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Abstract 

CRISPR-Cas9 deletion (CRISPR-del) is the leading approach for eliminating DNA from mammalian cells 

and underpins a variety of genome-editing applications. Target DNA, defined by a pair of double strand 

breaks (DSBs), is removed during non-homologous end-joining (NHEJ). However, the low efficiency of 

CRISPR-del results in laborious experiments and false negative results. Using an endogenous reporter 

system, we demonstrate that temporary inhibition of DNA-dependent protein kinase (DNA-PK) – an early 

step in NHEJ - yields up to 17-fold increase in DNA deletion. This is observed across diverse cell lines, 

gene delivery methods, commercial inhibitors and guide RNAs, including those that otherwise display 

negligible activity. Importantly, the method is compatible with pooled functional screens employing 

lentivirally-delivered guide RNAs. Thus, delaying the kinetics of NHEJ relative to DSB formation is a 

simple and effective means of enhancing CRISPR-deletion. 
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Introduction 

CRISPR-Cas9 technology enables a variety of loss-of-function perturbations to study the functions of genomic 

elements in their natural context, and engineer natural and unnatural mutations1–3. One such application, 

CRISPR-deletion (CRISPR-del), is a means of permanently removing specific genomic fragments from 101 – 

106 base pairs4. This range has enabled researchers to investigate a wide variety of functional elements, including 

gene regulatory sequences5–7, non-coding RNAs8–12, and structural elements13. Similarly, engineered deletions 

can be used to model human mutations14,15. CRISPR-del is readily scaled to high throughput screens, via pooled 

lentiviral libraries of thousands of paired single guide RNAs (sgRNAs)16,17. This has been used to discover long 

noncoding RNAs (lncRNAs) regulating cancer cell proliferation18,19 and to map cis-regulatory regions of key 

protein-coding genes20,21. 

CRISPR-del employs a pair of CRISPR-Cas9 complexes to introduce double strand breaks (DSBs) at two sites 

flanking the target region. Thereafter it relies on the endogenous non-homologous end joining (NHEJ) process 

to repair the breaks so as to eject the intervening fragment22–25. The two ends of target regions are defined by a 

pair of user-designed sgRNAs26. Paired sgRNAs may be delivered by transfection or viral transduction17,25. 

Pooled screens require that both sgRNAs are encoded in a single vector to ensure their simultaneous delivery, 

and are typically performed under conditions of low multiplicity-of-infection (MOI), where each cell carries a 

single lentiviral insertion18,20,25,27,28.  

The principal drawback of CRISPR-del is the low efficiency with which targeted alleles are deleted. Studies on 

cultured cells typically report efficiencies in the range 0% – 50% of alleles, and often <20%29,30, similar to 

estimates from individual clones4,17,24–26. Indeed, a recent publication reported high variation in the efficiencies 

of paired sgRNA targeting the same region, including many that yielded negligible deletion30. Transfection 

typically yields greater efficiency than viral transduction, possibly due to higher sgRNA levels32, but is 

incompatible with pooled screening. Although megabase-scale deletions have been reported33,34, deletion 

efficiency decreases with increasing target size4. Homozygous knockout clones may be isolated by screening 

hundreds of single cells, however this is slow and laborious, and resulting clones may not be representative of 

the general population31. More important than these practical costs, is the potential impact of low deletion rates 

on the ability to discern bona fide functional effects arising from a given mutation30. Non-performing sgRNA 
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pairs are a particular problem for pooled CRISPR-del screens, where they reduce statistical power and lead to 

false negative results. To combat this, researchers are forced to increase the coverage of deletion constructs per 

target, resulting in lower candidate numbers and increased costs35,36. Consequently, any method to improve 

CRISPR-del efficiency would streamline experiments and enable the discovery of presently-overlooked 

functional elements. 

For other applications of CRISPR, most notably precise genome editing using homologous recombination (HR), 

substantial gains have been made editing efficiency37. Here, editing events are rare, and HR is the rate-limiting-

step38,39. The two principal strategies to boost efficiency are: (1) direct stimulation of homology directed repair 

(HDR)37,40–42; (2) suppression of the competing NHEJ pathway at early stages through inhibition of Ku70/80 

complex37,40,43 or DNA-dependent protein kinase (DNA-PK)37,40,44,45, or at late phases, via Ligase IV (LigIV) 

inhibition37,40,46,47. To date, however, there are no reported methods for pharmacological enhancement of 

CRISPR-del. 

Towards this aim, we consider the events necessary for successful deletion (Fig. 3). In the presence of two DSBs, 

NHEJ gives rise to successful deletion. For this to occur, the DSBs must occur on a timescale shorter than that 

required for NHEJ. Otherwise, the first DSB is repaired by NHEJ before the second can occur, and deletion will 

not take place. Furthermore, there is a high probability that the target protospacer or protospacer adjacent motif 

(PAM) is mutated during NHEJ, rendering it inaccessible to the sgRNA and precluding any subsequent deletion.  

A prediction of this model, is that successful deletion can be promoted by extending the time over which DSBs 

persist without being repaired, and hence increasing the likelihood that both DSBs co-occur. In other words, we 

hypothesise that CRISPR-del may be improved by pharmacologically slowing the rate of NHEJ during the 

period while DSBs are taking place. Here, we show that inhibition of DNA-PK, an early step in NHEJ, indeed 

improves CRISPR-del efficiency, regardless of cell type, target region, sgRNA or inhibitory molecule, and 

represents a practical strategy for a variety of applications including pooled library screening.  
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Results 

A quantitative endogenous reporter for CRISPR-del 

To identify factors capable of improving CRISPR-del efficiency, we designed a gene-based reporter system: 

CRISPR Deletion Endogenous Reporter (CiDER). Such a system should be quantitative, sensitive, practical and 

able to closely model the CRISPR-del process by targeting endogenous genes rather than plasmids. We focussed 

on genes encoding cell-surface proteins, as they can be rapidly and sensitively detected by flow cytometry48. A 

number of candidates were considered with criteria of (1) non-essentiality for cell viability and proliferation49–

51(https://depmap.org), (2) high expression in human cell lines52 (http://www.proteinatlas.org), (3) lack of 

overlap with other genomic elements that could lead to false positive detection, and (4) availability of flow-

cytometry grade antibody. Consequently, we selected PLXND1 encoding the Plexin-D1 protein (Supplementary 

Fig. 1).  

We conceived an experimental setup where only successful CRISPR-del leads to loss of PLXND1 expression, 

but unsuccessful events do not. In this scheme, the gene’s first exon is targeted for deletion by a series of sgRNA 

pairs recognising the non-protein coding regions upstream (promoter) and downstream (first intron) (Fig. 1a). 

Successful deletions of the first exon are expected to silence protein expression, but indels from individual 

sgRNAs do not affect the protein sequence directly and should not lead to silencing. Finally, we also designed 

sgRNAs that directly target the open reading frame (ORF), since these are expected to yield maximal protein 

silencing (designated positive control, P+).  

We used flow cytometry to evaluate Plexin-D1 protein levels (Fig. 1b). Positive control sgRNAs (P+) yielded 

approximately 90% knockout efficiency. We observed wide variability in the deletion efficiency of sgRNA 

pairs, from Pair1 (P1) displaying minimal efficacy, to the most efficient P4 yielding ~40% deletion. Therefore 

these paired sgRNAs achieve deletion efficiencies that are comparable to previous studies4,26. Measured deletion 

rates were consistent across biological replicates (Fig. 1b). The observed loss of  Plexin-D1 was not due to large 

indels or disruption of gene regulatory elements at individual sgRNA target sites53, since control experiments 

with single sgRNAs showed no loss of Plexin-D1 (Supplementary Fig. 2). In CiDER we have a reproducible 

and practical reporter of CRISPR-del at a range of efficiencies.  
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Temporary inhibition of DNA-PK during DSB formation increases CRISPR-del efficiency 

We hypothesized that temporarily inhibiting NHEJ during DSB formation would favour CRISPR-del, by 

increasing the chance that both DSBs will co-occur (Fig. 3). We tested DNA-PK, a DNA end-binding factor at 

the first step of NHEJ pathway, for which a number of small-molecule inhibitors are available54. We began by 

treating HeLa cells with the inhibitor M3814 (IC50=3nM) 45,55,56 at two concentrations (300 nM and 900 nM). 

Importantly, cells constitutively expressing Cas9 were treated for an 18 hour time window, 4 hours after sgRNA 

expression plasmid delivery by transfection. Thus, DNA-PK was inhibited immediately before sgRNA 

expression. This resulted in improved deletion rates for all four sgRNA pairs, including a 17-fold increase for 

P1, which otherwise displays negligible deletion under normal conditions (Fig. 1c,e).  
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We next asked whether other inhibitors of DNA-PK yield a similar effect. We treated cells with four other 

commercially-available molecules at a concentration of 10uM: KU57788 (IC50=14nM), NU7026 (IC50=230nM), 

LTURM34 (IC50=34nM) and DMNB (IC50=15uM) (Fig. 1f). Each one yielded increases in CRISPR-del 

efficiency to varying degrees, correlating with published differences on the inhibition potency57. As expected 

based on previous literature, KU57788 gave the strongest effect57 and DMNB gave the weakest effect, likely 

due to its high IC50.  

We were curious whether improved deletion depends on inhibition specifically of DNA-PK, or more generally 

on NHEJ. To answer this, we used SCR7 pyrazine to inhibit another step in NHEJ, the final ligation by Ligase 

IV (LigIV). In contrast to DNA-PK, this treatment did not improve deletion efficiency (Fig. 2a). At this late 

stage, the NHEJ machinery (DNA-end binding and processing complex) is already maintaining together the free 

DNA ends. When LigIV activity is restored, it may be more likely that each single DSB is repaired 

independently, introducing small indels rather than favouring genomic deletion. Thus, CRISPR-del efficiency 

improvements depend specifically on inhibition of DNA-PK activity. Altogether, we have shown that 

pharmacological inhibition of NHEJ at the DNA-PK step yields enhanced deletion of PLXND1 reporter in HeLa 

cells.  

Generality of deletion enhancement by DNA-PK inhibition 

We next assessed whether this DNA-PK-inhibition is more generally effective across cell lines, genomic targets 

and sgRNA delivery modalities. 

We began by replicating CiDER experiments in two widely-used cell lines, HCT116 and HEK293T30,58–60 (Fig. 

2b). Both have baseline CRISPR-del efficiency below HeLa, possibly due to weaker NHEJ activity39. 

Nevertheless, DNA-PK inhibition enhanced deletion in both cell backgrounds. 

All experiments so far involved a single target locus, assayed by flow cytometry. We next assessed whether 

these effects hold for other loci and readouts. We previously used a quantitative PCR method (quantitative 

CRISPR PCR, QC-PCR) to measure rates of deletion at the MALAT1 enhancer region26. For three out of four 

sgRNA pairs, we observed a significant enhancement of deletion with M3814 treatment of HeLa (Fig. 2c, note 
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the inverted scale used for QC-PCR). Similar but weaker results were also observed for HCT116 (two out of 

four pairs) and HEK293T cells (one out of four pairs) (Supplementary Fig. 3).  

Together, these findings support the general applicability of DNA-PK inhibition independent of cell line or 

target regions. 
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DNA-PK inhibition in the context of high-throughput pooled screens 

CRISPR-del perturbations can be employed in the context of pooled functional screens, where libraries of paired 

sgRNAs are delivered by lentivirus at low MOI, and the effect on phenotypes such as proliferation are recorded. 

We asked whether DNA-PK inhibition is also practical under these conditions, by targeting the PLXND1 reporter 

with sgRNAs delivered by low-MOI lentivirus. In initial experiments, M3814 was added to cell media prior to 

lentiviral transduction, but no improvement in deletion efficiency was observed (data not shown). This is 

explained by the fact that lentiviruses require NHEJ for genomic integration61,62. Therefore, we modified our 

protocol so as to leave sufficient time for viral integration before NHEJ inhibition (24 h was optimal, 

Supplementary Fig. 4), and observed a 2.7-fold increase in CRISPR-del efficiency (Fig. 2d).  

Pooled CRISPR screens employ phenotypic readouts, often in the form of cell proliferation3,27. To test whether 

improved CRISPR-del translates into stronger phenotypes, we developed a reporter assay capable of quantifying 

the phenotypic effect of CRISPR-del in terms of cell death. Analagous to PLXND1 (Fig. 1a), We designed three 

pairs of sgRNAs targeting the first exon of the essential gene, RPS5 (coding for the 40S ribosomal protein S5, 

P46782, Uniprot): RPS5-P+, P9, P10, P11. As expected, sgRNAs targeting the AAVS1 locus had no effect, 

while sgRNAs targeting the RPS5 ORF (RPS5-P+) resulted in ~47% mortality after 72 h (Fig. 2e). Neither was 

affected by M3814, indicating no toxicity. In contrast, three pairs of sgRNAs targeting the first exon of RPS5 

(P9, P10, P11) resulted in a substantial mortality (32%, 21% and 15%, respectively), which was significantly 

enhanced by addition of M3814 (41%, 30% and 22%, respectively).  

In conclusion, DNA-PK inhibition enhances CRISPR-del when sgRNAs are delivered lentivirally at low MOI, 

and results in increased downstream phenotypic effects, supporting its utility in the context of high-throughput 

pooled screens. 
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Discussion 

The intrinsic DNA damage response underpins CRISPR-Cas9 genome editing and may be manipulated to favour 

desired editing outcomes. In the case of precise genome editing, which is based on the HDR pathway, efficiency 

has been substantially improved through pharmacological promotion of HDR and inhibition of the competing 

NHEJ pathway37. No such solutions have been developed for CRISPR-del, despite its being one of the most 

common CRISPR-Cas9 modalities, with diverse scientific and technological applications5–15.  

We hypothesised that successful CRISPR-del requires paired DSBs to co-occur before NHEJ has time to act, 

and thus may be enhanced by pharmacological inhibition of DNA-PK. This is initially counter-intuitive, as 

DNA-PK is a necessary step in the NHEJ pathway upon which  CRISPR-del relies, and its inhibition is widely 

used to promote HDR37,40,44,45. However, rather than permanently blocking NHEJ, our protocol slows the kinetics 

of NHEJ for a defined period while DSBs are taking place. This produces a significant enhancement of DNA 

deletion efficiency, increasing protein knockout rates and resulting in stronger functional effects. 

DNA-PK inhibition represents a practical option for a variety of CRISPR-del applications, from basic research 

to gene therapy. DNA-PK inhibitors are cheap and widely-available. Deletion efficiency improved regardless 

of the inhibitor molecule, target region, sgRNA sequence, cell background and delivery method. Particularly 

striking was the observation that some sgRNA pairs that are ineffective under normal conditions, achieved 

respectable rates of deletion using DNA-PK inhibition. This suggests that the failure of many sgRNA pairs to 

efficiently delete DNA arises not from their inability to promote DSBs, but rather as a result of poor kinetic 

properties (for example, a mismatch in kinetics between the two individual sgRNAs). Finally, this method (with 

minor modifications) is compatible with low-MOI lentiviral delivery and leads to improvements in observed 

cell phenotypes. These conditions are employed in pooled screens to probe the functions of non-protein coding 

genomic elements18–21, meaning that DNA-PK inhibition may be used in future to improve the sensitivity of 

CRISPR-deletion screens by boosting the number of active sgRNA pairs, and their efficiency. 
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Materials and methods 

 

Cell culture. HeLa, HCT116 and HEK293T were cultured on Dulbecco’s Modified Eagles Medium (DMEM) 

(Sigma-Aldrich, D5671) supplemented with 10% Fetal Bovine Serum (FBS) (ThermoFisher Scientific, 

10500064), 1% L-Glutamine (ThermoFisher Scientific, 25030024), 1% Penicillin-Streptomycin (ThermoFisher 

Scientific, 15140122). Cells were grown at 37°C and 5% CO2 and passaged every two days at 1:5 dilution. 

 

Generation of Cas9 stable cell lines. HeLa cells were infected with lentivirus carrying the Cas9-BFP (blue 

fluorescent protein) vector (Addgene 52962). HCT116 and HEK293T were transfected with the same vector 

using Lipofectamine 2000 (ThermoFisher Scientific, 11668019). All cell types were selected with blasticidin 

(4ug/ml) for at least five days and selected for BFP-positive cells twice by fluorescence activated cell sorting. 

 

sgRNA pair design and cloning. sgRNA pairs were designed using CRISPETa (http://crispeta.crg.eu/) and 

cloned into the pDECKO backbone as described previously26. Off-target filters did not allow less than 3 

mismatches for each sgRNA sequence. No positive or negative masks were applied in the search. Minimum 

individual score was set at 0.2 and minimum paired score at 0.4. The sgRNA pairs were then manually selected 

from the output list. All sgRNA sequences may be found in Supplementary Figure 5.  

 

Inhibitors. All molecules used in this study are commercially available: M3814 (MedChemExpress, HY-

101570), KU57788 (MedChemExpress, HY-11006), NU7026 (MedChemExpress, HY-15719), LTURM34 

(MedChemExpress, HY-101667), DMNB (ToChris, 2088) and SCR7 Pyrazine (Sigma-Aldrich, SML1546). 

10mM stocks (and 5mM for NU7026, due to solubility limitations) were prepared by resuspension in 

dimethylsulfoxide (DMSO) (Sigma-Aldrich, D4540). 

 

Transfection and lentiviral transduction. For transfection experiments, 70% confluent 12-well plates were 

transfected using Lipofectamine 2000 (ThermoFisher Scientific, 11668019) with 1250 ng of pDECKO plasmid 

following provider’s guidelines. After 6 hours, transfection media was replaced for fresh complete DMEM (10% 

FBS, 1% L-Glutamine and 1% Penicillin-Streptomycin) and the corresponding small molecule was added to 
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media for 18 hours. The treatment was finished by replacing the media with complete DMEM. After one day 

cells were selected with puromycin (2ug/ml). 

For lentiviral infection experiments, cells were spin-infected at a 0.3 multiplicity of infection in the presence of 

DMEM (10% FBS, 1% L-Glutamine) and hexadimethrine bromide (8ug/ml) (Sigma-Aldrich, 107689) at 2000 

rpm, 37°C during 1.5 hours. After 0, 5, 10, 24, 48, 72 hours, infection media was replaced for fresh complete 

DMEM (10% FBS, 1% L-Glutamine and 1% Penicillin-Streptomycin) and the corresponding small molecule 

was added to media for 18 hours. The treatment was finished by replacing the media with complete DMEM and 

puromycin (2ug/ml) to start the selection. 

 

Flow cytometry. After five days of puromycin selection, cells were trypsinized, resuspended in PBS and 

incubated for 30 minutes at room temperature (RT) with the human α-PlexinD1 mouse monoclonal antibody 

(1:150 dilution) (R&D systems, MAB4160). Cells were washed twice with PBS and incubated for 30 minutes 

at RT with an α-Mouse IgG secondary goat antibody conjugated to the APC fluorochrome (1:200 dilution) 

(eBioscience, 17-4010-82). Cells were washed and resuspended in PBS, processed with the LSRII SORP flow 

cytometer and analysed with FlowJo_v10 software. A total of 10,000 cells per sample are sorted. Cell population 

is selected in the SSC-A/FSC-A plot. Single cells are gated in the FSC-H/FSC-A plot. Finally, the APC positive 

population is set in the mCherry/APC plot in the control sample and expanded to all the other samples without 

modification.  The fraction of Plexin-D1 negative singlet cells is calculated by gating Plexin-D1 positive singlet 

cells, normalizing to a non-targeting control and subtracting the value to 1 (negative cells = 1 – positive cells). 

An example of the gating strategy may be found in Supplementary Figure 6. 

Single cell imaging was performed using ImageStream (Luminex) and analysed with IDEAS software. 

 

Genomic PCRs. After 5 days of puromycin selection, cells were collected and genomic DNA (qDNA) was 

extracted using GeneJET Genomic DNA Purification Kit (ThermoFisher Scientific, K0722). Genomic PCR was 

performed using GoTaq® G2 DNA Polymerase (Promega, M7841) from 10ng gDNA (Forward: 5’ 

CCTGCTATGAACTGACCCATG 3’, Reverse: 5’ CCTGAACAGTCAGTCCATGCT 3’) 
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Genomic quantitative PCRs. After 5 days of puromycin selection, cells were collected and genomic DNA 

(qDNA) was extracted using GeneJET Genomic DNA Purification Kit (ThermoFisher Scientific, K0722). 

Quantitative real time PCR (qPCR) from 10ng of gDNA was performed using GoTaq qPCR Master Mix 

(Promega, A6001) on a TaqMan Viia 7 Real-Time PCR System. (Target sequence - Forward: 5’ 

GCTGGGGAATCCACAGAGAC 3’, Reverse: 5’ CATCTCAGCCCTTGTTATCCTG 3’) and (LDHA - Forward: 

5’ TGGGCAGTAGAAAGTGCAG 3’, Reverse: 5’ TACCAGCTCCCACTCACAG 3’). Target sequence primers 

were normalized to primers targeting the distal, non-targeted gene LDHA. Data were normalised using the ΔΔCt 

method63.  

 

Cell viability assay. CellTiter-Glo® 2.0 Cell Viability Assay (Promega, G9241) was performed upon 

puromycin selection (2 days post transfection). 3000 cells/well were seeded in 96-well white polystyrene plates 

(Corning®, Sigma-Aldrich CLS3610-48EA) and cell viability was measured in technical duplicates during 4 

consecutive days (0h, 24h, 48h, 72h) according to the manufacturer’s protocol. Luminescence was measured 

using a Tecan Reader Infinite 200. 

 

Reporting summary. Further information is available in the Nature Research Reporting Summary linked to 

this article. 
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