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ABSTRACT

Ewing’s sarcoma (EWS) is the second most common primary malignant bone cancer in children. Advances in the treatment of
EWS are desperately needed, particularly in the case of metastatic disease. A deeper understanding of collateral sensitivity,
where the evolution of therapeutic resistance to one drug aligns with sensitivity to another drug, may improve our ability to
effectively target this disease. For the first time in a solid tumor, we examine the repeatability of collateral sensitivity in EWS
cell lines over time as evolutionary replicates evolve resistance to standard treatment. In doing so, we produced a temporal
collateral sensitivity map that allows us to examine the evolution of collateral sensitivity and resistance in EWS. We found that
the evolution of collateral sensitivity and resistance was predictable with some drugs, but had significant variation in response
to other drugs. Samples that were most sensitive and most resistant to all drugs were compared using differential gene
expression. Using this map of temporal collateral sensitivity in EWS, we can see that the path towards collateral sensitivity is
not always repeatable, nor is there always a clear trajectory towards resistance or sensitivity. Identifying transcriptomic changes
that accompany these states of transient collateral sensitivity could improve treatment planning for EWS patients.

Introduction1

Ewing’s sarcoma (EWS) is the second most common primary malignant bone cancer in children.1, 2 Localized disease has a2

50-70% 5-year survival rate, and metastatic disease has a devastating 18-30% 5-year survival rate.2–4 Advances in the treatment3

of EWS are desperately needed, particularly in the case of metastatic disease. Unfortunately, all recent attempts to improve4

the chemotherapy regimen for EWS have only yielded modest results for non-metastatic cancer with little-to-no impact on5

the course of metastatic disease.3, 5 Researchers have tried adding ifosfamide and etoposide to standard EWS chemotherapy,6

increasing the drug doses administered, and decreasing the interval between doses, all without meaningful improvement to7

metastatic disease outcomes.3, 5, 6 Even when treatment is initially successful, EWS often evolves therapeutic resistance, which8

ultimately leads to disease relapse.7 A deeper understanding of the evolutionary dynamics at play as EWS develops therapeutic9

resistance may improve our ability to effectively target this disease.10

During the evolution of therapeutic resistance, both bacteria and cancer can exhibit a phenomenon termed collateral11

sensitivity, where resistance to one drug aligns with sensitivity to another drug.8–10 Likewise, collateral resistance occurs when12

resistance to one drug aligns with resistance to another drug. The relationship between genotype (e.g. gene expression, somatic13

mutations, etc.) and fitness of a cell line can be represented by a fitness landscape. In the case of drug response, we define14

fitness as the EC50 of a cell line to a given drug, where increasing EC50 denotes higher fitness in the presence of this drug. Of15

importance, a cell line with the same genotype may have varying fitnesses (EC50s) under the selection pressure of different16

drugs.17

In collateral resistance, the fitness landscapes of the organism (bacteria or cancer) in the presence of each drug would show18
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“positive correlation.”11 This is because genotypic changes that cause increased fitness in presence of the first drug also allow19

increased fitness in the presence of the second drug as well. Next, comparing fitness landscapes in the setting of collateral20

sensitivity will show “negative correlation,” where genotypic changes leading to increased fitness in the presence of the first21

drug will cause decreased fitness in the presence of the second drug. Finally, comparing fitness landscapes in the presence of22

different treatments will not always demonstrate clear positive or negative correlation. Instead, the evolution of resistance to23

one drug may lead to variable changes in response to the second drug. In this setting, the evolutionary landscapes would be24

“uncorrelated.” Here, predictive models would be especially useful in treatment planning, as relative collateral sensitivity or25

resistance cannot be inferred based solely on treatment history.26

Table 1. All drugs referenced in the study, their abbreviations, and
classifications.

Drug Name Abbreviation Class

Dactinomycin ActD Antineoplastic antibiotic
Cyclophosphamide Cyclo Alkylating agent
Ifosfamide Ifo Alkylating agent
Doxorubicin Doxo Anthracycline
Etoposide Etp Topoisomerase II inhibitor
Olaparib Ola PARP inhibitor
Pazopanib Paz Tyrosine kinase inhibitor
Vorinostat SAHA Histone deacetylase inhibitor
Irinotecan
(active metabolite) SN38 Topoisomerase I inhibitor

SP-2509 SP
Lysine-specific demethylase
1 inhibitor

Temozolomide TMZ Alkylating agent
Vincristine Vin Alkaloid
Sodium thiosulfate NaThio Drug activation reagent

In the case of collateral sensitivity, a clin-27

ician could ideally control disease progres-28

sion by switching to a collaterally sensitive29

drug whenever resistance develops. Even30

if the illness was never completely eradi-31

cated, the pathogen or neoplasm would be32

dampened enough to minimize harm to the33

patient. Yet, evolution is rarely so easy34

to predict. Several studies have aimed35

to identify examples of collateral sensitiv-36

ity in either bacteria or cancer, and many37

have shown that exposure to identical thera-38

pies have resulted in different responses be-39

tween evolutionary replicates.11–16 These40

intermediate steps are crucial for determin-41

ing whether the evolution of therapeutic re-42

sistance leads to a collateral fitness land-43

scape that is consistently positively/negatively44

correlated or uncorrelated through time.45

Additionally, Zhao et al., examined changes in col-46

lateral sensitivity in acute lymphoblastic leukemia47

(ALL) over time.14 Here, they produced temporal48

collateral sensitivity maps to show how drug response evolved over time and between evolutionary replicates.14 Although Zhao49

et al. did examine these changes through time, many collateral sensitivity experiments compare only initial and final drug50

response after resistance to the primary treatment has evolved.11, 15
51

Figure 1. Overview of experimental evolution of resistance in
Ewings sarcoma cell lines. As cells recovered from each exposure,
cells were tested for their sensitivity for a panel of drugs and samples
were frozen for potential use in RNA-sequencing. The drug dosage was
only increased once throughout the experiment, at the fifth exposure to
the VDC combination, described in Methods. Additionally, drug toxicity
assays are performed at each time point to evaluate changes in
therapeutic resistance or sensitivity over time. Although each cell line
began with 5 experimental and 3 control evolutionary replicates, the
A673 cell line lost one experimental replicate due to contamination.

For the first time in a solid tumor, we examine52

the repeatability of collateral sensitivity across time53

as cells evolve resistance to standard treatment. In54

doing so, we use two EWS cell lines, A673 and55

TTC466. The A673 cell line contains the t(11;22)56

translocation resulting in the EWSR1/FLI1 gene fu-57

sion.17, 18 This fusion is the most common genetic58

aberration found in 90-95% EWS tumors.17, 19 On59

the other hand, the TTC466 cell line has a t(21;22)60

translocation resulting in the EWS-ERG gene fu-61

sion, which only occurs only in 5-10% of EWS62

tumors.17, 19 After splitting the cell lines into evo-63

lutionary replicates, they were exposed to stan-64

dard chemotherapy and their response to a panel of65

drugs was assessed over time. All drugs included66

in this study may be found in Table 1. We hypoth-67

esize that evolutionary replicates of two Ewing’s68

sarcoma cell lines repeatedly exposed to standard69

chemotherapy will demonstrate divergent evolu-70

tionary paths despite nearly identical experimental71

conditions and initial genotype. Finding patterns72

of collateral resistance (positively correlated land-73
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scapes), sensitivity (negatively correlated landscapes) or variation (uncorrelated landscapes) within these divergent paths may74

provide useful insight in exploring new treatment options for EWS patients.75

Results76

The long term evolution of therapeutic resistance77

This work examines the evolution of collateral sensitivity and resistance in two EWS cell lines during repeated exposure to78

a standard chemotherapy regimen over time. At the onset of the experiment, each cell line was split into eight evolutionary79

replicates, five experimental and three control. Due to contamination, Replicate 2 from the A673 cell line was excluded from80

the analysis, leaving four experimental and three control replicates in this cell line. Each experimental evolutionary replicate81

then underwent the same drug cycling, as demonstrated in Figure 1. Briefly, experimental replicates were incubated in cycles82

of vincristine-doxorubicin-cyclophosphamide (VDC) and etoposide-cyclophosphamide (EC) combinations.3 This procedure83

models standard-of-care given to EWS patients, which consists of cycles of vincristine-doxorubucin-cyclophosphamide (VDC)84

and etoposide-ifosfamide (EI) combinations. Because ifosfamide requires metabolic activation and no activated compound is85

commercially available, we chose to substitute ifosfamide for cyclophosphamide, as these compounds are analogs.20 Control86

replicates were maintained in only vehicle control. More details can be found in Methods.

Figure 2. Temporal collateral sensitivity map representing EC50 changes to a panel of drugs as the A673 cell line
develops resistance to standard treatment. Left: A heatmap representing how the EC50 to a panel of nine drugs changes in
4 A673 cell line evolutionary replicates as they are exposed to the VDC/EC drug combinations over time. Color represents the
log2 fold change of EC50 to a drug (columns) for a replicate at a given evolutionary time point (rows) compared to the average
EC50 of the three control evolutionary replicates at the corresponding time point. Values above log2(3) or below log2(-3) are
represented by log2(3) and log2(-3), respectively. Time points are denoted as the drug combination that a given replicate has
recently recovered from. For example, the data representing dose-response models after the first application of the VDC drug
combination would be labeled with VDC1. Of note, the EC50 of olaparib in Replicate 5 at the VDC5 timepoint is
indeterminate due to a poorly fit dose-response model. This value in the heatmap is denoted as gray, but Supplementary Figure
1 remains uncensored. Right: Top, a plot of the dose-response curves for Replicate 3 and all control replicates (Replicates 6, 7,
8) in response to SP-2509 (SP) at the VDC4 time point. Bottom, a plot of the dose-response curve for Replicate 5 and all
control replicates in response to dactinomycin at the VDC4 time point. Cellular activity is measured by enzymatic conversion
of alamarBlue, normalized to background florescence. Estimated EC50 for each replicate is denoted with a red circle. These
two dose-response plots demonstrate how the heatmap (left) values were calculated, where the control EC50 values are
averaged and the heatmap values represent the log2 fold change between a given replicate and this mean EC50 value.
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Figure 3. Point-range plots demonstrating EC50 changes in A673 experimental and control replicates over time.
Bottom: Point-range plots representing the changes in drug response to a panel of nine drugs. Experimental time points
(x-axis) represent which step in the drug cycle the replicates have just recovered from. Points on the plot represent the average
EC50 for the group, either experimental or control. Lines represent the range for the entire group. The EC50 of olaparib for
Replicate 5 after the fifth exposure to VDC is indeterminate due to a poorly fit dose-response model, and has been removed
from this drug’s VDC5 time point experimental group EC50 average and range calculations. This value has not been censored
in Supplemental Figures 1 and 2. The y-axis of all the point-range plots has uM units, except Cyclo, where the unit is percent
of chemically activated 4-hydroxycyclophosphamide solution by volume. Top: Two plots demonstrating a more detailed view
of the dose-response data represented at the EC3 and VDC5 time points in the Doxo point-range chart. Cellular activity is
measured by enzymatic conversion of alamarBlue, normalized to background florescence. Comparing these two plots shows the
clear divergence in drug response between experimental and control evolutionary replicates as the treatment regimen continued.

87
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After proliferating to sub-confluent density in maintenance medium, a fraction of cells from all evolutionary replicates were88

snap frozen for RNA extraction, another fraction underwent drug sensitivity assays to 12 drugs, and another fraction of the cells89

were plated for exposure to the next cycle of the alternate drug combination. For each drug at each time point, the EC50 of90

each evolutionary replicate was derived by fitting the drug-response triplicate data to a four-parameter log-logistic model as91

described in Methods. A plot of all dose-response triplicates with their estimated EC50 can be found in the linked GitHub92

repository.93

Discerning changes in chemo-sensitivity and -resistance across time94

Figures 2 and 3 display the changes in drug response to 9 agents over time in the A673 cell line. In addition to the nine drugs95

displayed this figure, two additional drugs (Pazopanib and Vincristine) and a drug activation reagent (sodium thiosulfate) were96

included in the drug sensitivity assays. Data for these drugs are included in Supplemental Figures 1 and 2. Heatmap and97

point-range plots for the for the TTC466 cell line can by found in Supplemental Figures 3 and 4, respectively.98

Figure 2 shows a temporal collateral sensitivity map which represents the log2 fold change of EC50 to a drug (columns) for99

an experimental replicate at a given time point (rows) compared to the average EC50 of the three control evolutionary replicates100

to the same drug, at that time point. The right panel of Figure 2 provides examples of how each heatmap value is calculated.101

Top, we see the drug response of Replicate 3 to SP-2509 after its fourth exposure to VDC (VDC4), along with the three control102

evolutionary replicates at this time point. This example demonstrates a move towards sensitivity in the experimental replicate.103

Below, we can interrogate Replicate 5 at the same time point in response to dactinomycin, where the EC50 of this experimental104

replicate is more resistant than the control replicates. The temporal collateral sensitivity maps found in Supplementary Figures 1105

and 3 include the log2 fold change for the each control evolutionary replicate from the average of the three control evolutionary106

replicates at the corresponding time point. Ideally, this value will be close to zero (white), because the three control replicates107

should have similar EC50s.108

Figure 3 contains point-range plots for the nine drugs included in our analysis demonstrating the average and range of109

EC50 values for experimental and control replicates at each time point in the experiment. The top panel of Figure 3 uses110

data from the doxorubicin (Doxo) drug sensitivity assay in the A673 cell line to demonstrate how the point-range plot values111

were calculated. The average and range of EC50 values are calculated for experimental and control replicates. At each time112

point, both the experimental and control point-range values are displayed to demonstrate whether they change and/or diverge113

over time. In response to doxorubicin, the control replicates remained stable across each progressive time point, but the114

experimental replicates became increasingly more resistant as they were repeatedly exposed to standard treatment. Examining115

these point-range plots also allows us to observe the overall stability of drug response in control replicates, which are not116

being evolved under the selection pressure of the VDC/EC drug cycling. For example, the EC50 range for control replicates to117

dactinomycin is so minimal that the lines representing range are not visible for most time points in the ActD panel of Figure 3.118

On the other hand, control replicates show significant variation in their response to SN38 and temozolomide (TMZ) at many119

time points.120

Surveying the stochasticity of evolution121

While examining Figures 2 and 3, we see predictable development of collateral sensitivity and resistance to some drugs, but122

evolutionary stochasticity was observed in the response to others. For example, the cells were initially sensitive to dactinomycin123

and moved into a distinct state of collateral resistance in all replicates. This leads us to the preliminary conclusion that the124

evolutionary landscape of the cells under the VDC/EC selection pressure and the landscape of the cells under the dactinomycin125

selection pressure would show strong positive correlation. Next, all replicates acquired relatively consistent resistance to126

doxorubucin and etoposide over time, which is to be expected, because these two reagents are included in the treatment regimen.127

Unexpectedly, most replicates acquired only mild resistance to cyclophosphamide, a drug which is included in both cycles of128

the treatment regimen. All replicates relatively consistently evolved from sensitive to resistant in response to olaparib, SN38,129

and temozolomide. In response to vorinostat (SAHA), all replicates appear to show minor sensitivity across time, but no130

discernible trend in toward greater sensitivity nor resistance. Finally, there was moderate sensitivity to SP seen in all A673131

replicates, again with no discernible trends through time. Due to the variation in response to SAHA or SP over time, we would132

conclude that the fitness landscapes of cells exposed to these drugs compared to the landscapes of cells exposed to VDC/EC133

would be relatively uncorrelated.134

Differential gene expression analysis provides insight into the mechanisms of drug response135

Eighteen samples from the A673 cell line were RNA-sequenced, visualized in the left panel of Figure 4. This cell line was136

chosen for sequencing because drug sensitivity panels of the controls remained more stable than in the TTC466 cell line. All137

the samples were ranked based on their response to the 12 drugs included in the drug sensitivity panels. These rankings are138

visually represented in waterfall plots of the log2 fold change in EC50 for all sequenced samples against all drugs can be seen139

in Supplementary Figures 5-16. For each drug, differential gene expression (DE) analysis was performed between samples that140
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Figure 4. RNA-sequencing and differential gene expression analysis provide insight into states of collateral sensitivity
and resistance. Left: The temporal collateral sensivity map from 2, where all samples that were not sequenced are overlayed
with gray. Right: Two waterfall plots representing the samples ranked by their responses to the two drugs, vorinostat (SAHA,
top) and SP-2509 (SP, bottom). Sample labels on the x-axis are represented by darker colors the longer they have been evolved
in the evolutionary experiment.

Table 2. Genes with significant differential expression between SAHA-resistant and SAHA-sensitive samples.
Differential gene expression analysis was performed using EBSeq in R, with maxround set to 15 and FDR of 0.05.

Genes with ↑ expression in
SAHA-sensitive state

ACOT ACPP AHR B3GNT5
CCL2 FOS GAL NUP188
RN7SL5P SCNN1G TRAV5

Genes with ↑ expression in
SAHA-resistant state

ABCB1 KAZALD1 RPS26 SMAD6
TRGC1

rank in the top and bottom third of responses towards the drug. Results for each drug’s DE analyses, including the analyses141

highlighted below, may be found in Supplementary Information.142

In many cases, it is clear that ranking samples by their change in drug response also ranks them based on how long they’ve143

been exposed to the treatment regimen. Although this is not unexpected, interpreting the DE results in this context becomes144

more difficult. Significant differences in gene expression may be related to a sample’s chemosensitivity/chemoresistance, but145
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causation cannot be inferred, because these differentially expressed genes may simply be altered in response to continued146

exposure to the treatment regimen. We chose to highlight the DE analyses where ranking samples in response to a given drug147

didn’t consistently arrange them in the order that they were isolated from the drug-cycling treatment. To that end, the waterfall148

plots in Supplementary Figures 5-16 have darker sample labels (x-axis) depending on how long they’ve been exposed to the149

treatment regimen (e.g. a sample label from the IE2 time point will be lighter than a sample from the IE3 time point). This150

makes it easier to visualize whether the time points are well distributed in the log2 fold change rankings.151

The right panel of Figure 4 demonstrates how samples were ranked based on their response to vorinostat (SAHA) and152

SP-2509 (SP). Genes with significantly increased expression in a SAHA-resistant or SAHA-sensitive state are listed in Table 2,153

while genes with significantly increased expression in an SP-resistant or SP-sensitive state are listed in Table 3.154

Table 3. Genes with significant differential expression between SP-resistant and SP-sensitive samples. Differential
gene expression analysis was performed using EBSeq in R, with maxround set to 15 and FDR of 0.05.

Genes with ↑ expression in SP-sensitive state

ALX1 AMZ2 APOBEC3C ARHGEF6
CD63 DCN FAM72D FAM92A
HIST1H1T IL33 IRX3 LINC00326
LITAF LYN MRPS18C NPIPA5
NRG1 PCSK6 PTGR1 PYCARD
RTN SP100 SSTR1 TMEM192
TSPAN5 YAF2 ZFAND1 ZNF277

Genes with ↑ expression in SP-resistant state

ADGRL2 ANKS6 AP3B2 AP5Z1
ARHGEF9 C7 CAMKV CCAR2
CD24 CDH4 CHGA CORO7
CRMP1 DGCR8 DHCR7 DPP3
EPHA4 FASN FOXO3B FRG2FP
GALNS HBA2 HDAC10 INCENP
INTS1 KSR1 LIN28B LINC01089
LRCH2 MAN2C1 MEG3 MEG8
MRGPRF MRNIP MSRA NEB
NEFM NOM1 NUP210 PBX1
PC PCBP2-OT1 PCDH17 PLXNB1
PPP1R1B PRRC2B PTPRG-AS1 PPYGO1
RNF130 RNF44 SBNO2 SCAMP4
SCARA3 SLC16A7 SLC29A2 SLITRK3
SYK TAF15 TAF1C TAF6L
TMEM271 TUBB3 VAX1 WDR17
WDR27 ZNF354C ZNF414 ZNF667
ZNF667-AS1 ZNF675 ZNF730 ZNF736

Discussion155

In this work, we evolved two EWS cell lines, A673 and TTC466, with repeated exposure to standard-of-care chemotherapy in156

order to investigate the evolution of collateral sensitivity and resistance through time. Each cell line was initially split into 8157

evolutionary replicates, with 5 experimental replicates exposed to treatment in parallel and 3 control replicates exposed solely to158

vehicle control. After exposure to each drug cycle, all replicates had cells saved for RNA-sequencing and sensitivity to a panel159

of 12 drugs was assessed. We produced a temporal collateral sensitivity map to examine the drug sensitivity assays for nine of160

these drugs through time in the A673 cell line (see Figure 2). Likewise, Figure 3 demonstrates how the average and range EC50161

between A673 experimental replicates and control replicates diverged as the experimental replicates continued the drug cycling162

treatment regimen. Supplementary Figures 1 and 2 contain the drug response changes to all 12 drugs, with no censored data.163

Supplementary Figures 3 and 4 also exhibit the changes in drug response within the TTC466 cell line; however, the main text164

focuses on the A673 cell line due to greater observed stability in this cell line’s control evolutionary replicates through time.165
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Figure 2 shows that as the A673 experimental replicates were repeatedly exposed to the treatment regimen, states of166

collateral sensitivity and resistance emerge consistently towards some drugs, while responses to other agents remain variable.167

For example, despite no exposure to the drug, all replicates consistently moved to a state of collateral resistance towards168

dactinomycin, providing an example of positively correlated evolutionary landscapes. On the other hand, all replicates show169

variable collateral sensitivity to SP over time, and there is no clear trend towards a durable state of sensitivity. Similarly, all170

replicates show variable minimal collateral sensitivity to SAHA, but no state of collateral resistance or sensitivity dominates for171

many time points or between replicates. Both of these drugs would have uncorrelated evolutionary landscapes in comparison to172

the landscape under the VDC/EC selection pressure. Additionally, these results imply that although there are consistent changes173

that allow for collateral resistance to dactinomycin, these changes do not invariably cause a consistent pattern of collateral174

sensitivity to SAHA or SP. When collateral sensitivity or resistance cannot be consistently identified, gene signatures or other175

predictive models are especially helpful in treatment planning.176

Figure 3 also demonstrates these changes in drug sensitivity through time, but it allows for easier interrogation of differences177

between experimental and replicate groups. Although an increase in EC50 range can be reasonably expected as experimental178

replicates evolve and diverge under the selective pressure of the VDC/EC regimen, ideally there should be minimal differences179

in EC50 between control replicates at a given time point. For example, the EC50 range of control replicates in response to180

dactinomycin over time is so minimal that the point-range plot lines can barely be discerned at any time point. On the other181

hand, temozolomide shows very significant range in the control replicates in the first few time points.182

After analyzing the repeatability (or lack thereof) of the evolution of collateral sensitivity and resistance in the A673 EWS183

cell line, 18 samples from across various time points were sent for RNA-sequencing (Figure 4). We identified significantly184

increased expression of ABCB1 (also known as MDR1) in the state of SAHA-resistance, seen in Table 2. This gene has185

previously been implicated in chemotherapeutic multi-drug resistance.21 Additionally, CCL2 was found to have increased186

expression in a SAHA-sensitive state. Using an in vitro experiment, Gatti and Sevko et al. describe how adding SAHA to the187

temozolomide treatment of melanoma may stymie cancer growth by interfering with CCL2 signaling. This is consistent with188

increased CCL2 expression leading to SAHA sensitivity, as cells that are more reliant on CCL2 signaling could experience a189

stronger effect from its disruption.22
190

Next, we see a greater number of differentially expressed genes when examining response to SP than SAHA. SP inhibits191

lysine-specific demethylase 1 (LSD1, also known as KDMA1), which primarily acts as a histone demethylase.23 Increased192

expression of LSD1 has been implicated in many types of cancers (e.g. breast, prostate), and its targeted inhibition is being193

investigated for therapeutic potential in EWS.24 Due to the novelty of LSD1 inhibitors (including SP-2509), there is very194

little known regarding genomic biomarkers of sensitivity or resistance. In Table 3, however, we see some notable trends in195

the significantly differentially expressed genes between good and poor responders to SP. First, many zinc protein fingers,196

which often play a role in transcriptional regulation, have increased expression in both SP-sensitive and -resistant states.25
197

Additionally, three TATA-box-binding-protein (TBP) associated factor (TAF) proteins have increased expression in SP-resistant198

states. Again, these genes are implicated in transcriptional regulation.26 Although these results do not imply any one mechanism199

for SP-sensitivity or -resistance, it is evident that the regulation of gene expression plays a significant role in the response to200

this drug.201

As noted previously, states of collateral sensitivity and resistance are often not immutable. Instead, these states are frequently202

the result of many fleeting evolutionary contingencies. For instance, Nichol et al. demonstrated that after E. coli evolved203

resistance to cefoxatime (a β -lactam antibiotic) in 60 evolutionary replicates, there were highly heterogeneous changes in204

collateral sensitivity and resistance to alternative antibiotics. Furthermore, this genotypic heterogeneity was discovered as well,205

with five variants of the β -lactamase gene which likely played a role in the variable drug responses. Additionally, Dhawan et al.206

derived cell lines of ALK-positive non-small cell lung cancer, where each cell line was resistant to a second-line therapy.15
207

Subsequently, the cell lines were exposed to the same panel of second-line treatments in an effort to identify drug combinations208

that elicit collateral sensitivity. The study found that collateral sensitivity was most often evolved towards etoposide and209

pemetrexed. Although these drugs had the most optimal response, it was inconsistent, leading to the conclusion that collateral210

sensitivity is a dynamic state, which is a ‘moving target’ instead of a predictable outcome.211

With this understanding, our experiment would, of course, benefit from even more experimental evolutionary replicates to212

confirm the repeatability of some observations. For example, the evolution of collateral resistance to dactinomycin in all four213

A673 experimental replicates is consistently stable in the data presented here. However, given the vast genetic contingencies214

that lead to changes in drug response, observing said stability over many additional replicates would provide a more convincing215

argument for the consistent evolution of dactinomycin collateral resistance following exposure to VDC/EC. Furthermore,216

performing this experiment in a greater number of cell lines would provide improved insight into the spectrum of responses217

across various EWS cases. Finally, this work could be improved by examining how collateral drug response in EWS changes218

during relaxed selection after many drug cycles of the treatment regimen have been applied.27 This would represent a model219

that is even more consistent with refractory EWS in a clinical setting, as patients with refractory disease will often have a gap220
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between the initial standard treatment and the selection of second-line treatments.221

Despite these caveats, this work provides valuable insight into the evolution of collateral resistance and sensitivity in EWS222

throughout exposure to standard treatment. Although, many studies have examined the role that collateral sensitivity and223

resistance play in therapeutic response, they frequently ignore intermediate time points during the development of resistance to224

a primary treatment. In this work, we aimed to examine collateral sensitivity and resistance across time during development of225

therapeutic resistance to EWS standard-of-care. We believe this is the first temporal map of collateral sensitivity and resistance226

in a solid tumor cell line. Using this map, we can see that the path towards collateral sensitivity is not always repeatable, nor is227

there always a clear trajectory towards resistance or sensitivity. Gene expression signatures can provide clarity when choosing a228

new treatment in the setting of a tumultuous trajectory towards the evolution of collateral sensitivity or resistance.229

Methods230

Materials231

EWS cells (A673 and TTC466 cells) were generous gifts from Dr. Stephen Lessnick at Nationwide Children’s Hospital,232

Columbus, OH. 4-hydroperoxycyclophosphamide and sodium thiosulfate were purchased from Toronto Research Chemicals233

(North York, ON, Canada). Dactinomycin, SP-2509, doxorubicin, etoposide, temozolomide, pazopanib, olaparib, SAHA, and234

vincristine were products of Cayman Chemical (Ann Abor, MI). SN-38 was obtained from SelleckChem.com (Houston, TX).235

The classifications and abbreviations used for all these compounds are found in Table 1.236

Cell culture237

A673 cells were maintained in Dulbecco’s Modified Eagle Medium (D-MEM) supplemented with 10% Fetal Bovine Serum238

(FBS) and penicillin and streptomycin at 37◦C under humidified atmosphere containing 5% CO2. TTC466 cells were cultured239

in the same way except Roswell Park Memorial Institute (RPMI) medium was used instead of D-MEM.240

In vitro combination drug treatments to induce drug resistance241

Through drug toxicity assays, we determined EC50 concentrations of chemotherapeutics that are used as standard-of-care to treat242

EWS.3 This standard-of-care treatment for EWS consists of a vincristine-doxorubicin-cyclophosphamide (VDC) combination243

cycle followed by an etoposide-ifosfamide (EI) combination cycle. However, both cyclophosphamide and ifosfamide are244

prodrugs, requiring metabolic activation by an in vivo model. In the VDC drug combination, cyclophosphamide is replaced by245

4-hydroxycyclophosphamide, an activated form of cyclophosphamide; however, there is no such commercially available option246

for ifosfamide. As ifosfamide is an analog of cyclophosphamide, it was also replaced by 4-hydroperoxycyclophosphamide,247

due to their similar chemical structures and mechanisms of action. Therefore, we recapitulate Ewing’s sarcoma standard-248

of-care treatment regimen in vitro by cycling vincristine-doxorubicin-4-hydroxycyclophosphamide (VDC) and etoposide-4-249

hydroxycyclophosphamide (EC). The EC50 values were vincristine (0.8 and 0.9 nM), doxorubicin (0.015 and 0.023 nM),250

4-hydroxycyclophosphamide (0.001 and 0.001 % by volume), and etoposide (0.7 and 0.37 µM) in the A673 and TTC466 cell251

lines, respectively.252

In order to induce drug resistance in the A673 and TTC466 cell lines, each cell line was plated as 8 biological (evolutionary)253

replicates, where 5 experimental replicates were exposed to the drug combination cycles, described below, and 3 control254

replicates were maintained in dimethyl sulfoxide (DMSO). Due to contamination, one of the experimental replicates (Replicate255

2) in the A673 cell line was discontinued. Experimental replicates were exposed to the standard-of-care drug cycles, as256

illustrated in Figure 1. Cells (2×106 cells/10cm plate) were first exposed to a combination of vincristine, doxorubicin, and257

4-hydroxycyclophosphamide at their EC50 concentrations. After 5 days of incubation, the medium was changed to maintenance258

medium without drugs. After they proliferate to sub-confluent density, a 10 cm plate was set for the next cycle with etoposide259

and 4-hydroxycyclophosphamide at their initial EC50 concentrations for 5 days, 96-well plates were set for drug sensitivity260

assay, and a fraction of cells were snap frozen for RNA extraction. Again, as the treated cultures grew to sub-confluence, this261

cycle was repeated with alternate exposure to the two drug combinations, along with drug sensitivity assays and sampling for262

RNA extraction between each drug cycle. On the fifth application of the VDC drug combination, the concentration of the drug263

combination was increased to 6 nM, 0.05 mM, and 0.006% by volume for vincristine, doxorubicin, and cyclophosphamide,264

respectively.265

Drug toxicity assay266

Cells were plated into 96-well plates at the density of 6,000 cells/90µ l/well. The next day, 10 µ l of medium containing various267

concentrations of drug of interest were added to each well. The final concentration of DMSO used as solvent was kept constant268

(0.1% by volume for dactinomycin, SP2509, doxorubicin, etoposide, olaparib, SAHA, SN38, and vincristine; and 1% by269

volume for temozolomide and pazopanib).270
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4-hydroxycyclophosphamide was prepared freshly just prior to each assay by incubating 1 mg of 4-hydroperoxycyclophosphamide271

with 100 µL of water containing 1 mg sodium thiosulfate at room temperature for 30 sec, converting 4-hydroperoxycyclophosphamide272

to 4-hydroxycyclophosphamide. The resulting solution was used for toxicity assay starting with 0.2% (by volume) as273

the highest concentration. Matching dilution series of sodium thiosulfate solution was assessed as a control to assess 4-274

hydroxycyclophosphamide toxicity, again using 0.2% (by volume) as the highest concentration.275

After five days of incubation, cell viability of each well was determined by measuring the enzymatic conversion of276

alamarBlue (Bio-Rad, Hercles, CA).28 After addition of alamarBlue solution (10 µl/well), the plate was incubated for two277

to four hours and the fluorescence intensity (excitation 560 nm / emission 590 nm) of each well was detected by Symphony278

H2(BioTek, Winooski, VT), a multi-well plate reader. Background fluorescence was determined by measuring the wells without279

cells incubated with alamarBlue.280

Drug response modeling and EC50 estimation281

Net alamarBlue conversion for each well was calculated by subtracting the average background fluorescence from each of the282

fluorescence values. A four-parameter log-logistic (LL.4) model (Hill function) was fit for each biological replicate, performed283

in triplicate, using the drm function from the drc package in R. This function models the survival measure S(X) at a given dose284

X as285

S(X) = b+
b−a

1+
(EC50

X

)H

where S(X) is the expected response at dose X , a is the minimum response (when dose = 0), b is the highest response (when286

dose = ∞), EC50 is the point of inflection (dose at which 50% of the response occurs), and H (known as the Hill slope) is the287

steepest part of the curve.29 A negative value for H, as seen in these models, denotes a descending curve, while a positive H288

represents an ascending curve. Estimated EC50 from these models was solved using the ED function from the drc package289

(version 3.0.1) in R.290

RNA extraction and sequencing291

Ribosomal-RNA depleted RNA was prepared from 18 samples of interest using RiboMinus Eukaryote Kit (ThermoFisher,292

Waltham, MA). RNA sequencing was performed at the Genomic Core, the Lerner Research Institute (Cleveland, OH) with293

HiSeq 2500 (Illumina, San Diego, CA). Quality control and read trimming was performed using fastp v0.20.0.30 Read alignment294

was done using STAR v2.7.1 and alignment quantification was done using salmon v0.14.1 against gencode v31 transcript295

set with average 12 million reads per sample.31–33 Transcript level abundance estimates were then converted to gene level296

estimated counts using tximport R package.34
297

Differential gene expression analysis298

Samples sent for sequencing were ranked based on their EC50 to each drug. For each drug analyzed, differential gene expression299

(DE) analysis compared samples in the top and bottom third of the ranked EC50 values. This DE analysis was performed using300

the EBSeq R package (version 1.24.0), with a false discovery threshold of 0.05 and the maxround parameter set to 15.35, 36
301
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Supplementary Information394

Complete A673 EC50 Data395

The following plots mirror Figures 2 and 3, respectively. The data does not censor the EC50 for Replicate 5 against olaparib396

at the VDC5 timepoint, as seen in Figures 2 and 3. Additionally, the drugs removed from main text analysis, vincristine,397

pazopanib, and sodium thiosulfate are included. These drugs were censored in the main text due to poorly fit dose-response398

models. Interpretation of these plots can be found in the main text.399

Supplementary Figure 1. Uncensored temporal collateral sensitivity map representing EC50 changes to panel of
drugs in A673 cell line as it develops resistance to standard treatment A heatmap representing how the EC50 to a panel of
nine drugs changes in 4 experimental and 3 control evolutionary replicates from the A673 cell line as they are exposed to the
VDC/EC drug combinations over time. Color represents the log2 fold change of EC50 to a drug (columns) for a replicate at a
given evolutionary time point (rows) compared to the average EC50 of the three control evolutionary replicates at the
corresponding time point. Time points are denoted as the drug combination that a given replicate has recently recovered from.
For example, the data representing dose-response models after the first application of the VDC drug combination would be
labeled with VDC1.
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Supplementary Figure 2. Uncensored point-range plots demonstrating EC50 changes in A673 experimental and
control replicates over time. Point-range plots representing the changes in drug response to a panel of 12 drugs.
Experimental time points (x-axis) represent which step in the drug cycle the replicates have just recovered from. Points on the
plot represent the average EC50 for the group, either experimental or control. Lines represent the range for the entire group.
The y-axis of all the point-range plots has uM units, except Cyclo and NaThio, where the units are percent by volume.
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Complete TTC466 EC50 Data400

Supplementary Figures 3 and 4 displays the changes in drug response to all 12 agents over time in the TTC466 cell line. In401

comparing the two cell lines, it is clear that the A673 cell line displays more stable behavior, while TTC466 shows much more402

variability over time. In other words, as the treatment cycles progress, the A673 cell line tends to move steadily towards a403

resistant or sensitive state, while the TTC466 cell line tends to fluctuate more. The TTC466 control replicates also tend to have404

more fluctuation between time points, despite being exposed to only media and having relative agreement between technical405

replicates. For this reason, we chose to focus our analysis on the A673 cell line, while the TTC466 cell line results can be406

found in the Supplementary Information.407

In Supplementary Figure 3, we see that after the first exposure to the VDC drug combination (VDC1) in the TTC466408

cell line, resistance to cyclophosphamide suddenly emerges. This doesn’t occur in any other replicate, nor at any other time409

point. These findings were confirmed by examining the drug-response curve at this time point to ensure a well-fit model. Two410

hypotheses for why the replicate didn’t retain the cyclophosphamide-resistant trait in the next generation include an equally411

rapid loss of this trait in the next generations or a bottleneck selection during the procedure where the cells that were resistant412

to cyclophosphamide were not plated for the next round of the drug treatment cycle. Next, another example of drug-response413

fluctuation in the TTC466 cell line may have been mistaken as a rare shift in drug response if only one evolutionary replicate414

had been performed. In Supplementary Figure 3, we see that after the second exposure to the EC combination (EC2), the EC50415

of every experimental replicate has increased chemoresistance to olaparib before returning to a more sensitive state after the416

next drug cycle. Supplementary Figure 4, demonstrates that there is a large range in the control replicates at the corresponding417

time point, which makes the comparison between the experimental and control replicates less reliable; however, it is clear that418

from the time points before and after EC2, the EC50 increases significantly at EC2.419
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Supplementary Figure 3. Uncensored temporal collateral sensitivity map representing EC50 changes to panel of
drugs in TTC466 cell line as it develops resistance to standard treatment A heatmap representing how the EC50 to a
panel of nine drugs changes in 5 experimental and 3 control evolutionary replicates from the TTC466 cell line as they are
exposed to the VDC/EC drug combinations over time. Color represents the log2 fold change of EC50 to a drug (columns) for a
replicate at a given evolutionary time point (rows) compared to the average EC50 of the three control evolutionary replicates at
the corresponding time point. Time points are denoted as the drug combination that a given replicate has recently recovered
from. For example, the data representing dose-response models after the first application of the VDC drug combination would
be labeled with VDC1.
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Supplementary Figure 4. Uncensored point-range plots demonstrating EC50 changes in TTC466 experimental and
control replicates over time. Point-range plots representing the changes in drug response to a panel of 12 drugs.
Experimental time points (x-axis) represent which step in the drug cycle the replicates have just recovered from. Points on the
plot represent the average EC50 for the group, either experimental or control. Lines represent the range for the entire group.
The y-axis of all the point-range plots has uM units, except Cyclo and NaThio, where the units are percent by volume.

18/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.11.943936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.943936
http://creativecommons.org/licenses/by-nc/4.0/


Waterfall plots for sequenced samples against all drugs420

Supplementary Figure 5. Waterfall of EC50 values for sequenced samples against dactinomycin. Color represents
log2 change in EC50 between the sample and average control EC50 at the given time point. Red shows a change towards
resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-to-most sensitive.
Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the evolutionary experiment.
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Supplementary Figure 6. Waterfall of EC50 values for sequenced samples against cyclophosphamide. Color
represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red shows a change
towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-to-most
sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the evolutionary
experiment.
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Supplementary Figure 7. Waterfall of EC50 values for sequenced samples against doxorubicin. Color represents log2
change in EC50 between the sample and average control EC50 at the given time point. Red shows a change towards resistance,
while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-to-most sensitive. Sample labels
on the x-axis are represented by darker colors the longer they have been evolved in the evolutionary experiment.

21/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.11.943936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.943936
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figure 8. Waterfall of EC50 values for sequenced samples against etoposide. Color represents log2
change in EC50 between the sample and average control EC50 at the given time point. Red shows a change towards resistance,
while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-to-most sensitive. Sample labels
on the x-axis are represented by darker colors the longer they have been evolved in the evolutionary experiment.
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Supplementary Figure 9. Waterfall of EC50 values for sequenced samples against sodium thiosulfate. Color
represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red shows a change
towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-to-most
sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the evolutionary
experiment.
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Supplementary Figure 10. Waterfall of EC50 values for sequenced samples against olaparib. Color represents log2
change in EC50 between the sample and average control EC50 at the given time point. Red shows a change towards resistance,
while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-to-most sensitive. Sample labels
on the x-axis are represented by darker colors the longer they have been evolved in the evolutionary experiment.
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Supplementary Figure 11. Waterfall of EC50 values for sequenced samples against pazopanib. Color represents log2
change in EC50 between the sample and average control EC50 at the given time point. Red shows a change towards resistance,
while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-to-most sensitive. Sample labels
on the x-axis are represented by darker colors the longer they have been evolved in the evolutionary experiment.
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Supplementary Figure 12. Waterfall of EC50 values for sequenced samples against vorinostat (SAHA). Color
represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red shows a change
towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-to-most
sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the evolutionary
experiment.
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Supplementary Figure 13. Waterfall of EC50 values for sequenced samples against irinotecan (active metabolite,
SN38). Color represents log2 change in EC50 between the sample and average control EC50 at the given time point. Red
shows a change towards resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from
least-to-most sensitive. Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the
evolutionary experiment.
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Supplementary Figure 14. Waterfall of EC50 values for sequenced samples against SP-2509. Color represents log2
change in EC50 between the sample and average control EC50 at the given time point. Red shows a change towards resistance,
while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-to-most sensitive. Sample labels
on the x-axis are represented by darker colors the longer they have been evolved in the evolutionary experiment.

28/30

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.11.943936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.11.943936
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figure 15. Waterfall of EC50 values for sequenced samples against temozolomide. Color represents
log2 change in EC50 between the sample and average control EC50 at the given time point. Red shows a change towards
resistance, while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-to-most sensitive.
Sample labels on the x-axis are represented by darker colors the longer they have been evolved in the evolutionary experiment.
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Supplementary Figure 16. Waterfall of EC50 values for sequenced samples against vincristine. Color represents log2
change in EC50 between the sample and average control EC50 at the given time point. Red shows a change towards resistance,
while blue shows a change towards sensitivity. Samples are ranked along the x-axis from least-to-most sensitive. Sample labels
on the x-axis are represented by darker colors the longer they have been evolved in the evolutionary experiment. The EC50 for
the first replicate after the fourth exposure to the EC drug combination (R1-EC4) was indeterminant and removed from the
waterfall plot.
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