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Abstract 
Motivation: Accurately predicting essential genes using computational methods can greatly 
reduce the effort in finding them via wet experiments at both time and resource scales, and further 
accelerate the process of drug discovery. Several computational methods have been proposed for 
predicting essential genes in model organisms by integrating multiple biological data sources 
either via centrality measures or machine learning based methods. However, the methods aiming 
to predict human essential genes are still limited and the performance still need improve. In 
addition, most of the machine learning based essential gene prediction methods are lack of skills 
to handle the imbalanced learning issue inherent in the essential gene prediction problem, which 
might be one factor affecting their performance. 

Results: We proposed a deep learning based method, DeepHE, to predict human essential genes 
by integrating features derived from sequence data and protein-protein interaction (PPI) network. 
A deep learning based network embedding method was utilized to automatically learn features 
from PPI network. In addition, 89 sequence features were derived from DNA sequence and protein 
sequence for each gene. These two types of features were integrated to train a multilayer neural 
network. A cost-sensitive technique was used to address the imbalanced learning problem when 
training the deep neural network. The experimental results for predicting human essential genes 
showed that our proposed method, DeepHE, can accurately predict human gene essentiality with 
an average AUC higher than 94%, the area under precision-recall curve (AP) higher than 90%, 
and the accuracy higher than 90%. We also compared DeepHE with several widely used traditional 
machine learning models (SVM, Naïve Bayes, Random Forest, Adaboost). The experimental 
results showed that DeepHE greatly outperformed the compared machine learning models. 

Conclusions: We demonstrated that human essential genes can be accurately predicted by 
designing effective machine learning algorithm and integrating representative features captured 
from available biological data. The proposed deep learning framework is effective for such task. 
Availability and Implementation: The python code will be freely available upon the acceptance 
of this manuscript at https://github.com/xzhang2016/DeepHE. 
Contact: xue.zhang@tufts.edu 

 
1 Introduction 

Essential genes are a subset of genes which are indispensable to the survival or reproduction of a 
living organism. The prediction of gene essentiality is very important for understanding the 
minimal requirements of an organism, identifying disease genes, and finding new drug targets. 
The discovery of essential genes via wet-lab experimental methods are often time-consuming, 
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laborious, and costly. With the accumulation of gene essentiality data in some model organisms 
and human cell lines, many computational methods have been proposed to predict essential genes 
by exploring the correlations between gene essentiality and all sorts of biological information. 
One focus in this direction is network based centrality measures. Many studies have demonstrated 
that highly connected proteins in a protein-protein interaction (PPI) network are more likely to be 
essential than those of low connections. Although the so-called centrality-lethality rule has been 
observed in several species, the prediction accuracy is very low for predicting gene essentiality 
solely based on each of these network topological features. One reason is that the existing PPI 
networks are not complete and very noisy. The other reason might be the fact that gene essentiality 
is expected to be affected by multiple biological factors which cannot be fully captured by network 
topological features. To improve the prediction accuracy, several new centrality measures have 
been proposed by combining topological properties with other biological information. For example, 
CoEWC integrated network topological property with gene expression data to capture the common 
features of essential proteins in both date hubs and party hubs, and showed significant performance 
improvement compared to methods only based on PPI networks [1]. Zhang et al. proposed an 
ensemble framework based on gene expression data and PPI networks, which can significantly 
improve the prediction accuracy of common used centrality measures [2]. Zhang et al. also 
proposed an integrated method, OGN, by combining network topological properties, the 
probability of co-expression with the neighboring proteins, and the orthologs in reference 
organisms [3]. Li et al. proposed GOS [4] by integrating gene expression, orthology, subcellular 
localization and PPI networks to predict gene essentiality. UDoNC combined the domain features 
with the topological properties of PPI networks to predict protein essentiality [5]. Centrality 
measure based methods predict gene essentiality by a scalar score derived whether from biological 
network or by integrating multiple data sources, which have limited power for accurately 
identifying all essential genes. More details about centrality measures for predicting essential 
genes/proteins can be found in a recent review [6]. 

The other focus is using machine learning to integrate multiple features derived from different 
biological data sources to predict gene essentiality. Zhang et al. provided a comprehensive review 
for gene essentiality predicting methods based on machine learning and network topological 
features, and pointed out the challenges and potential research directions [7]. As shown in [7], 
most of the proposed machine learning based predicting methods were evaluated in model 
organisms. In addition, the traditional machine learning methods were used to predict gene 
essentiality. Recently, Guo et al. used SVM (Support Vector Machines) to predict human gene 
essentiality based on the 𝜆-interval Z curve derived features from nucleotide sequence data [8]. 
Zeng et al. used deep learning method to predict gene essentiality by integrating gene expression 
data, subcellular localization data, and PPI networks together, and tested it on S. cerevisiae [9]. 
Hasan et al. used a six hidden-layers neural network to predict gene essentiality in microbes based 
on sequence data [10].  

Recently, human essential genes were identified in several human cancer cell lines using CRISPR-
Cas9 and gene-trap technology [11-13]. These identified essential genes provided a clear definition 
of the requirements for sustaining the basic cell activities of individual human tumor cell types, 
and can be regarded as targets for cancer treatment [14]. These essential gene datasets together 
with other available biological data sources enable us to test one important and interesting 
assumption that human gene essentiality might be accurately predicted using computational 
methods. Although many previous studies showed that features derived from experimental omics 
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data are useful to predict gene essentiality, such experimental omics data are often unavailable for 
under studied organisms. In this paper, we proposed a deep learning based method to predict 
human gene essentiality by using features derived from sequence data, which is therefore easily 
ready to be used for predicting essential genes in other organisms. In addition, in order to improve 
the performance of the proposed method, we also explored features automatically learned by using 
a deep learning embedding method from human protein interaction network. We showed that each 
of the two types of features can train a classifier with acceptable prediction performance, and the 
integration of these features further improves the prediction accuracy. 

 
2 The Proposed Deep Learning Framework 

Figure 1 gives the overall architecture of the proposed deep learning framework, DeepHE. It 
mainly consists of two parts, feature extraction and classification. It takes two types of data as 
input, the sequence data and PPI network. At the feature extraction level, several sequence features 
for each gene were extracted from the nucleotide sequence and protein sequence data. In addition, 
an embedding method, node2vec [15], was used to learn the semantic features for each gene from 
the PPI network. The classification module consists of several fully connected hidden layers and 
an output layer. All hidden layers utilized an excellent activation function, ReLU (Rectified Linear 
Unit), as their activation functions, and used dropout parameter to prevent overfitting. After the 
hidden layers, a fully connected output layer used softmax as its activation function. Considering 
the skewed distribution nature of human essential gene prediction problem, we explored a cost-
sensitive technique to address the imbalanced learning issue when training the classifier.  

 

Figure 1. The flowchart of DeepHE 
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2.1 Features derived from sequence data 

We extracted features from gene nucleotide sequences and protein sequences. Several features 
derived from sequence data have been validated their usefulness in predicting gene essentiality in 
model organisms [10, 16]. In this paper, we used the following sequence derived features: codon 
frequency, maximum relative synonymous codon usage (RSCUmax), codon adaptation index 
(CAI), gene length, GC content, amino acid frequency, and protein sequence length.  

Codon frequency of a gene is computed by sliding a window of three nucleotides along its DNA 
sequence. The raw counts of 64 codons for each gene were calculated and normalized. Unbalanced 
synonymous codon usage is prevalent in both prokaryotes and eukaryotes. Codon usage bias in a 
gene may imply its foreign origin, different functional constraints or a different regional mutation. 
RSCU is a simple measure of non-uniform usage of synonymous codons in a coding sequence, 
which is defined as the number of times a particular codon is observed, relative to the number of 
times that the codon would be observed for a uniform synonymous codon usage. Given a 
synonymous codon i that has an n-fold degenerate amino acid, RSCU is computed as (1), where 
𝑋# is the number of occurrence of codon i, and n is 1, 2, 3, 4, or 6 according to the genetic code. 
In this paper, we used the maximal RSCU of each gene as a feature. 

𝑅𝑆𝐶𝑈# =
)*

+
, )*,

*-+
                                                                           (1) 

Codon adaptation index (CAI) estimates the bias towards certain codon that are more common in 
highly expressed genes. The CAI of a gene is defined as (2) where L is the number of codons in 
the gene excluding methionine, tryptophan, and stop codon.  

𝐶𝐴𝐼 = 	 𝑟#2
#34

4/2, 𝑟# =
6789

6789:;<
                                                  (2) 

In addition to the 68 features derived from gene nucleotide sequences (64 codon frequency and 1 
GC content, gene length, CAI, and RSCUmax, respectively), we also used amino acids frequencies 
and the protein length, that is, 21 features derived from protein sequences. All features were scaled 
to have mean m = 0 and standard deviation std = 1. 

2.2 Features learned from PPI network 

Network embedding methods aim at learning low-dimensional latent representation of nodes in a 
network, and these representations can be used as features for classification task. Different from 
some common used topological features, such as node degree centrality (DC), betweenness 
centrality (BC), and closeness centrality (CC), which usually capture one type of network 
topological characteristics, the feature representations learned by embedding methods are expected 
to capture the similarity between nodes in a network.  

In this paper, we used a network embedding method, node2vec [15], to automatically learn features 
for each gene from PPI network. It utilizes a flexible notion of a node’s network neighborhood and 
a biased random walk procedure to learn richer representations. It aims to learn a mapping of nodes 
to a low-dimensional space of features that maximizes the likelihood of preserving network 
neighborhoods of nodes. The biased random walk procedure will generate a corpus which consists 
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of many routes each including multiple nodes. These routes just like the sentences including 
multiple words in natural language. Then these routes will be fed to word2vec framework using a 
skip-gram technique to learn low-dimensional features for each node. We got 64 features for each 
gene from the PPI network. 

2.3 Deep learning model based on multilayer perceptron 

The classification module in our deep learning model, DeepHE, is based on the multilayer 
perceptron structure. It includes one input layer, three hidden layers, and one output layer. All the 
hidden layers utilize the rectified linear unit (ReLU) activation function. A ReLU is simply defined 
as f(x) = max(0, x), which turns negative values to zero and grows linearly for positive values. In 
DeepHE, the output layer uses sigmoid activation function to perform discrete classification. The 
loss function in DeepHE is binary cross-entropy. 

After each hidden layer, a dropout layer is used to make the network less sensitive to noise in the 
training data and increase its ability to generalize. The dropout layer randomly assigns zero weights 
to a fraction of the neurons in the network. Table 1 gives the parameters used in DeepHE.  

Table 1. Parameters of DeepHE 
 #nodes Activation function Dropout probability 
Input layer 153 - - 
Hidden layer 1 124 ReLU 0.2 
Hidden layer 2 256 ReLU 0.2 
Hidden layer 3 512 ReLU 0.2 
Output layer 2 sigmoid - 
epochs 100 (early stopping) 
optimizer Adam (learning_rate=0.001) 

 
The output y of layer i depends on the input of layer i - 1 as shown in (3), where x is the input, 𝜎 
is the activation function, b is the bias, and W is the edge weight matrix. During the training phase, 
the network learns the weights W and the bias b.  

𝑦 = 	𝜎(𝑊#𝑥#B4 + 𝑏#B4)                                                                (3) 
 
In order to tackle the imbalanced classification problem, we used class weight to train a weighted 
neural network or cost-sensitive neural network. In the weighted neural network, the 
backpropagation algorithm will be updated to weigh misclassification errors in proportion to the 
importance of the class. This will allow the model to pay more attention to examples from the 
minority class than the majority class in datasets with a severely skewed class distribution. 
 

3 Results and discussion 
3.1 Data collection 

DEG database [17] contains 16 human essential gene datasets, among which 13 datasets are from 
[11-13], and the other three datasets are from [18-20]. We downloaded all the 16 human essential 
gene datasets for analysis. In total 8,256 human genes are annotated to be essential. Figure 2 shows 
the distribution of these essential genes across the datasets. According to the assumption that about 
10% human genes might be essential genes [12], we selected the genes contained at least in 5 
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datasets as our essential gene dataset, which has 2,024 genes accounting for ~10% of human genes. 
The DNA sequences and protein sequences for essential genes were downloaded from DEG. We 
downloaded the genome DNA sequences and protein sequences for all annotated genes from 
Ensembl [21] (release 97, July 2019). Excluding the 8,256 annotated essential genes in DEG, the 
other annotated protein coding genes formed our nonessential gene dataset, which has 12,697 
genes.  

 
 

Figure 2. The distribution of essential genes across the 16 datasets 
 

The protein-protein interaction data was downloaded from BioGRID [22] (release 3.5.181, 
February 2020). Only physical interactions between human genes were used. After filtering out 
self-interactions and several small separated subgraphs, we obtained a protein-protein interaction 
graph with 17,762 nodes and 355,647 edges. This interaction network was used to learn embedding 
features. We used genes having both sequence features and network embedding features for 
training and testing the classification model, that is, 2,009 essential genes and 8,430 nonessential 
genes were used in the following classification performance evaluation. 

The number of nonessential genes is more than 4 folds of that of essential genes, which would 
suffer the class imbalance problem and result in low predictive accuracy issue for the infrequent 
class. To address this imbalance issue, class weight was used to train a weighted neural network. 
In each experiment, the 2009 essential genes and 2009 * 4 random selected nonessential genes 
were used to train, validate and test the model. The class weight was set to 4 for the class of 
essential genes, and 1 for that of nonessential genes. We also tested the effect of different weights 
to the performance of our model.  

3.2 Evaluation metrics 

The performance of DeepHE was evaluated using the area under the curve (AUC) of the receiver 
operating characteristic curve (ROC). ROC plot represents the trade-off between sensitivity and 
specificity for all possible thresholds. We also used the area under precision-recall curve (AP) to 
evaluate its performance. Precision-Recall (PR) curves summarize the trade-off between the true 
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positive rate and the positive predictive value for DeepHE using different probability thresholds. 
ROC curves are appropriate for balanced classification problems in which each class has almost 
identical number of instances while PR curves are more appropriate for imbalanced datasets. Since 
human essential gene prediction is an imbalanced classification problem, the area under the PR 
curve (AP) should be more indicative than AUC-ROC. In addition to AUC and AP scores, we also 
gave the following performance measures: sensitivity (Sn), specificity (Sp), positive predictive 
value (PPV), and accuracy (Ac), which are defined in (4) - (7), where TP, TN, FP, and FN are the 
number of true positives, true negatives, false positives, and false negatives, respectively.  

𝑆F =
GH

GHIJK
                                                                                 (4) 

𝑆L =
GK

JHIGK
                                                                                 (5) 

𝑃𝑃𝑉 = GH
GHIJH

                                                                               (6) 

𝐴𝑐 = GHIGK
GHIJKIGKIJH

                                                                      (7) 

3.3 Performance evaluation 
3.3.1 The effect of number of hidden layers and dropout probability 

There are several hyper-parameters in DeepHE, which would affect its performance. In the 
following experiments, we chose Adam as the optimizer because of its superior performance. Its 
initial learning rate is 0.001. The training was run for 100 epochs with early stopping criteria. The 
batch size is 32. For each run, the 2009 * 4 nonessential genes were randomly selected from the 
8430 nonessential genes. We used 80% data for training, 10% data for validation, and the other 
10% data for testing. We kept the same ratio between the number of essential genes and that of 
nonessential genes in training, validating, and testing data. Each experiment was executed 10 times 
to get the average performance.  

Table 2 gives the performance of DeepHE with different number of hidden layers and different 
dropout probability (DP). From table 2 we can see that the overall performance of DeepHE is very 
robust to these two parameters. For example, its best, average, and worst AUC scores are 94.15%, 
93.23%, and 92.47% respectively. It achieves the best overall performance with AUC = 94.15% 
when using HL3 with DP = 0.2. Its AP scores are also very stable with the best, average, and worst 
values of 90.64%, 89.4%, and 88.69% respectively. Same with AUC, it achieves the best AP score 
of 90.64% when using HL3 with DP = 0.2. In addition to the best AUC and AP scores, it also 
achieves the best scores for specificity (94.5%), PPV (77.74%), and accuracy (90.88%) when using 
HL3 with DP = 0.2. The best sensitivity score is 87.16% when using HL5 with DP = 0.5. From 
table 2 we can also see that with the increase of drop probability, its sensitivity score increases but 
its PPV score decreases in most cases.  
In a very skewed classification problem, the accuracy and AUC measures can get large values 
even when almost all the instances in the minority class are classified into the majority class. That’s 
not what we expected. In most cases of imbalanced classification problems, we are far more 
concerned with the classifier’s performance on the minority class. Since the essential gene 
prediction problem is often a very skewed classification problem in which the number of essential 
genes is much less than that of nonessential genes. Our concerns would be how many essential 
genes can be predicted and how many genes are truly essential among those predicted as essential 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2020. ; https://doi.org/10.1101/2020.02.14.950048doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.14.950048
http://creativecommons.org/licenses/by-nc-nd/4.0/


genes, that is, sensitivity and PPV as well as the comprehensive measure AP are more important. 
Based on this point, we think that DeepHE with 3 hidden layers and DP = 0.2 is the best one which 
will be used in the following experiments. 
Figure 3 gives the ROC curves of DeepHE in 10 repetitions when using HL3 and DP = 0.2. ROC 
curves summarize the trade-off between the true positive rate and false positive rate of DeepHE 
using different probability thresholds. From figure 3 we can see that DeepHE reached its best 
performance at iterations 2, 4, 8, and 10 with AUC = 0.95. In addition, the performance of DeepHE 
is quite stable since the difference is only about 0.02 between its best and worst AUC scores. Guo 
et al. also used machine learning (SVM) to predict human essential genes based on sequence data 
[8]. Their reported best performance is AUC = 0.88. Compared with [8], DeepHE outperformed 
their method. 
Figure 3 also shows PR curves for 10 iterations of DeepHE with HL3 and DP = 0.3. Similar with 
the AUC scores, its AP scores are also very stable since there’s only a very small difference 
between its best and worst AP scores (about 0.04). It achieves the best performance in iteration 6 
with AP = 93%. The worst AP score is still above 88% which indicates that DeepHE is very 
effective for predicting human essential genes. 

3.3.2 The effect of class weight 
In order to cope with the imbalanced data distributions between two classes, DeepHE used class 
weight to give larger penalty when misclassifying an instance in the minority class, that is, the 
class of essential genes. In the following, we will test if different weight values would affect the 
performance of DeepHE. Note that in each experiment, the ratio between the number of essential 
genes and that of nonessential genes is 1:4. The class weight for nonessential genes is always 1. 
We will vary the class weight for essential genes from 1 to 10 to see its effect on the performance. 
DeepHE with 3 hidden layers and DP = 0.2 is used for the following experiments. 

Table 3 gives the performance of DeepHE with different class weights for the class of essential 
genes. From table 3 we can see that DeepHE achieves best AUC (94.15%), PPV (77.74%), 
Accuracy (90.88%), and AP score (90.64%) when class weight = 4.0. It gets the best sensitivity 
score (79.85%) when class weight = 9.0. In general, the sensitivity score increases with the increase 
of the class weight, but PPV score decreases with the increase of class weight. This accords with 
our intuition. With larger class weight, misclassifying an essential gene will get larger penalty than 
misclassifying a nonessential gene. In this situation, more essential genes will be put into the right 
class, at the same time, more nonessential genes would also be put into the class of essential genes, 
which will result in higher sensitivity score and lower PPV score. When class weight = 4.0, it 
mimics the situation that the number of essential genes equal to the number of nonessential genes, 
thus it achieves a balanced point for sensitivity and PPV score. One can set the class weight 
according to his preference on whether higher specificity or higher PPV or just the balance between 
them. 
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Table 2. The performance of DeepHE with different parameters 

Hidden layers Dropout 
probability AUC Sn Sp PPV Ac AP 

HL3 

[128, 256, 512] 

0.1 0.9325 0.7537 0.9295 0.7303 0.8943 0.8882 

0.2 0.9415 0.7638 0.945 0.7774 0.9088 0.9064 

0.3 0.9352 0.7716 0.928 0.7302 0.8967 0.8967 

0.4 0.9356 0.7881 0.9188 0.7091 0.8926 0.8972 

0.5 0.9321 0.808 0.8937 0.6571 0.8765 0.8904 

HL4 

[128, 256, 512, 1024] 

0.1 0.931 0.7572 0.9295 0.7305 0.895 0.8924 

0.2 0.9338 0.7816 0.9235 0.7215 0.8951 0.8976 

0.3 0.9282 0.8025 0.9075 0.6877 0.8865 0.8942 

0.4 0.9372 0.8488 0.8711 0.624 0.8667 0.8967 

0.5 0.9369 0.8687 0.8553 0.601 0.858 0.9018 

HL5 

[128, 256, 512, 1024, 1024] 

0.1 0.9247 0.7672 0.921 0.711 0.8902 0.8888 

0.2 0.931 0.7811 0.9211 0.7129 0.8931 0.893 

0.3 0.9282 0.8199 0.8893 0.6515 0.8754 0.8891 

0.4 0.9283 0.8498 0.8654 0.6128 0.8623 0.8909 

0.5 0.9296 0.8716 0.827 0.5583 0.8359 0.8869 

 

Table 3 also tells us that the AUC, specificity, AP, and Accuracy of DeepHE are very robust to 
the class weight. For example, the best, average, and worst AUC scores are 94.15%, 93.48%, and 
93.07% respectively; the best, average, and worst specificity scores are 94.75%, 93.03%, and 90.95% 
respectively; the best, average, and worst AP scores are 90.64%, 89.69%, and 89.19% respectively; 
the best, average, and worst Accuracy scores are 90.88%, 89.69%, and 88.39% respectively. When 
varying the class weight, sensitivity score and PPV change in opposite directions which makes the 
overall performance of DeepHE only slightly affected by the change of class weight.
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Figure 3. The ROC and PR curves of DeepHE with HL3 and DP = 0.2 

 
Table 3. The performance of DeepHE with different class weights for essential genes 

Class weight AUC Sn Sp PPV Ac AP 

1.0 0.9307 0.7189 0.9475 0.7744 0.9018 0.8949 

2.0 0.9321 0.7328 0.9377 0.7462 0.8967 0.8934 

3.0 0.9368 0.7438 0.9388 0.7524 0.8998 0.8969 

4.0 0.9415 0.7638 0.945 0.7774 0.9088 0.9064 

5.0 0.9369 0.7796 0.9261 0.7288 0.8968 0.8982 

6.0 0.9349 0.7701 0.9284 0.7301 0.8967 0.8963 

7.0 0.9322 0.7627 0.9275 0.7253 0.8945 0.8919 

8.0 0.9336 0.7841 0.9215 0.716 0.894 0.8957 

9.0 0.9381 0.7985 0.9209 0.7173 0.8964 0.9031 

10.0 0.9316 0.7816 0.9095 0.6851 0.8839 0.8922 

 

3.3.3 The contribution of different features 
DeepHE utilizes two types of features, sequence features (S) and network embedding features (N). 
In the following we will test how each type of features affect the performance of DeepHE. In the 
following experiments, DeepHE works with same configurations (3 hidden layers, DP = 0.2, class 
weight = 4.0. Other configurations are same as before) except the input features.  
Table 4 gives the performance of DeepHE using different type of features. It tells us that DeepHE 
with the integration of sequence features and network embedding features works best which 
confirms the contribution of the two types of features. DeepHE with only sequence features works 
worst which has very low PPV score (53.28%). DeepHE with network embedding features works 
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in between, whose AP score achieves acceptable level (86.53%). DeepHE achieves the best 
performance for all the six measures by integrating these two types of features. 
 

Table 4. The performance of DeepHE, SVM, NB, RF, and Adaboost with different type of features 

ML Feature 
type 

AUC Sn Sp PPV Ac AP 

DeepHE S+N 0.9415 0.7638 0.945 0.7774 0.9088 0.9064 

 S 0.8586 0.707 0.8438 0.5328 0.8164 0.7904 

 N 0.9064 0.6955 0.9146 0.6765 0.8707 0.8653 

SVM S+N 0.8654 0.8627 0.9042 0.6831 0.8887 0.5993 

 S 0.7709 0.7556 0.7862 0.4688 0.7801 0.4033 

 N 0.8544 0.8145 0.8943 0.6581 0.8783 0.5733 

NB S+N 0.6574 0.512 0.8028 0.3979 0.7447 0.2994 

 S 0.6462 0.5718 0.7205 0.3398 0.6908 0.2791 

 N 0.6997 0.4344 0.965 0.7609 0.8591 0.4423 

RF S+N 0.7509 0.5227 0.9792 0.862 0.888 0.5462 

 S 0.6049 0.2362 0.9737 0.6926 0.8264 0.3162 

 N 0.7018 0.4297 0.9739 0.8046 0.8652 0.4597 

Adaboost S+N 0.8159 0.8025 0.8294 0.5401 0.824 0.473 

 S 0.7322 0.7626 0.7017 0.3899 0.7139 0.3449 

 N 0.7828 0.7661 0.7996 0.4884 0.7929 0.421 

 
3.3.4 Comparison with traditional machine learning models 

Several machine learning methods have been used to predict essential genes [7]. In order to 
demonstrate the superior of our proposed prediction method DeepHE, we also compared it with 
several widely used traditional machine learning models, such as Support Vector Machines (SVM), 
Naïve Bayes (NB), Random Forest (RF), and Adaboost. All the compared machine learning 
algorithms are implemented by scikit-learn python library with default parameters, unless 
otherwise specified. For each model, we either set class_weight parameter to 4.0 or set 
sample_weight parameter to 4.0 for each essential gene and 1.0 for each nonessential gene, 
therefore the two types of weights are essentially same. The sample_weight is only used when 
class_weight is not available. All models were tested 10 times and the average performance for 
each measure was reported.  

Table 4 gives the results. From table 4 we can see that DeepHE (N+S) significantly outperforms 
the other machine learning models regarding to three comprehensive measures, AUC, AP, and 
Accuracy. For instance, the AUC score of DeepHE (N+S) is 8.79% higher than that of SVM (N+S), 
43.22% higher than that of NB (N+S), 25.38% higher than that of RF (N+S), and 15.39% higher 
than that of Adaboost (N+S). The AP score of DeepHE (N+S) increases by 51.24%, 220.77%, 
65.95%, and 91.63% compared with that of SVM (N+S), NB (N+S), RF (N+S), and Adaboost 
(N+S) respectively. By integrating sequence features and network embedding features, the overall 
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performance of four models (DeepHE, SVM, RF, Adaboost) gets improved. NB works slightly 
better with only network embedding features. Considering the fact that essential gene prediction 
is an imbalanced problem, AP is more important than other measures. From table 4 we can see 
that the four compared machine learning models all have very low AP scores (from 27.91% to 
59.93%) which tells us that they are not a good choice for such task, and further confirms the 
superior of our proposed deep learning model, DeepHE. 

4 Conclusion 
We proposed a new essential gene prediction framework based on deep learning, DeepHE. It aims 
to explore whether deep learning can achieve notable improvements for predicting gene 
essentiality, an imbalanced classification problem. DeepHE integrates two types of features, 
sequence features extracted from DNA sequence and protein sequence and features learned from 
PPI network, as its input. Then a multilayer perceptron was used to train a cost-sensitive classifier 
by setting class weight. Although several machine learning based essential gene prediction 
methods have been proposed, most of them based on the features extracted according to human 
domain knowledge. In this paper, we used a deep learning model, node2vec, to automatically learn 
network features for each gene from the PPI network. The learned embedding features greatly 
improved the performance of DeepHE compared with it only using sequence features. The 
performance of DeepHE was evaluated on human datasets, which achieved very good performance 
for three comprehensive measures AUC (94.15%), AP (90.64%), and Accuracy (90.88%). We also 
compared it with four widely used machine learning models, SVM, Naïve Bayes, Random Forest, 
and Adaboost. DeepHE significantly outperforms all the four machine learning models, which 
further demonstrates that DeepHE is an effective deep learning framework for human essential 
gene prediction. 
In the future, we will explore other biological data to further improve the performance of DeepHE. 
Especially we are interested in how to use deep learning to automatically learn features from 
biological data rather than manually extracting features heavily based on domain knowledge. In 
addition, we are also interested in exploring more useful techniques to cope with the imbalanced 
classification problem as well as sparsely labeled classification problem [23,24]. Exploring deep 
learning to predict human essential genes across human cancer cell lines would be also interesting.  
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