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Summary: The majority of mosquito-borne illness is spread by a few mosquito 
species that have evolved to specialize in biting humans, yet the precise causes 
of this behavioral shift are poorly understood. We address this gap in the 
arboviral vector Aedes aegypti. We first characterize the behaviour of mosquitoes 
from 27 sites scattered across the species’ ancestral range in sub-Saharan Africa, 
revealing previously unrecognized diversity in female preference for human 
versus animal odor. We then use modelling to show that this diversity can be 
almost fully predicted by two ecological factors – dry season intensity and human 
population density. Finally we integrate this information with whole genome 
sequence data from 345 individual mosquitoes to identify a single underlying 
ancestry component linked to human preference, with genetic changes 
concentrated in a few key chromosomal regions. Our findings strongly suggest 
that human-biting in this important disease vector originally evolved as a 
by-product of breeding in human-stored water in areas where doing so provided 
the only means to survive the long, hot dry season. Our model also predicts that 
changes in human population density are likely to drive future mosquito 
evolution. Rapid urbanization may drive a shift to human-biting in many cities 
across Africa by 2050. 

Mosquitoes spread pathogens that make approximately 100 million people sick every 
year 1. There are roughly 3,500 mosquito species worldwide2, but most cases of human 
disease are caused by the bites of just a few taxa that specifically target humans3,4. 
Understanding where and why mosquitoes evolve to specialize in biting humans is 
therefore critical for controlling and predicting disease spread. 

Aedes aegypti provides a key opportunity to investigate this phenomenon. The globally 
invasive subspecies, Ae. aegypti aegypti, thrives in urban habitats across the American 
and Asian tropics, where its proclivity for biting humans makes it the primary vector of 
dengue, Zika, chikungunya, and yellow fever5. Host-seeking females take up to 95% of 
their blood meals from humans in nature3. This human-biting specialist is thought to 
have evolved from generalist ancestors in Africa approximately 5,000-10,000 years ago, 
possibly in northern Senegal or Angola6,7. However, in at least a few places in East 
Africa, the contemporary African subspecies Ae. aegypti formosus remains a generalist, 
biting a wide variety of vertebrate animals8,9. Little is known about the host-seeking 
behavior of Ae. aegypti in other parts of Africa, and no work to date has explicitly 
examined the ultimate drivers of human-biting in mosquitoes. 

To address this gap, we used ovitraps to collect Ae. aegypti eggs from multiple outdoor 
sites in each of 27 locations across sub-Saharan Africa (Fig. 1a-c, Extended Data Table 
1). The collections spanned a wide range of human population densities, including egg 
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traps placed among assemblages of plastic and concrete in large cities with over 2,000 
people per square kilometer, ranging to traps placed among trees and undergrowth in 
wild areas where mosquitoes rarely encounter human hosts (Fig. 1a,c, Extended Data 
Table 1). They also spanned a wide range of climates, from highly seasonal, semi-arid 
habitats in the northwest to forest ecosystems with year-round rain in Central Africa 
(Fig. 1b-c, Extended Data Table 1). We used eggs from independent traps to establish 
two replicate laboratory colonies for each of 23 populations, and a single colony for the 
remaining 4 populations (n=50 colonies total, Extended Data Table 2). 

Preference for human odor varies widely across sub-Saharan Africa 

Mosquitoes choose hosts based largely on body odor4. Ae. aegypti  females from 
human-biting populations show a robust preference for human odor, while those from 
generalist populations often prefer the odor of non-human animals10. We tested the odor 
preference of colony females from each population in a two-port olfactometer and 
estimated preference using a beta-binomial mixed model that accounts for trial structure 
(Fig. 1d, Extended Data Fig. 1a-b, Extended Data Table 2, see Methods). The results 
were generalizable across different individual humans and different animal species used 
as stimuli (Extended Data Fig. 1c). 

Most populations preferred animals, but one population from Central Africa stood out as 
having an extreme animal preference (Franceville, Gabon; FCV), and three from West 
Africa showed either no preference (Ouagadougou, Burkina Faso; OGD) or clear 
human preference (Thies and Ngoye, Senegal; THI, NGO) (Fig. 1d). The significance of 
this geographic variation (Likelihood Ratio Test P<2.2x10 -16) was further supported by a 
strong correlation between the preference of replicate colonies from the same location 
(Pearson R2=0.60, P =1.5x10 -5, Extended Data Fig. 1d). As seen in previous work, 
overall response rates mirrored preference, with females from animal-preferring 
colonies being less likely to choose either host in the assay (Extended Data Fig. 
1e-f) 10,11. 

Preference variation is explained by two ecological factors 

Human-biting may be favored in areas with a high density of humans. Whether or not 
humans were living in the immediate vicinity of collection sites had no effect on behavior 
across a set of paired forest and town locations (Fig. 1e). However, linear modeling of 
preference variation across all locations revealed a clear effect when humans were 
counted within a circle of radius 20-50km (Likelihood ratio test all P≤0.002; compare 
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grey and black lines in Extended Data Fig. 2a). This result supports the idea that high 
regional human population density helps drive mosquito preference for humans. 

The population density model included latitude and longitude as covariates to control for 
clear geographic trends in the data (higher preference for humans in the northwest, Fig. 
1c). We wondered whether climate might explain some of this additional variation. 
Surprisingly, when we used stepwise model selection to replace latitude and longitude 
with ecologically relevant climate variables (Bio1-Bio19 from the WorldClim 2 dataset; 
Extended Data Fig. 2b-c)12, the best climate variables explained more behavioral 
variation than human population density itself. In the final model, human population 
density explained 18% of variation (Fig. 2a, Likelihood Ratio Test P=1.0x10 -5, density 
measured within 20 km radius). The strongest climate predictor was precipitation 
seasonality (Fig. 2b, Extended Data Fig. 2b, Likelihood Ratio Test P=1.2x10 -8), a 
measure of how variable rainfall is from month to month. A third-degree polynomial 
provided the best fit (Extended Data Fig. 2a-b), helping to predict the abrupt emergence 
of preference for humans in the Sahel ecoclimatic zone of West Africa, where it is dry 
for 9 months of the year and all rainfall comes during a short, intense rainy season (Fig. 
1c, 2b). A second variable, level of precipitation during the warmest quarter of the year, 
also contributed significantly to our model (Fig. 2c, Extended Data Fig. 2c, Likelihood 
Ratio Test P =0.014) and helped explain behavior across populations in the 
animal-preferring range – the bulk of our sample. Animal preference was weaker in 
places with less rain at the hottest time of year (Fig. 2c, Extended Data Fig. 2d). 

Taken together, these two climate variables capture the challenges mosquitoes face 
during the dry season. Ae. aegypti lay their eggs on wet substrate just above the water 
line in tree holes, rock pools, or artificial containers13. If the eggs remain wet, they can 
hatch immediately. However, eggs laid in wild areas at the end of the rains must pause 
development and survive the duration of the dry season until rain returns – a particularly 
difficult challenge when the dry season is long (i.e. precipitation seasonality is high) and 
hot (i.e.  precipitation is low at the warmest time of year)13,14. Human water storage helps 
Ae. aegypti in harsh environments by providing a year-round aquatic niche for larval 
development. We put the two climate variables together into a single index of dry 
season intensity that explains 65% of variation in host odor preference across Africa 
(Fig. 2d, Likelihood Ratio Test P=3.0x10 -9). These findings point to long, hot dry 
seasons as a key selective factor driving Ae. aegypti specialization on human hosts, 
likely as a by-product of dependence on human-stored water for breeding15,16. 

Preference for humans within and outside Africa has a single genomic origin 

4 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2020. ; https://doi.org/10.1101/2020.02.12.939041doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?9Qew08
https://www.zotero.org/google-docs/?WeR1hA
https://www.zotero.org/google-docs/?l3XKjz
https://www.zotero.org/google-docs/?xFdi6X
https://doi.org/10.1101/2020.02.12.939041
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Females of the globally invasive human specialist subspecies are characterized by light 
scaling on the back of the abdomen (first tergite, Fig. 3a inset, Fig. 3b grey 
populations)17,18, and previous work documented this trait in the Sahel of northern 
Senegal where we observed preference for humans15,19. We therefore wondered 
whether it might be linked to behavior in a continuous way across our full sample set. 
Indeed, abdominal scaling was strongly correlated with preference for humans 
( R2=0.81, P =6.7x10 -10, Fig. 3a-b). The trend was driven not only by the most extreme 
variation in Senegal and outside of Africa but also by more modest variation in other 
regions (R 2=0.46, P =0.002, Senegal and non-African reference populations exclude d). 

The morphological resemblance of human-preferring mosquitoes within and outside 
Africa suggests shared ancestry. To test this hypothesis, we sequenced the genomes of 
~15 individuals from 24 sites in our current study plus one site in South America and 
one in Asia (n=366 genomes after exclusion of relatives, ~15x coverage). We also 
sequenced 9 previously collected individuals of the human-biting domestic form from 
Rabai10, which was not present when we carried out the fieldwork for this study in 2017. 
Analyses of overall population structure were consistent with earlier work6,20. The 
program ADMIXTURE21 revealed strong support for a model with three genomic 
clusters or ancestry components corresponding to coastal East Africa, Central/West 
Africa, and globally invasive human specialists (Fig. 3c, Extended Data Fig. 3a-b). The 
Rabai domestic form was the only African population to group unambiguously with 
non-African human specialists, consistent with its putative origin as a recent, localized 
reintroduction of non-African mosquitoes20. However, many populations across 
sub-Saharan Africa showed some level of ancestry from the human specialist 
component (red in Fig. 3c), and this signal was strongly correlated with preference for 
humans (Fig. 3e, R2=0.76, P =2.7x10 -8) – supporting a single, shared origin for the 
behavior. 

The shared ancestry of human-preferring mosquitoes within and outside African has two 
potential explanations – contemporary admixture due to back-to-Africa gene flow or 
ancestral relationships present before the species left Africa. Recent admixture has 
almost certainly occurred in coastal East Africa, where the reintroduced domestic form 
once thrived. However, a recent exome study suggested that a supposedly highly 
‘admixed’ population from the Sahel region of West Africa may instead be ancestral to 
bottlenecked, non-African populations7. Consistent with this interpretation, the three 
most human-seeking Sahelian populations in our dataset (NGO, THI, OGD, Fig. 1c-d) 
formed a unified genomic cluster, distinct from both the globally invasive subspecies 
and nearby animal-preferring populations, in an ADMIXTURE analysis with six clusters 
(Fig. 3d, Extended Data Fig. 3a). Principal components analysis also shows these 
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populations extending away from the West African cluster towards the globally invasive 
specialists (Extended Data Fig. 3c-d). 

Loci associated with specialization are clustered in the genome 

Human-seeking mosquitoes in the Sahel have likely experienced selection for 
human-biting and other traits that help them live and breed in human environments – a 
process expected to drive and maintain divergence in parts of the genome harboring 
relevant loci. We used the Population Branch Statistic (PBS) 22 to identify chromosomal 
regions with enhanced divergence along the branches leading to Ngoye (NGO), Thies 
(THI), and Ouagadougou (OGD) relative to nearby animal-preferring mosquitoes from 
Bantata (BTT) (Fig. 3f, FCV used as outgroup). Several regions stood out in all three 
populations (dark grey regions in Fig. 3f, permutation false discovery rate<0.05), 
including a large area at the distal end of the first chromosome containing an odorant 
receptor previously linked to preference for humans10. Interestingly, this same region 
showed signs of recent, strong selection and/or a chromosomal rearrangement in the 
geographic transition zone to highly seasonal Sahelian climates in Senegal (Extended 
Data Fig. 4). 

Elevated divergence in key genomic regions might reflect the maintenance of human 
specialist ancestry in the face of gene flow from nearby animal-preferring mosquitoes. 
Using the fD statistic23 we found that human-seeking Sahelian populations were indeed 
most likely to share derived alleles with non-African populations in outlier regions (Fig. 
3g; Fisher’s exact test, all P<0.0001). Separate analyses of absolute differentiation 
between populations (dxy) and diversity within populations (π) were also consistent with 
the idea that outlier regions have been affected by strong selection during the 
establishment of human specialist ecology, followed by the accumulation of sequence 
differences via subsequent selection against gene flow (Extended Data Fig. 5)24. 

While the most divergent chromosomal regions may harbor key loci of large effect, 
specialization on humans is likely to involve a diverse suite of behavioral and 
physiological traits with complex underlying genetics. Consistent with this hypothesis, a 
screen for genetic outliers more strongly associated with a human specialist ancestry 
component than expected under neutral evolution25 revealed thousands of significant 
single nucleotide variants scattered across the entire genome (n=16,782 SNPs at 
Bonferroni-adjusted P<0.05, Extended Data Fig. 6). However, the highest peaks fell in 
the same regions that stood out in the Population Branch Statistic scan. 

Rapid urbanization may drive a shift towards human-biting by 2050 
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Both climate and human population density are changing rapidly in Africa26,27. We 
therefore incorporated publicly available climate and human population projections into 
our model to explore how the behavior of African Ae. aegypti mosquitoes might be 
expected to evolve over the next 30-50 years (see Methods). Projected changes in 
relevant precipitation variables are modest (Extended Data Fig. 7) and unlikely to drive 
substantial shifts in preference (Fig. 4a, Extended Data Fig. 8). Rapid urbanization, in 
contrast, may trigger transitions to human-biting in many cities across the continent by 
2050 (Fig. 4a, Extended Data Fig. 8), with the important caveat that the highest 
projected population densities are well above those used to fit our model (Fig. 4a). 

Discussion 

Our findings suggest that human-biting Ae. aegypti are favored in highly seasonal 
climates, such as the western Sahel, where laying eggs in human-stored water may be 
the only way to survive the dry season. Once dependent on humans for breeding sites, 
mosquitoes may evolve preference for humans due to trade-offs between traits that 
promote effective use of locally abundant human targets and those necessary for 
finding and biting animals28. There are other indications that dry season dynamics 
played an important role in human specialization. A decades-old study found that 
globally invasive specialists from Asia and the Americas, as well as a single population 
from the Sahel, were all more resistant to desiccation than strains from other parts of 
Africa 29. Moreover, human-biting is accompanied by preference for laying eggs in 
human water storage vessels in at least some areas – this preference was shown to 
allow the introduced domestic form in Rabai, Kenya to breed throughout the dry 
season30. Beyond Aedes mosquitoes, dry season dynamics may have played a key role 
in the evolution and divergence of Anopheles  malaria vectors in Africa31. 

Human population density also helps predict contemporary mosquito behavior, and 
rapid urbanization will likely make it the most important driver of future change in Africa. 
However, it is unclear what will happen when human densities grow beyond the highest 
observed in this study, especially in the wetter and less seasonal parts of Central and 
East Africa. These sites may evolve strong preference for humans (Fig. 4a), as 
suggested by the linear trend across contemporary sites (Fig. 2a). Alternatively, the 
effect of human density could plateau at intermediate preference (willingness to bite 
humans) without driving the true specialization seen in highly seasonal environments. 
Despite these ambiguities, the speed and scale of ongoing urbanization argue strongly 
for careful monitoring of potential shifts in Ae. aegypti behavior (or correlated 
morphology/genetics) across Africa. 
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Our genomic data are consistent with the hypothesis that human specialization is not 
only favored in the seasonal Sahel, but also first arose there before seeding globally 
invasive populations7. Further work is needed to test this hypothesis – incorporating 
genome-wide data from a wider range of global populations. Ae. aegypti from Angola 6 
and northern Argentina20, for example, show similar patterns of ancestry to populations 
in the Sahel. Regardless, adaptation to humans in this mosquito is clearly associated 
with shifts in the frequency of a large number of variants, scattered throughout the 
genome but especially concentrated in a few key regions. More broadly, the tight 
correlations between ancestry, behavior, and environment reveal a dynamic situation 
playing out across the continent as a whole, with selection and gene flow fine-tuning the 
frequency of human-adaptive alleles, and thus levels of attraction to human hosts, 
according to local climate and human population density. 

Our results synthesize behavioral, ecological, and genomic data to demonstrate 
significant, environmentally structured variation in a key disease vector. We urgently 
need to incorporate such variation into epidemiological models and other efforts to 
predict and manage the transmission of Ae. aegypti -borne disease in Africa. 
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Fig. 1. Preference for human odor varies widely in  Aedes aegypti mosquitoes across 
Africa. a-b, Satellite images or photographs of mosquito collection localities with different 
human population densities (a) or levels of precipitation seasonality (b). Satellite images are 
from Google Earth, copyright Maxar Technologies and CNES/Airbus. c, Map of collection 
localities. Diagonal hatched lines mark the Sahel ecoclimatic zone. Extended Data Table 1 has 
full location names. d, Host preference measured in a two-port olfactometer (inset) for all African 
localities plus a reference colony from Thailand (T51) and a lab colony most likely to have 
originated in the United States (ORL) (n=3-14 trials with 25-110 females per trial; details in 
Extended Data Table 2). Bars indicate 95% confidence intervals. Grey boxes around location 
names highlight adjacent forest-town pairs (forest in green text). Circle sizes and bar colors 
show population density and climate, respectively, as in (c). e, Females from adjacent forest 
and town habitats did not differ in preference (P>0.05, ns=not significant). 
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Fig. 2. Human population density and dry season intensity explain variation in preference 
a, Human population density explains 18% of variation in preference (linear fit, density 
calculated within 20km radius, Likelihood Ratio Test [LRT] P=1.0x10 -5). b-c , Preference for 
humans increases in habitats with highly seasonal rainfall (b, cubic monotonic polynomial fit, 
LRT P=1.2x10 -8) and decreases in habitats with more rain at the warmest time of year (c, linear 
fit, LRT P =0.016 for model that already includes seasonality). d, Overall dry season intensity 
(combination of variables shown in b-c) explains 65% of variation in preference (LRT 
P=3.0x10 -9). All analyses were carried out with logit-transformed preference indices 
subsequently back-transformed for plotting. 
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Fig. 3. Specialization on humans has a single genomic origin and is associated with 
changes concentrated in a few key chromosomal regions. a , Variation in percentage of the 
first abdominal tergite (inset, right) covered in white scales. Circle colors indicate host 
preference as in Fig. 1. b, Morphology is strongly correlated with host preference. Dark grey 
dots represent non-African reference colonies (see also Fig. 1d). c-d, Bar plots showing 
proportion ancestry derived from k=3 (c) or k=6 (d) ancestry components for 375 mosquito 
genomes. e, Average  proportion ancestry from the red cluster (k=3 analysis) is strongly 
correlated with preference for humans across populations. f, Polarized genomic divergence 
(Population Branch Statistic, PBS) along the lineages leading to three human-seeking 
populations (top; NGO, THI, OGD) and two animal-seeking populations (bottom; KED, OHI). 
Grey shading indicates regions that were outliers (permutation FDR<0.05) in all three 
human-seeking populations (dark grey) or in just the two populations showing strong preference 
for humans (NGO, THI; light grey). g , Proportion of derived variation shared by African 
human-seeking populations with non-African human specialists (fD). Grey shading as in (f). Grey 
triangle in (f) and (g) mark the location of Or4, an odorant receptor previously linked to 
preference for human odor10. 
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Fig. 4. Rapid urbanization may favor a shift towards human-biting in large African cities 
by 2050. a, Current (circles) and projected (arrows) environmental parameters for each site. 
Circle colors indicate current host preference. Plot background color indicates preference 
predicted by model described in Fig. 2. b, Map from Fig. 1c showing projected (rather than 
current) human population densities (circle size), precipitation seasonality (map background 
color), and host odor preference (circle color) for the year 2050. 
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Methods: 
 
Ethics and regulatory information 
 
Mosquito eggs were collected and exported with permission from local institutions 
and/or governments as required (Kenya SERU No. 3433; Uganda permit 2014-12-134; 
Gabon AR0013/16/MESRS/CENAREST/CG/CST/CSAR and 
AE16008/PR/ANPN/SE/CS/AEPN) and imported to the USA under USDA permit 
129920. The use of non-human animals in olfactometer trials was approved and 
monitored by the Princeton University Institutional Animal Care and Use Committee 
(protocols 1998-17 and 2113-17). The participation of humans in olfactometer trials was 
approved and monitored by the Princeton University Institutional Review Board 
(protocol 8170). All human subjects gave their informed consent to participate in work 
carried out at Princeton University. Human-blood feeding conducted for colony 
maintenance did not meet the definition of human subjects research, as determined by 
the Princeton University IRB (Non Human-Subjects Research Determination 6870). 
 
Field collections 
 
We collected mosquito eggs in each African sampling location by distributing 20-60 
‘ovitraps’ at regular intervals across the landscape. Ovitraps consisted of 32 oz black 
plastic cups (The Executive Advertising), each lined with a 38 x 15 cm piece of 76 lb 
(34.5 kg) seed germination paper (Anchor Paper Co.) and filled with 3-8 cm of water. In 
all locations except coastal Kenya, the water was infused with a mixture of fresh or dry 
mango leaves collected from the leaf litter (n=~20 leaves per 10 liters of water) for 1-2 
days before use. In coastal Kenya and Uganda, we used tap water or made a similar 
infusion with twigs, bark, and leaves from unidentified broad-leafed trees. Anecdotally, 
water source did not appear to affect egg numbers. Each ovitrap had a hole in the side 
at a height of ~3 inches to allow rainwater to drain from the trap. We attempted to 
spread ovitraps at approximately 100 meter intervals, but placed them at intervals as 
small as 10 meters in areas with limited access. We left ovitraps in the field for two 
nights before returning to collect egg-impregnated seed papers. We then dried the 
papers slowly on beds of paper towels over the course of 24 hours and stored them in 
airtight, whirl-pak bags during transport back to the laboratory. The only exception to 
this approach was at Bantata, Senegal (BTT), where we collected Saba senegalensis 
husks from the forest floor, flooded them with water, and collected hatchling larvae over 
the following few days. Most collections were carried out in 2017 and 2018, but 
Ugandan collections were carried out in 2015. 
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Generation and maintenance of laboratory colonies 
 
We hatched egg-impregnated papers from each ovitrap in separate pans of hatch broth, 
made by dissolving finely ground Tetramin Tropical Tablets fish food (Spectrum Brands, 
Inc.) in deoxygenated water (¼ tablet/liter). We continued to feed larvae Tetramin ad 
libitum  through to pupation, and transferred pupae from each seed paper to separate 32 
oz HDPE plastic cages (VWR). Eclosing males and females were able to mate with 
each other in the cages and had access to 10% sucrose solution. Other mosquito 
species sometimes hatched from papers alongside Ae. aegypti and were eventually 
removed from cages without hindering our breeding efforts. However, Ae. albopictus 
males are known to satyrize Ae. aegypti females, rendering them infertile32. In areas 
where Ae. albopictus was present (Nigeria and Gabon), we therefore separated the 
male and female pupae reared from any given seed paper and let them eclose 
separately before identifying adults to species and recombining Ae. aegypti males and 
females only. We set aside 2-20 adults from each population for genome sequencing, 
using only a single individual per ovitrap/cage where possible to reduce the probability 
of sequencing siblings (n=10-20 individuals for 20 locations; n=2-9 for an additional 4 
locations). 
 
We used mosquitoes from independent ovitraps to establish two replicate laboratory 
colonies for 23 locations and a single colony for the remaining 4 locations (Extended 
Data Table 2). Each colony was founded using eggs from 4-43 females, except the 
Lope Forest colony which was founded with eggs from a single female (Extended Data 
Table 2). Founding females were fed on human volunteers (see ethics subsection) and 
allowed to lay eggs individually on wet filter paper cones (Whatman 55 mm Grade 1 
filter paper) in small shell vials (Applied Scientific Drosophila Vials, 28.5 mm diameter, 
95 mm height). We gave females multiple opportunities to feed in order to ensure high 
feeding rates (typically >90%) and thus reduce the potential for selection on host 
preference. However, it was sometimes difficult to coax recalcitrant females to lay eggs 
in the lab. Oviposition rates ranged from 35 to 100% in the first generation. In 
subsequent generations, we maintained population sizes of 300-600 individuals per 
colony, continued to ensure blood-feeding rates >90%, and tried to maximize oviposition 
by forcing females into contact with wet, potting soil-infused, seed germination paper 
cones in small 8.5 oz HDPE plastic cups (VWR) for 2 days (30 females/cup). Eggs were 
dried and stored at 16˚C, 80%RH for up to 6 months between generations. The only 
exception to these breeding procedures applied to the first 2 generations of the colony 
from Zika, Uganda (ZIK), which was fed on a membrane and laid eggs on cups of water 
placed inside a large breeding cage. 
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We included two reference colonies of non-African origin in behavioral and 
morphological studies (Extended Data Table 2). These were a colony from Thailand 
(T51) generated as described above and a laboratory colony originally maintained at the 
USDA labs in Orlando, Florida (ORL) that is of uncertain origin but was most likely 
supplemented for decades with local Floridian mosquitoes33. 
 
Behavior 
 
We tested the host odor preference of 7-14 day old females that had been housed over 
night with access to water only (no sucrose). Different colonies were hatched on the 
same day, females mated freely with males after eclosion, and females 
 were matched for age on testing days. We used a two-port olfactometer as previously 
described10,11 (Fig. 1d inset), with small modifications. Instead of using a large box fan to 
pull air through the device from the back of the olfactometer, we used a smaller fan to 
pull air through an 10.2 x 10.2 cm opening in the back panel. Instead of pulling air from 
the room, carbon-filtered, conditioned air was supplied to the two olfactometer ports 
from an independent building source. Inflow and outflow was balanced to achieve a rate 
of approximately 0.3m/s as measured at the traps. In each trial, 25-110 females were 
allowed to acclimate for 5 minutes in the large holding chamber before turning on the 
fan and opening a sliding door to expose them to streams of air coming from two 
alternative cylindrical traps and host chambers. One host chamber contained an awake 
guinea pig (Cavia porcellus, pigmented breed) or button quail (Coturnix coturnix ). The 
other contained a section of the arm of a human volunteer (middle of forearm to middle 
of upper arm; silicone sheeting used to seal the holes through which the arm was 
inserted). The breath of the animal mixed with its odor in the animal odor stream. To 
add human breath on the human side, we asked the human subject to breathe gently 
through a nasal mask into the host chamber every 30 seconds. Trials lasted 10 minutes, 
and mosquitoes choosing to fly upwind towards either host odor stream during this time 
were trapped in small ports and counted at the end. 
 
We carried out host preference trials in two main waves, with a 28-year old, 
European-American male serving as the human subject and one of two female guinea 
pigs serving as the animal subject. In the first wave, we tested second-generation 
colonies from Kenya and Gabon. In the second wave, we tested second generation 
colonies from Nigeria, Ghana, Burkina Faso, and Senegal, eighth- or ninth-generation 
colonies from Uganda, and two reference colonies of non-African origin. We also 
repeat-tested a representative set of first wave Kenyan and Gabonese colonies (RAB, 
VMB, FCV, LBV; by then in their fourth generation) in the second wave to ensure that 
results were comparable between waves. At least one of two colonies from every 
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population included in a given wave was tested on every experimental day in order to 
balance random day-to-day variation with the population effects we were trying to 
estimate (Extended Data Fig. 1a-b). Overall, we carried out 3-4 trials for each colony, 
except one of two replicate colonies from BTT, KED, and KUM, which were tested only 
twice. This resulted in a total of 7 trials for most populations, 3-6 trials for the six 
populations represented by only a single colony or for which one of two colonies had 
fewer trials, and 14 trials for the four populations tested in both waves. In total, we 
carried out 206 trials including 17,856 female mosquitoes, of which 7,385 responded to 
one or the other host odor. 
 
After the two main waves, we carried out a smaller set of trials with one colony from 
each of four representative African populations (FCV, OGD, AWK, NGO) and a wider 
array of host comparisons. In one set of trials, we substituted a 22-year old 
Nigerian-American female for the original 28-year old European-American male, and in 
another set we substituted a button quail for the guinea pig (Extended Data Fig. 1c, 
n=3-5 trials per colony x host combination). 
 
We used a beta-binomial mixed generalized linear model as implemented in the R34 
package glmmTMB35 to model the probability of choosing a human versus animal host 
for each population. This model assumes independence of individual females within 
trials but accounts for trial structure and the fact that preference varies more from trial to 
trial than is expected for a binomial model (is overdispersed) due to random sources 
variation (e.g. exact starting position of females within the acclimation chamber at the 
start of a trial, small differences in airflow between right and left ports, uncontrollable 
trial-to-trial variation in live host stimuli etc.). Replicate colonies and trial day were 
included as random factors, while population was modelled as a fixed factor. We 
switched the guinea pig used and the side of the human versus animal host between 
days such that these effects would be subsumed under the trial day random factor. We 
used the R package emmeans36 to extract from our glm the fitted probability of choosing 
a human host with 95% confidence intervals. For purposes of data visualization, we 
transformed each probability (p) into a preference index (PI) ranging from -1 to 1 using 
the formula PI=2p-1. An index of zero means the mosquitoes were equally likely to 
choose either host (no preference), while an index above or below zero means the 
mosquitoes were more likely to choose the human or animal, respectively. We used a 
likelihood ratio test to compare our glm to a null model accounting for day-to-day 
variation but not population of origin. The same beta-binomial mixed generalized linear 
model was used to model the probability of responding to either host (overall response 
rates, Extended Data Fig. 1f). 
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Ecological modeling 

We first compared the behavior of mosquitoes from paired forest and town populations 
within 5-60km of each other. In one case, a single town population (KED) was paired 
with two forest sites (BTT and PKT). We estimated the effect of forest habitat using a 
linear model that estimated preference for each pair (or group for KED, BTT, and PKT) 
and a coefficient for forest or town habitat. This is conceptually very similar to carrying 
out a paired t-test, except it allowed us to take into account the two different forest sites 
near KED. 

We next explored the ecological factors associated with preference for humans across 
all populations in the sample set, again using a linear modelling framework. In this set of 
analyses, each population was represented by a single logit-transformed preference 
probability (generated by the beta-binomial model described in the previous section) 
and a single estimate of each ecological descriptor extracted from public datasets using 
the mean latitude and longitude of the ovitraps that contributed to the corresponding 
colony (or the mean of the two independent colony means for populations with two 
colonies). 

While immediate habitat had no effect on behavior, we hypothesized that human 
population density might be relevant when calculated across a larger spatial scale. We 
therefore used a 2.5-minute resolution population density raster from the United Nations 
World Population Prospects (UNWPP, 2015 population densities adjusted to country 
totals) 37 to compare the effect of density across buffers of the following radiuses: 5, 10, 
15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, and 300 km. In a simple human 
population density model that also takes regional variation into account (logit(prob) ~ 
human_pop_density + Latitude*Longitude), human population density had a significant 
effect across a wide range of spatial scales, but was strongest with ~20-50km buffers 
(black line in Extended Data Fig. 2a). 

To better understand the regional drivers of variation in preference, we used the 
WorldClim 2 bioclimatic variables (Bio1-19) as a set of candidate predictors. Because 
some of these variables are correlated, we also considered the predictive value of the 
first three principal components from a PCA analysis of Bio1-19 variation across our 
populations. In preliminary tests, Bio15 (precipitation seasonality) clearly showed the 
strongest single-variable association with preference. This was true both in a 
comparison of simple correlations between each variable and preference (Bio15 r=0.65) 
and when we included each variable in a linear model with human population density 
(20km buffer) (red circles in Extended Data Fig. 2b). However, the relationship with 
Bio15 appeared to be strongly nonlinear, if still monotonic (Fig. 2b). We therefore used 
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a two-step procedure to model the nonlinearity. We first used the R package 
MonoPoly37 to fit monotonic polynomials of different degrees to logit-transformed 
preference probabilities, and then included the fitted values as an offset (i.e. removed 
their effects before fitting) in the linear model (logit(prob) ~ human_pop_density_20km + 
offset(fitted(monotonic polynomial Bio15))). We found that a third-order monotonic 
polynomial significantly improved model performance, minimizing the Akaike 
Information Criterion (AIC). Rechecking the performance of different human population 
density buffers in this new model context showed that 20km yielded a much lower AIC 
than other buffers (light blue line in Extended Data Fig. 2a). Note that this buffer most 
likely reflects the balance between selection and dispersal, and is not a direct reflection 
of adult dispersal patterns per se. 

We were concerned that nonlinear relationships could have obscured another better 
predictor in our initial survey of single-variable correlations. However, after fitting 
monotonic polynomials of degree 1-4 for all 19 bioclim variables and the first three PC 
axes, a third-order monotonic polynomial fit for Bio15 still had the lowest AIC (Extended 
Data Fig. 2b). 

To check whether additional climate variables could further improve our model. We 
regressed logit-transformed preference and the other bioclimate variables on our 
third-order fit for Bio15 and tested if residual variation in preference could be explained 
by the other variables. We again used a two-step procedure to model these effects. We 
used the R package MonoPoly to fit monotonic polynomials of different degrees to 
logit-transformed preference probability residuals, and then included the fitted values as 
an offset (i.e. removed their effects before fitting) in the linear model (logit(prob) ~ 
human_pop_density_20km + offset(fitted(monotonic polynomial Bio15)) + 
offset(fitted(monotonic polynomial BioX))). We found that including a linear Bio18 
(precipitation in the warmest quarter) term further reduced AIC (Extended Data Fig. 2c). 
Because Bio18 and our fitted Bio15 polynomial relationship were modestly correlated 
(r=-.29) and we had selected the variables in a stepwise way, we wondered if including 
them in a single linear model would change our estimates of their effects. In this full, 
final model (logit(prob) ~ human_pop_density_20km + fitted(monotonic polynomial 
Bio15) + Bio18), the estimated coefficient for the fitted Bio15 component was close to 1 
(1.04), indicating that fitting the effects sequentially or together didn’t make a major 
difference, but we used the model where both were fit together going forward. Using 
both Bio15 and Bio18 as covariates, we again found that using a buffer of 20km for 
calculating population density yielded a much lower AIC than other buffers (Extended 
Data Fig. 2a). 
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Bio15 and Bio18 both have clear connections to the length and temperature of the dry 
season - an important factor in survival of dormant Aedes aegypti eggs. We therefore 
combined them into a single Dry Season Intensity Index by adding together the fitted 
Bio15 and Bio18 terms for each location. This simple transformation yields a single 
linear climate term that predicts the host odor preference of mosquitoes from a given 
location. 

Morphological analyses 
 
We pinned 7-29 female mosquitoes from each location (field-collected [AWK, BOA, 
FCV, KED, KIN, KUM, LBV, LPV, MIN, NGO, OGD, OHI, PKT, THI] or lab colony [ABK, 
BTT, ENT, GND, KAK, KBO, KWA, LPF, ORL, RAB, SHM, T51, VMB, ZIK]) as 
previously described (4) and captured light microscope images of the dorsal abdomen 
under constant lighting and magnification (3X) on a Nikon SMZ1270 microscope. We 
then estimated the proportion of white scales on the first abdominal tergite by converting 
each image to 8-bit grayscale in ImageJ, selecting the region of interest, and calculating 
the area with brightness values above 128. Area estimates were only weakly sensitive 
to the precise cutoff since the white and black scales differ markedly in brightness; we 
therefore chose a value in the middle of the range. We used the R function lm to fit a 
linear model with logit-transformed scaling proportion as the response variable and 
population of origin as the predictor. We then used the R package emmeans to 
calculate 95% confidence intervals for each population. 
 
Whole genome resequencing and variant calling 

As part of an ongoing 1200 Aedes aegypti genomes project, we extracted gDNA from 
480 field-collected mosquitoes using the Chemagic DNA tissue protocol and sequenced 
them to 15x coverage with PE 151bp reads using the Illumina HiSeqX platform. The 
sequenced mosquitoes included 397 individuals from 24 sub-Saharan African 
populations collected for this study, 29 additional individuals from sites in Uganda, 
Kenya, and Burkina Faso that were not included in the main study, 12 individuals of the 
domestic form collected in 2009 or 2011 in Rabai, Kenya10, 20 individuals from 
Bangkok, Thailand, 18 individuals from Santarem, Brazil, and 4 Ae. mascarensis 
mosquitoes for use as an outgroup. 

We initially mapped all sequence data to the L5 reference genome38. We identified and 
removed close relatives from our sample as follows. First, we generated a matrix of 
relatedness coefficients using the --relatedness2 subprogram from VCFtools39 with a set 
of randomly selected 109,267 biallelic SNPs (MAF>0.05, >1 read in 90% of individuals) 
preliminarily called with bcftools. Second, we hierarchically clustered the coefficients 
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using the R function hclust (method=’average’). Third, we grouped close relatives using 
the R function cutree, with a relatedness cutoff of 0.05 for African samples 
(corresponding to first cousin or closer relationships) and 0.2 for non-African 
populations (corresponding to siblings). The more permissive cutoff was used for 
non-African populations because they are more inbred/bottlenecked, with many 
individuals showing cousin-like relationships. Finally, we removed all but one 
randomly-chosen individual from each group of relatives. This left us with 345 
sub-Saharan African Ae. aegypti  genomes from our 24 focal study sites, 14 Ae. aegypti 
from other sites in sub-Saharan Africa, 30 Ae. aegypti genomes from outside 
continental Africa and 4 Ae. mascarensis genomes. Most relatives came from the same 
ovitrap (we sequenced more than one individual from a single ovitrap when ovitrap/egg 
limited). A smaller number came from nearby ovitraps in the same general location. The 
14 Ae. aegypti genomes from non-focal sites were used for variant discovery and 
included in ADMIXTURE and PCA-based analyses (see below) in order to ensure we 
were sampling as much diversity as possible, but they are not plotted in figures.  

We then used three iterative mapping steps to construct an updated African reference 
based on data from a geographically distributed (Africa only) set of 100 unrelated male 
mosquitoes (Extended Data Fig. 9). We chose to use males for the update because the 
L5 reference was constructed using data from males. In each of three iterative mapping 
steps, we (1) mapped sequence data from the mapping set to the reference using bwa 
mem  (MAPQ cutoff of 10), (2) called consensus biallelic SNP genotypes using bcftools 
( “bcftools mpileup -BI | bcftools call -vmOu  | bcftools view -v snps -q 0.5:alt1 | bcftools 
norm -Ou -m  - | bcftools norm -Oz -d snps”), and (3) substituted the consensus base 
into our reference sequence using bcftools consensus40,41. We used PicardTools42 to 
characterize read mapping quality after each iteration on a set of individuals not used 
for alternate reference construction (20 individuals; male-female pairs from 10 African 
populations) (Extended Data Fig. 9). We used a permissive MAPQ cutoff of 10 for the 
mapping steps because analyses suggested that high levels of sequence divergence 
from the L5 reference were disrupting initial alignments (Extended Data Fig. 9a-d). 
Finally, we remapped data from all 480 genomes to the updated third-iteration 
reference; this included non-African and outgroup samples, which also mapped well to 
the updated reference (Extended Data Fig. 9e-f). Males and females mapped similarly, 
except in the region around the sex-determining M-locus (Extended Data Fig. 9g-h). 
After remapping, we realigned reads near insertions and deletions to improve variant 
discovery in these regions using GATK IndelRealigner43. 

We took two different approaches to variant calling - both of which were confined to 
regions of the genome we inferred to be non-repetitive (repeat masked using the 
RepeatMasker intervals from the L5 genome) and single copy (mean coverage between 
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5-30X across individuals). We used the program ANGSD44 to calculate population-level 
allele frequencies and genetic diversity, as well as to carry out genotype-likelihood 
based analyses (see below) for 161,713,099 biallelic single nucleotide polymorphisms 
(SNPs, P <10 -6). We also called individual genotypes for a filtered set of 14,045,728 high 
quality biallelic SNPs using bcftools. These SNPs were filtered for coverage across the 
entire sample (covered by at least 1 read in 90% of individuals) and then called for any 
individual with sample depth > 8 reads and genotype quality score >30. After individual 
genotype calling we implemented a further filter for the fraction of individuals genotyped 
(>75% at any given SNP) and minor allele frequency (MAF>1%). We used the same 
permissive MAPQ cutoff of 10 for variant calling as used for generating the updated 
reference genome (see above) in order to minimize potential problems with aligning 
alternate haplotypes. Note that our additional MAF and genotyping filters help protect 
against SNP calls from false positive alignments. Hard genotype calls (or subsets 
thereof) were used for ADMIXTURE, principal components analyses (PCA), PCAdapt, 
and Dsuite analyses (see below). 

Population structure analyses 
 
We characterized population structure using two alternative approaches based on a set 
of 1,000,000 unlinked SNPs selected in PLINK  (step size 100, cutoff 0.1, --thin-count 
1000000)45. First, we used ADMIXTURE 21 to assign individuals to variable numbers of 
population clusters for K=2-10, with K=3 minimizing cross-validation error (Extended 
Data Fig. 3b). Second, we used PLINK to carry out principal components analysis 
(PCA). One sample from Ngoye, Senegal (NGO) was a clear outlier in ancestry, 
showing strong affinity with West African generalist populations while all other 
individuals from this population showed consistent affiliation with human specialists (Fig. 
3c-d); we excluded this putative recent migrant from subsequent FST, PBS, 
ABBA-BABA, π ,  and d xy analyses involving Ngoye (see below). 
 
Gene flow and divergence analyses 
 
We used ANGSD (subprogram realSFS) to calculate pairwise FST between populations 
and a custom script to turn these FST values into the Population Branch Statistic (PBS, 
essentially polarized F ST) for NGO, THI, OGD, KED, and OHI, using BTT as a nearby 
generalist reference population and FCV as an outgroup22. Using alternative reference 
and outgroup populations yielded similar results. We used a permutation testing 
approach to construct a distribution of 5Mb PBS  values under the null hypothesis of 
homogeneous differentiation across the genome. More specifically we shuffled the 
genomic locations of 10kb windows (which preserves local linkage patterns) with the 
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constraint that shuffling could only occur among regions matched for average genetic 
diversity (average of BTT and focal population). We then used this null distribution to 
identify ≥5Mb regions of elevated PBS  at a false discovery rate of 0.05 using a 
two-tailed test. The choice of a 5Mb window restricts us to largish regions that are either 
relatively new (giving recombination limited time to break up divergent chromosomal 
regions) or contain several tightly linked loci. However, using smaller regions (e.g. 1Mb 
or 100kb) identified similar patterns. 
 
We used ABBA-BABA-related statistics to further explore patterns of divergence 
between populations. These statistics test for an excess of shared derived variation 
between lineages in order to distinguish gene flow from the incomplete lineage sorting 
(ILS) that can occur during a simple tree-like branching process. For more on expected 
genome-wide and locus-specific patterns of derived allele sharing under ILS and gene 
flow, see 23. First, we used Dsuite 46 to confirm that the populations in our dataset did not 
conform to the strict tree-like model, which is expected since all populations belong to 
the same species and almost certainly exchange genes. Indeed, we strongly rejected 
the null tree-like hypothesis (block-jacknife P<10 -7) for all three-population trees with Ae. 
mascarensis as an outgroup.  
 
We then explored potential heterogeneity in gene flow across the genome using the fD 

statistic (calculated in 5Mb windows with a 10kb step). The fD statistic uses shared 
derived genetic variation to estimate the fraction of ancestry at a specific locus derived 
from gene flow between branches in a specified tree23. We calculated fD from ANGSD 
population allele frequencies using a custom python script for the tree (BTT, X; BKK, 
mascarensis) to identify regions of the genome showing elevated levels of shared 
derived variation between the focal population (X=NGO, THI, or OGD) and non-African 
human specialists (BKK). We do not think such shared derived variation is necessarily 
derived from introgression back to Africa from non-African populations. Instead, it may 
reflect relationships present in ancestral populations, before Ae. aegypti left Africa. 
Differentiating between these two hypotheses is out-of-scope for this study but will be 
addressed in a future study incorporating much more genomic data from outside Africa. 
Regardless, we expect shared derived variation between human-preferring populations 
within and outside Africa to be present in regions that code for human-adaptive traits 
and thus experience reduced gene flow between human- and animal-preferring 
populations within Africa. We used Fisher’s exact test to test whether the top 10% of 
non-overlapping 5Mb fD windows were significantly enriched in our PBS outlier regions 
for each focal population. 
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To help interpret measures of between-population divergence (i.e. F ST and PBS), we 
used ANGSD to estimate levels of genetic diversity (π ) across the genome for each 
population and the perl script getDxy.pl (modified to skip variant sites not covered in one 
population) from ngsTools47 to calculate dxy (Extended Data Fig. 5). We also calculated 
normalized d xy (Extended Data Fig. 5c) by dividing dxy for a given population pair by 
mean dxy for all pairs of NGO, THI, OGD, BTT, and FCV. We calculated normalized π 
(Extended Data Fig. 5c) by dividing population π by mean π across all populations. 
 
We used PCAdapt25 to test whether specific SNPs were associated with specialist 
ancestry across the subset of high-quality, biallelic SNPs from our hard-called set that 
had minor allele frequency >0.05 (n=5,369,564 SNPs) (PCAdapt parameters: K=3, 
method “componentwise”, and LD clumping with a size of 200 and a cutoff of 0.1).  
 
Climate and population projections 
 
We predicted future changes in host odor preference at each sampling location by 
plugging climate and human population density change projections for 2050 into our 
final, fitted, ecological model – including human population density (calculated within 
20km radius), precipitation seasonality (Bio15, third degree monotonic polynomial) and 
precipitation in the warmest quarter (Bio18, linear). 
 
Climate change projection data came from the Coupled Model Intercomparison Project 
Phase 5 (CMIP5) based on Representative Concentration Pathway 8.5 (RCP8.5) 
scenarios27. RCP8.5 is considered the business-as-usual scenario for future 
greenhouse gas concentrations, reflecting minimal mitigation efforts. The CMIP5 effort 
contributed to the International Panel on Climate Change (IPCC) Fifth Assessment 
Report. A new modeling effort, CMIP6, is currently underway but complete data are not 
yet available. Projected climate data from a global climate model (GCM) cannot be 
directly compared to present-day observational climate data due to model biases and 
measurement error. Failing to account for these biases can result in misinterpreting 
structural differences between the two datasets as potential climate change effects. 
Instead, the projection data must first be bias-corrected by calculating the relative or 
absolute change between current and future climates for the variable of interest, using 
solely the GCM output. This relative or absolute change can then be applied to 
observational data. Depending on the resolution of the observational climate data, 
projections may also be downscaled – i.e. the resolution of the model output improved. 
The Worldclim projection data has undergone both downscaling and bias-correction 
processes such that it can be compared with the observational data used in our 
present-day analysis. Absolute changes were used for temperature and relative 
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changes were used for precipitation. Further details of these processes are available at 
https://www.worldclim.org/downscaling. There is relatively high agreement across 
models in terms of the spatial distribution of projected Bio15 and Bio18 changes 
(Extended Data Fig. 7).  
 
Population projection data came from the United Nations medium-variant scenario48. 
This scenario assumes existing high fertility populations will experience a fertility decline 
over the coming century, as economic development increases. Despite falling fertility, 
sub-Saharan Africa is expected to see an increase in the total number of births over the 
next several decades relative to the recent past. High birth numbers coupled with 
increasing life expectancy will lead to 1.05 billion increase in population in sub-Saharan 
African countries by 2050, 52% of the additional global population in this timeline49. We 
used urban and rural, medium-variant projections for each country and calculated 
growth rates by comparing 2050 numbers with those from 2015. Note, our field 
collections were conducted between 2015 and 2018 (mostly 2017-2018) making 2015 
numbers more applicable than any other available estimates. We then applied these 
growth rates to the baseline population data for each location. Urban and rural locations 
were considered separately because urban populations are expected to grow at a faster 
rate than rural populations over this time period. Urban populations were defined as 
those with current population density > 400 humans/km2 calculated with a 20km buffer 
(Extended Data Table 1). These populations were all from areas that we observed to be 
dominated by human structures and activities (Extended Data Table 1). A few 
intermediate density locations fell below this cutoff and were classified as rural. More 
specifically, KWA, OHI and NGO are rural towns, while ABK and SHM are wild areas on 
the far outskirts of what most would consider urban areas (densities 173-288 
humans/km 2; Extended Data Table 1). The other sites classified as rural had much 
lower densities (1-67 humans/km2; Extended Data Table 1). 

Data and code availability: Raw genomic data are deposited in the NCBI SRA under 
the accession code PRJNA602495 and will be made available upon publication. Other 
raw data and scripts are available at github.com/noahrose. 
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Extended Data: 

 

Extended Data Fig. 1. Additional details for host preference assays. a- b, Raw 
preference indices for all trials plotted by location (a) or trial day (b). Color indicates 
location and symbols indicate trial day. c, Preference estimates for four populations 
derived from tests with alternative human subjects (top color of each circle) and animal 
species (bottom color of each circle) (n=3-8 trials, each including 37-110 females per 
colony/host combination). Data for one human versus either of two guinea pigs (red/light 
blue and red/dark blue) come from same experiments summarized in Fig. 1d. Data for 
same human versus quail (red/green) and second human versus guinea pig (pink/dark 
blue) are new. d, Host preference was strongly correlated for replicate colonies from the 
same location (Pearson R2=0.60, P =1.5x10 -5). e , Preference and overall response rate 
(rate of choosing either host) were strongly correlated across locations (R 2=0.73, 
P =4.4x10 -9). f , Overall response rates for each location plotted and analyzed as in Fig. 
1d. 
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Extended Data Fig. 2. Additional details for modelling effects of human 
population density and climate on host preference. a , Akaike Information Criterion 
(AIC) for linear models of host preference as a function of various combinations of 
region (latitude/longitude), specific climate variables, and human population density 
estimated across different scales (x-axis). All models incorporating population density 
perform better than a null model that includes region only (Lat*Long, grey line). Dotted 
vertical line highlights the spatial scale at which population density best predicted 
behavior in our final model (purple). b, AIC for linear models of host preference as a 
function of human population density plus individual bioclimate variables. Precipitation 
seasonality (pink) provided the best fit, especially when modeled as a monotonic cubic 
polynomial. c, After removing the effects of population density and precipitation 
seasonality, a linear effect of precipitation in the warmest quarter (pink) further 
decreases AIC. No further variable improves the model after including this second 
climate effect. d , Map of collection localities equivalent to Fig. 1c except on background 
map of variation in precipitation in the warmest quarter (rather than precipitation 
seasonality). 
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Extended Data Fig. 3. Additional details for analyses of population structure. a , 
Ancestry proportions from ADMIXTURE analysis for K=2-6. b, Cross-validation error for 
analysis in (a) is minimized for K=3. c- d, Principal components analysis shows three 
main clusters, with sub-structure corresponding to the clusters found at higher K values 
(c) and, remarkably, to behavior (d). The non-African and Rabai domestic samples are 
shown in grey in panel (d) because their behavior was not tested in this study. However, 
we expect them to be strongly human-preferring based on previous work 4 as well as 
testing of the T51 colony (from Thailand) and ORL colony (likely of largely American 
descent) in this study (Fig. 1d). 
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Extended Data Fig. 4. Mindin, Senegal (MIN) shows signs of a selective sweep 
and/or structural rearrangement in the chromosome 1 outlier region. a, Map of 
sites addressed in this figure (taken from Fig. 1c with precipitation seasonality scale 
adjusted to better illustrate climate gradient in Senegal and Burkina Faso. Mindin is an 
animal-seeking population at the bleeding edge of the geographic transition to 
human-seeking in the Sahel region of Senegal. b, Mosquitoes from Mindin show 
elevated divergence from human-seeking populations at the distal end of chromosome 
1, as do other animal-seeking populations (e.g. BTT; Extended Data Fig. 5b). Grey 
shading indicates PBS  outlier regions. c, Unexpectedly, mosquitoes from Mindin also 
show step-like, elevated divergence in this chromosomal region from other 
animal-seeking populations, despite having similar host preference. Elevated 
divergence in (c) is a function of variably elevated absolute differentiation (dxy) (d ) and 
markedly reduced genetic diversity (π) in Mindin (e). 
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Extended Data Fig. 5. Additional details for analyses of genomic divergence 
between human- and animal-seeking populations. a , Polarized genomic divergence 
(Population Branch Statistic, PBS) as shown in Fig. 3f with the addition of a human 
specialist population from outside Africa (Bangkok, BKK). BKK shows elevated 
differentiation across the genome. b, Non-polarized divergence (FST) from the 
animal-seeking population Bantata (BTT). Human-seeking populations show elevated 
differentiation in PBS  outlier regions. Animal-seeking populations show minimal 
differentiation even when geographically distant from BTT (e.g. Ouahigouya, OHI). BKK 
again shows higher differentiation across the genome. Patterns in (b) are driven by 
variation in (c)  absolute genetic differentiation (d xy) and ( d) within-population diversity 
( π) in the same populations. e, Analyses of normalized dxy and normalized π  indicate 
that human-seeking populations have both elevated absolute divergence and reduced 
diversity within PBS  outlier regions (pink, green, black), suggesting that both sweeps 
and subsequent selection against gene flow have driven divergence in these regions. 
Conversely, human-seeking populations inside Africa show reduced levels of absolute 
divergence from the non-African population (BKK) in these regions (last three 
subpanels), consistent with shorter coalescence times and a common origin. 
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Extended Data Fig. 6. PCAdapt analysis identifies genome-wide variants 
associated with human specialist ecology. a, The second principle component from 
a PCAdapt analysis of African genomes shows a striking correlation with host 
preference. This result is similar to the outcome of the principal components analysis of 
population structure shown in Extended Data Fig. 3d, where the second PC is clearly 
also strongly correlated with behavior within Africa. b, Thousands of SNPs were more 
strongly associated with PC2 than expected under neutral evolution, suggesting positive 
selection (n=16,782 SNPs in red, Bonferroni-adjusted P<0.05). Consistent with 
analyses of genomic divergence between human- and animal-preferring populations in 
West Africa (Fig. 3f), the most significant SNPs are concentrated in PBS outlier regions 
(grey shading). Points with unadjusted P>0.01 not plotted. 
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Extended Data Fig. 7. Projected change in preference-related climate variables 
from 2000 to 2050. a, Mean projected change in precipitation seasonality across all 
climate models. b, Individual model projections for precipitation seasonality. Note that 
scale differs from panel A. c- d, same as a-b except for precipitation in the warmest 
quarter. 
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Extended Data Fig. 8. Additional details on host preference projections for 2050. 
Expected effects of changes in human population density (black) and climate (grey) are 
shown separately. Net effects are shown in red (increases) or blue (decreases). Note 
that publicly available human population growth rate projections are different for urban 
( a) and rural ( b) sites. We classified sites as urban if current population density 
exceeded 300 humans km-2. 
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Extended Data Fig. 9. Construction of an alternate reference genome improved 
read mapping and variant discovery. a- d, Comparison of four mapping statistics 
across three iterative updates to the AaegL5 genome for a panel of 20 individuals (one 
male and one female from each of 10 African populations): a, Total number of reads 
mapped with MAPQ>20. b, fraction of mismatched bases. c, mean number of 
polymorphic sites per individual covered by at least 10 reads with MAPQ>10 
(polymorphic sites defined as those with at least 5 alternate allele reads present among 
summed reads from all samples). d, average number of heterozygous sites per 
individual covered by >10 reads with MAPQ>10. e- f, Improvements in high quality 
mapping rates (MAPQ>20) (e) and mismatch rates (f) were most apparent for African 
mosquitoes (black). Use of the alternate reference also improved high quality mapping 
rates for non-African mosquitoes (red, e), but increased mismatch rates (f). g- h, Males 
and females had similar coverage (g) and mismatch rates (h) when mapped to the 
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alternate reference, except around the sex-determining M locus. At the M locus, males 
had higher coverage and fewer mismatches. Note the AaegL5 assembly and alternate 
reference were both constructed using male mosquitoes. In panel h, the pair from 
Franceville, Gabon (FCV) is excluded due to a male outlier showing elevated 
genome-wide mismatch rates.  
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Extended Data Table 1. 
Details of collection localities. Climate variables and population densities are calculated 
within a 20km radius. Latitude and Longitude are the average coordinates of 
egg-positive ovitraps from collections. 
 

Location Country Code Latitude Longitude Habitat Human 
Population 
Density 
km-2 

Precip. 
Seasonality 
(coef. var.) 

Precip., 
Warmest 
Qtr. 
(mm) 

Pref. 
Index 

Ngoye Senegal NGO 14.63960875 -16.43174115 Town 232.67 157.76 135.71 0.69 

Thies Senegal THI 14.75784115 -16.93863845 Town 421.12 159.80 325.08 0.40 

Mindin Senegal MIN 14.07473585 -15.28339615 Town 53.61 140.43 59.95 -0.48 

Kedougou Senegal KED 12.55867615 -12.18635415 Town 12.25 124.44 54.75 -0.52 

PK10 Senegal PKT 12.60970505 -12.2474927 Forest 12.29 124.94 52.50 -0.33 

Bantata Senegal BTT 12.6749906 -12.3270609 Forest 12.29 125.46 49.88 -0.59 

Ouaga- 
dougou 

Burkina 
Faso 

OGD 12.37455556 -1.49805556 Town 2153.80 119.76 108.72 0.01 

Ouahi- 
gouya 

Burkina 
Faso 

OHI 13.583331 -2.416665 Town 172.60 130.56 114.35 -0.64 

Kumasi Ghana KUM 6.67544745 -1.5665543 Town 2264.55 53.99 332.28 -0.30 

Kintampo Ghana KIN 8.052798 -1.725279 Town 37.23 65.89 224.41 -0.58 

Boabeng Ghana BOA 7.708767 -1.6973721 Forest 67.04 64.17 242.57 -0.67 

Awka Nigeria AWK 6.2509878 7.00215995 Town 1086.14 72.51 232.17 -0.46 

Libreville Gabon LBV 0.4259774 9.4483769 Town 799.57 68.76 880.57 -0.66 

Lope 
Village 

Gabon LPV -0.1050309 11.60796015 Town 1.27 69.40 553.49 -0.71 

Lope 
Forest 

Gabon LPF -0.204279 11.600281 Forest 1.27 69.95 562.14 -0.84 

Franceville Gabon FCV -1.63997525 13.582982 Town 38.54 59.72 633.48 -0.87 

Entebbe Uganda ENT 0.06444 32.44694 Town 881.75 41.60 357.38 -0.60 

Zika Uganda ZIK 0.122214 32.526191 Town 1588.71 40.20 336.43 -0.60 
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Kakamega Kenya KAK 0.2845454 34.7543336 Town 707.17 38.87 342.16 -0.62 

Shinyalu Kenya SYL 0.22688755 34.8133263 Town 727.46 38.05 372.10 -0.78 

Virembe Kenya VMB 0.23893465 34.84780885 Town 671.64 38.34 378.52 -0.61 

Rabai Kenya RAB -3.9342022 39.5730709 Town 1291.36 65.53 238.85 -0.52 

Kaya 
Bomu 

Kenya KBO -3.9308373 39.59651005 Forest 1392.59 66.18 239.75 -0.40 

Kwale Kenya KWA -4.1721596 39.44844215 Town 184.84 62.89 166.48 -0.50 

Shimba 
Hills 

Kenya SHM -4.25009085 39.4006515 Forest 187.13 64.95 133.88 -0.54 

Ganda Kenya GND -3.2204869 40.06458775 Town 504.84 80.23 181.49 -0.62 

Arabuko Kenya ABK -3.29709435 39.94876745 Forest 288.57 71.83 172.13 -0.62 
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Extended Data Table 2. 
Details of laboratory colony establishment and behavioral testing. 
 

Country Location Colony ♀ 
Founders 

Number of 
behavior 

trials 

Number 
of ♀ 

across 
behavior 

trials 

Kenya Rabai RAB1 33 6 491 

Kenya Rabai RAB2 24 8 829 

Kenya Kaya Bomu KBO1 43 3 300 

Kenya Kaya Bomu KBO2 28 4 398 

Kenya Ganda GND1 9 3 225 

Kenya Ganda GND2 7 4 223 

Kenya Arabuko ABK1 7 3 300 

Kenya Arabuko ABK2 14 4 380 

Kenya Kwale KWA1 34 3 260 

Kenya Kwale KWA2 28 4 361 

Kenya Shimba SHM1 8 3 180 

Kenya Shimba SHM2 9 4 400 

Kenya Kakamega KAK1 9 3 264 

Kenya Kakamega KAK2 7 4 400 

Kenya Virembe VMB1 7 6 506 

Kenya Virembe VMB2 4 8 820 

Kenya Shinyalu SYL1 13 3 300 

Kenya Shinyalu SYL2 7 4 299 

Gabon Lope Village LPV1 8 3 300 

Gabon Lope Village LPV2 9 4 400 

Gabon Lope Forest LPF 1 4 296 

Gabon Libreville LBV1 <=18 6 495 

Gabon Libreville LBV2 <=24 8 794 

Gabon Franceville FCV1 <=5 6 333 

Gabon Franceville FCV2 <=5 8 764 
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Ghana Kintampo KIN1 25 3 219 

Ghana Kintampo KIN2 20 4 429 

Ghana Kumasi KUM1 21 2 100 

Ghana Kumasi KUM2 39 4 420 

Ghana Boabeng BOA 8 3 196 

Burkina 
Faso 

Ouaga- 
dougou 

OGD1 16 3 218 

Burkina 
Faso 

Ouaga- 
dougou 

OGD2 21 4 431 

Burkina 
Faso 

Ouahigouya OHI1 13 3 226 

Burkina 
Faso 

Ouahigouya OHI2 6 4 420 

Nigeria Awka AWK1 5 3 203 

Nigeria Awka AWK2 10 4 416 

Senegal Kedougou KED1 21 2 104 

Senegal Kedougou KED2 31 4 395 

Senegal Mindin MIN1 23 3 195 

Senegal Mindin MIN2 32 4 391 

Senegal Ngoye NGO1 13 3 225 

Senegal Ngoye NGO2 15 4 378 

Senegal Thies THI1 16 3 196 

Senegal Thies THI2 15 4 287 

Senegal Bantata BTT1 10 3 162 

Senegal Bantata BTT2 5 2 185 

Senegal PK10 PKT1 14 3 209 

Senegal PK10 PKT2 15 4 429 

USA Florida/Lab ORL Unknown 3 168 

Thailand Kamphaeng 
Phet 

T51 >100 4 439 

Uganda Entebbe ENT 20 4 407 

Uganda Zika ZIK ~25 3 190 
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