that observations are localized with the reference TAMRA signal,
that three sets of cloud points co-localized and that cloud distances were
close to 84 nm (distance between handles 1-7 and 7-13). When these condi-
tions were met, we then isolated individual cloud of points and considered
each of them as an isolated fluorophore. For each extracted fluorophore, we
computed its posterior fluorophore location according to our algorithm for
just one fluorophore. This is the ground-truth fluorophore location against
which we test our algorithm.

6.2. Model hyperparameters. For all subsequent computational experi-
ments, we used weakly informative hyperpriors. We placed a Gamma(1,
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0.01) prior on the concentration parameters α0. The parameters of the base
measure were set from the data, with µ0 was chosen to be the center of the
field of view and σ0 the maximum distance between observations. To set the
prior on π0 we reasoned that in a real experiment, most of the points arise
from real fluorophores. Accordingly we chose a0 = 1, b0 = 100. We chose
the augmentation factor of the bounding box to be 1.25 times the average
standard deviation of the points. This value seemed to be robust across the
different data sets that we analyzed. For the time-dependent model, Γ0 was
given a Gamma(100, 1) prior. The prior on the transition matrix was given
via pseudo-counts αon,on/blink/dead of 10, 5, 1 and αblink,on/blink of 10, 1.

6.3. Computational experiments. In this section we present several dif-
ferent experimental scenarios that we employed to test the limits of our
algorithm. In particular we aimed to assess 1) when our algorithm fails to
distinguish nearby fluorophores; 2) how well our move proposals explore the
ELBO, finding global optima; and 3) how well our procedures scales with
an increasing number of fluorophores in the field of view.

To achieve this goal, we simulated fluorophore observations by randomly
sampling a DNA origami fluorophore and placing its observations in a ground-
truth position. To contaminate data sets with noise, we randomly selected
observations from any fluorophore and randomly positioned them in the field
of view. We quantified the noise level by measuring the ratio of noise points
over points that belong a ground-truth fluorophore. By these means, we were
able to construct realistic simulated data sets with realistic ground-truth ob-
servations. We judged performance with reference to a variety of metrics:
the algorithm’s ability to correctly segment the data according to the un-
derlying fluorophore location, the robustness to the algorithm to different
number of fluorophores and noise level, and fluorophore detection based on
fluorophore proximity.

6.4. Identifying nearby fluorophores. We simulated two fluorophores at
different distances and different noise levels, and compared our algorithms
(both the time-dependent and time-independent algorithms) to DBScan [Es-
ter et al., 1996] Figure 6a. We explored the ELBO through different move
proposals and returned the best configuration seen. In all cases, automatic
DBScan settings explored through optics [Schubert et al., 2017] failed to
identify the correct number of fluorophores. As seen in the figure, our algo-
rithm performed significantly better than DBScan. Our algorithm performed
poorly when observations are nearer than two times the observation standard
deviation, although the dispersion of the localizations of each fluorophore
also played a role in the performance. This limit is extended through the use
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Fig 6. Realistic simulated experiments, distinguishing two individual fluo-
rophores. a) Number of inferred fluorophores under different noise regimens, varying
the distance between them. b) For a noise level of 0.6, ELBO gap computed as the differ-
ence between a model with 2 fluorophores and a model with 1 fluorophore. When the Gap
becomes negative, the model prefers the incorrect configuration of just one fluorophore. c)
Error of fluorophore inferred position.

of our time-dependent formulation. This limit is an intrinsic property of our
model, as revealed by the average ELBO gap between the true fluorophore
configuration and one in which fluorophores are merged Figure 6b. The gap
trace switches sign at the limit, indicating a preferred incorrect fluorophore
configuration. Our algorithm has a good performance above this limit that is
robust to noise. Below this limit, even if data driven proposals can identified
more than one fluorophore in the cloud of points, their location cannot be
correctly determined.

We explored robustness to different noise scenarios, revealing that per-
formance is maintained even when the noise level reaches a value of two.
This noise corruption means that locally, two out of three points belonged
to noise. Experimentally, it is highly unlikely to encounter such scenarios,
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and we did not observe it in our nuclear pore experiments. Finally, our time-
dependent algorithm seems to be more accurate than our time-independent
model in correctly localizing fluorophores’ true positions Figure 6c.
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Fig 7. Realistic simulated experiments, scaling the number of fluorophores. a)
True configuration for an example of 16 fluorophores in the field of view. b) For a config-
uration such as in a), inferred fluorophore positions. c) Number of inferred fluorophores
when the ground truth number in the field of view is increased. d) Average error ± standard
deviation for the inferred fluorophores’ positions.

6.5. Scaling fluorophore numbers. Next, we simulated an increasing num-
ber of fluorophores at different distances, localizing them on a grid. We im-
posed a realistic level of noise of 0.5 Figure 7a-b. We varied fluorophore
distances while remaining above our identification limit. We then applied
our algorithms to every condition, randomly simulating the conditions six
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times and computing averages of inferred fluorophore numbers. As seen in
Figure 7c, our algorithm is robust to an increasing number of fluorophores as
long as we increase the number of proposals explored. There was a mild de-
crease in fluorophore recovery when the distances approaced the detection
limit. As expected, true fluorophore localization degraded as fluorophores
approached each other (see Figure 7d).
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Fig 8. Analysis of Nuclear Pore Complex Datasets. a) Top left, a nuclear pore
complex image convolved with a Gaussian filter. Bottom left, the nuclear pore complex
is rotated eight times and these rotated images are aggregated to generate a nuclear pore
complex template. Right, an eight-fold rotation of the nuclear pore complex. b) Nuclear pore
complexes isolated through template matching. c) Localizations extracted from nuclear pore
complex data sets. Inferred fluorophore centers highlighted with a cross in different colors.
d) ELBO evolution during our inference procedure for the four datasets shown in c). e)
A histogram depicting the distance for each point to its closest neighbor. f) Same as in c)
but this time for each inferred fluorophore location. g) Inferred fluorophore durations. h)
Inferred time interval between subsequent observations of each fluorophore.

7. Application to Nuclear Pore Complex Data. Finally, we present
results of applying our algorithms to the nuclear pore complex, a real bio-
logical data set of known structure. To focus on the NPC, a field of view
needs to be preprocessed, and NPCs isolated. To select several instances of
the imaged NPCs, we proceeded by isolating a few candidates in the image
and creating a searching template (Figure 8A). This template was cross-
correlated against the entire image and candidates data sets were created
from regions in which the correlation score exceeded a threshold (Figure 2A).
These NPC datasets with localized emitters served as input to our analysis
(examples of NPCs are reproduced in (Figure 8B)).

We applied our algorithms to 369 NPC datasets, running them for a
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fixed budget of iterations (although convergence was recognized well before
exhausting the budget) and identifying underlying fluorophores (Figure 8C-
D)). We were specifically interested in assessing the validity of our inferred
fluorophores. Therefore, we made use of the aforementioned NPC symme-
try and counted fluorophore distance to the closest neighbor. Given the
NPC octagonal shape, we thereby obtained a minimal fluorophore distance
of 41.5nm, where the raw data minimal distance is close to 3nm (as illus-
trated in Figure 8e-f)). Moreover, as seen in Figure 8g-h, the inferred time
dependent parameters were in accordance with published results, with the
blinking probability exhibiting a clear exponential decay [Lee et al., 2012].

8. Discussion. We have presented a Bayesian nonparametric method
for the identification of fluorescent molecules in super-resolution experi-
ments. To obtain a procedure that is viable at the scale of realistic ex-
periements, we developed a statistical methodology that proceeds in two
phases. The first phase is based on a model that analyzes localization mi-
croscopy observations by collapsing temporal information. This model relies
on the Dirichlet process as a prior on the underlying number of fluorophores
present in the sample. To speed calculation, we used spatial data struc-
tures (quadtrees) to obtain individual fluorophore assignments. Inference
in this model is performed using mean field variational inference, and the
feature space is explored using state space adaptation techniques. Next, we
developed a statistical model that incorporates temporal information into
the analysis and accounts for fluorophore photo-physics. Taking the infinite
limit of this model defines a nonparametric prior that is comprised of an
infinite factorial hidden Markov model and a dependent Gamma process.
This prior allows the assignment of different probabilities to the inclusion
of a fluorophore at each time point and determines the probability of as-
signing an observation to each active fluorophore. To refine the inferred flu-
orophore numbers, we incorporate data-driven split-merge moves that split
fluorophores based on fluorophore blinking statistics.

We demonstrated the utility of our model using realistic simulated data
and a real data set in which the underlying biological structure is known.
In this real data set, we were able to correctly infer fluorophore localiza-
tion consistent with the geometry of the sample, as demonstrated by the
inter-fluorophore position distributions. By using realistic simulated data,
we showed that our model is robust to noise conditions encountered in real
experiments. We expect our method to perform poorly in cases where fluo-
rescent molecules are out of focus, which results in an inferred position that
differs greatly from the true location.
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A key feature of our algorithm is that it can be used as a postprocessor
for any software pipeline that extracts raw fluorophore localizations from
data. Our approach aims to integrate temporal information into the analy-
sis and correct mistakes produced during single-molecule identification. We
illustrated our method using the external software package Thunderstorm to
process our images. In practice, there is evidence that such localization soft-
ware produces mistakes when two nearby fluorescent molecules are active in
the same frame due to a failure to correctly infere molecule locations. Future
work could consider alternative ways of preprocessing imaging datasets. In
this case, to further improve localization accuracy, it might be desirable to
incorporate modeling of the point spread function into the model and to di-
rectly process raw images within a more sophisticated statistical framework.

Our method is implemented in python with a C++ kernel, available on
github. Instructions on how to run the code as well as code to reproduce the
results are available within the repository.
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SUPPLEMENTARY MATERIAL

Supplement to ”A Bayesian nonparametric approach to super-
resolution single molecule localization”:
(DOI: http://www.e-publications.org/ims/support/dowload/imsart-ims.zip).
We provide additional material to support the results in this paper. We in-
clude in the supplemental materials, detailed derivations of parameter up-
date rules, cluster refinement procedures and possible extensions of our al-
gorithm to different time distributions.
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Sergé, A., Bertaux, N., Rigneault, H. and Marguet, D. (2008). Multiple-target
tracing (MTT) algorithm probes molecular dynamics at cell surface. Protocol Exchange,
DOI 10.

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica
639–650.

Small, A. and Stahlheber, S. (2014). Fluorophore localization algorithms for super-
resolution microscopy. Nature Methods 11 267.

Specht, C. G., Izeddin, I., Rodriguez, P. C., El Beheiry, M., Rostaing, P.,
Darzacq, X., Dahan, M. and Triller, A. (2013). Quantitative nanoscopy of in-
hibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 79
308–321.

Speiser, A., Turaga, S. C. and Macke, J. H. (2019). Teaching deep neural networks to
localize sources in super-resolution microscopy by combining simulation-based learning
and unsupervised learning. ArXiv abs/1907.00770.

Sun, R., Archer, E. and Paninski, L. (2017). Scalable variational inference for super
resolution microscopy. In Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics 1057–1065.

Sun, S., Paisley, J. and Liu, Q. (2017). Location dependent Dirichlet processes. In Inter-
national Conference on Intelligent Science and Big Data Engineering 64–76. Springer.

Szymborska, A., De Marco, A., Daigle, N., Cordes, V. C., Briggs, J. A. and
Ellenberg, J. (2013). Nuclear pore scaffold structure analyzed by super-resolution
microscopy and particle averaging. Science 341 655–658.

Taddy, M. A., Kottas, A. et al. (2012). Mixture modeling for marked Poisson processes.
Bayesian Analysis 7 335–362.

Teh, Y. W., Jordan, M. I., Beal, M. J. and Blei, D. M. (2006). Hierarchical Dirichlet
processes. Journal of the American Statistical Association 101 1566-1581.

Valera, I., Ruiz, F. J. and Perez-Cruz, F. (2015). Infinite factorial unbounded-state
hidden Markov model. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 38 1816–1828.

van de Linde, S., Heilemann, M. and Sauer, M. (2012). Live-cell super-resolution
imaging with synthetic fluorophores. Annual Review of Physical Chemistry 63 519–
540.

Wainwright, M. J., Jordan, M. I. et al. (2008). Graphical models, exponential families,
and variational inference. Foundations and Trends R© in Machine Learning 1 1–305.

Williamson, S., Wang, C., Heller, K. A. and Blei, D. M. (2010). The IBP compound
Dirichlet process and its application to focused topic modeling. In Proceedings of the
27th International Conference on Machine Learning (ICML-10) 1151–1158. Citeseer.

Xu, K., Zhong, G. and Zhuang, X. (2013). Actin, spectrin, and associated proteins form
a periodic cytoskeletal structure in axons. Science 339 452–456.

Zanacchi, F. C., Manzo, C., Alvarez, A. S., Derr, N. D., Garcia-Parajo, M. F.
and Lakadamyali, M. (2017). A DNA origami platform for quantifying protein copy
number in super-resolution. Nature Methods 14 789.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2020. ; https://doi.org/10.1101/2020.02.15.950873doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.15.950873
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 GABITTO, ET AL.

M.I.G.
Center for Computational Biology
Flatiron Institute, Simons Foundation
New York, New York, 10010
USA
E-mail: mgabitto@simonsfoundation.org

H. M-N.
Li Ka Shing Center for Biomedical and Health Sciences.
University of California, Berkeley
Berkeley, California, 94720
USA
E-mail: hervemn@berkeley.edu

A.P.
Department of Statistics and
Center for Theretical Neuroscience
Columbia University
New York, New York, 10027
USA
E-mail: aripakman@gmail.com

A.P.
Center for Computational Biology
Flatiron Institute, Simons Foundation
New York, New York, 10010
USA
E-mail: apataki@flatironinstitute.org

X.D.
Li Ka Shing Center for Biomedical and Health Sciences.
University of California, Berkeley
Berkeley, California, 94720
USA
E-mail: darzacq@berkeley.edu

M.I.J.
Department of Statistics
University of California, Berkeley
Berkeley, California 94720
USA
E-mail: jordan@stat.berkeley.edu

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2020. ; https://doi.org/10.1101/2020.02.15.950873doi: bioRxiv preprint 

mailto:mgabitto@simonsfoundation.org
mailto:hervemn@berkeley.edu
mailto:aripakman@gmail.com
mailto:apataki@flatironinstitute.org
mailto:darzacq@berkeley.edu
mailto:jordan@stat.berkeley.edu
https://doi.org/10.1101/2020.02.15.950873
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Experimental Datasets
	A Time-Independent Model of Fluorophore Locations
	The Dirichlet Process
	Model overview
	Mean field variational inference
	Inference
	Scalable inference by exploiting spatial constraints
	Reliable Bayesian inference via state space adaptation

	A time dependent model of fluorophore locations
	A dynamic prior that shares features across time points
	Model overview
	Mean field variational inference
	Inference
	Algorithmic work flow

	Related work
	Realistic Simulation Studies
	Data preprocessing and data sets construction
	Model hyperparameters
	Computational experiments
	Identifying nearby fluorophores
	Scaling fluorophore numbers

	Application to Nuclear Pore Complex Data
	Discussion
	Acknowledgments
	Supplementary Material
	References
	Author's addresses

