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Abstract 

Extracellular vesicles (EVs) are involved in a wide range of physiological and pathological 

processes by shuttling material out of and between cells. Tissue EVs may thus lend insights into 

disease mechanisms and also betray disease when released into easily accessed biological fluids. 

Since brain-derived EVs (bdEVs) and their cargo may serve as biomarkers of neurodegenerative 

diseases, we evaluated modifications to a published, rigorous protocol for separation of EVs from 

brain tissue and studied effects of processing variables on quantitative and qualitative outcomes. 

To this end, size exclusion chromatography (SEC) and gradient density ultracentrifugation were 

compared as final separation steps in protocols involving stepped ultracentrifugation. bdEVs 

were separated from brain tissues of human, macaque, and mouse. Effects of tissue perfusion 

and a model of post-mortem interval (PMI) before final bdEV separation were probed. 

MISEV2018-compliant EV characterization was performed, and both small RNA and protein 

profiling were done. We conclude that the modified, SEC-employing protocol achieves EV 

separation efficiency roughly similar to a protocol using gradient density ultracentrifugation, 

while decreasing operator time and, potentially, variability. The protocol appears to yield bdEVs 

of higher purity for human tissues compared with those of macaque and, especially, mouse, 

suggesting opportunities for optimization. Where possible, perfusion should be performed in 

animal models. The interval between death/tissue storage/processing and final bdEV separation 

can also affect bdEV populations and composition and should thus be recorded for rigorous 

reporting. Finally, different types of EVs obtained through the modified method reported herein 

display characteristic RNA and protein content that hint at biomarker potential. To conclude, this 

study finds that the automatable and increasingly employed technique of SEC can be applied to 
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tissue EV separation, and also reveals more about the importance of species-specific and 

technical considerations when working with tissue EVs. These results are expected to enhance 

the use of bdEVs in revealing and understanding brain disease. 
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Introduction 

Extracellular vesicles (EVs) are nano-sized, lipid bilayer-delimited particles that are released by 

various cells. They can package and deliver molecules such as RNAs and proteins and are thus 

involved in multiple physiological and pathological pathways by serving as messengers in cell-to-

cell communication. Roles of EVs in the central nervous system (CNS) have now been well 

established. EVs are released by all neural cells1-3, including neurons, oligodendrocytes, 

astrocytes, and microglia. They can carry disease-associated agents such as amyloid-beta (Aβ)4-7 

and tau6-8 proteins, which may promote neurodegenerative and inflammatory diseases. However, 

EVs may also exert protective functions in the CNS by distributing anti-inflammatory factors9-11. 

While brain-derived EVs (bdEVs) may leave the brain and betray the state of the CNS as 

biomarkers in blood and other peripheral fluids, bdEVs are first found in the tissue interstitial 

space12 and may be most likely to act locally. The composition of tissue EVs may thus shed light on 

physiological and pathological mechanisms in the brain. Moreover, bdEVs in tissue could be used 

to identify reliable cell-specific markers that could then be used to capture specific populations 

of CNS-origin EVs in the periphery, helping to diagnose and monitor CNS disease. 

 

In separating EVs from post-mortem brain tissue, as from any tissue, it is critical to achieve some 

degree of tissue disruption while minimizing cellular disruption; to impose one or more EV 

separation steps to increase purity; and to show that EVs have been enriched with minimal 

cellular (or other) contamination. If cells are destroyed, intracellular components and artificially 

produced vesicles may co-isolate with EVs13. Gentle tissue separation might include mechanical 
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(slicing) and enzymatic digestions. However, extensive mincing or grinding/homogenization, as 

reported in several studies 12, 14-17, may result in non-EV contaminants and challenge the 

definition of tissue EVs. Following tissue preparation EV separation is done. Reported methods 

include standard ultracentrifugation (UC)16, density gradient ultracentrifugation (DGUC)12-14, 

chemical separation/precipitation15, 18,19 or combinations of these techniques. Finally, after 

separation, thorough characterization of both EVs and potential contaminants is needed, but 

only some groups consider the latter 13, 14, 17, 20.  

 

Previously, a DGUC method with a triple sucrose cushion was used as a final step in rigorous 

separation of EVs from brain tissue13. By careful characterization of enriched and depleted EV 

components, the published method was shown to be highly effective at eliminating cellular 

contaminants that do not have the same density as EVs. The method is thus valuable and 

effective, but the DGUC step can also be relatively time-consuming21-23 (at least three hours), 

requires an operator skilled in preparing density gradients, and for this reason may have some 

between-run or between-operator variation. We thus queried if size exclusion chromatography 

(SEC), an automatable and increasingly employed method of EV separation, could be used in 

place of DGUC to achieve acceptable EV purity. In this study, we applied an SEC-containing 

protocol to separate EVs from brain tissues of human, macaque, and mouse. We also evaluated 

the effects of tissue perfusion and post-mortem interval before final bdEV extraction on various 

parameters of the recovered bdEVs. Small RNA sequencing and proteomics revealed molecular 

profiles of bdEVs of human and macaque. In summary, this study adds size exclusion to the list 
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of techniques that can be applied in bdEV separation and evaluates numerous factors affecting 

bdEV separation from brain of different species. 
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Results 

Protocol comparison: bdEV separation 

The tissue processing and bdEV separation protocol previously published by several members of 

the author team (Vella et al., JEV, 2017)13 was followed through the 2,000 x g centrifugation step 

(Figure 1). After enrichment of large EVs (lEVs) by filtration and 10,000 x g centrifugation, 

supernatant was subjected to SDGU (as previously published) or SEC. Where indicated, SEC 

fractions were then concentrated by UC or ultrafiltration (UF) (Figure 1).  

Comparison of bdEV particle count, morphology, and protein markers in different fractions of 

SDGU and SEC: human and mouse tissue 

Particle yield per 100 mg tissue input (human or mouse) was determined by nanoparticle tracking 

analysis (NTA). Particle yield was highest for F2 from SDGU and F7-10 from SEC+UC. Particle 

concentration was below the reliable range of measurement in F3-6 and F11-14 from the SEC+UC 

method. Particle yield was similar for human and mouse brains (Figure S1A-B). Transmission 

electron microscopy (TEM) revealed sEV-like cup-shaped oval and round particles ranging in 

diameter from 50-200 nm in SDGU fractions (Figure S1C) and F7-10 from SEC+UC (Figure S1D).  

Presence of EV-enriched membrane (CD9, CD63, CD81) and cytosolic (TSG101, syntenin) markers, 

and expected EV-depleted cellular markers (GM130, calnexin, BiP) was examined by Western blot 

for EV fractions as well as brain homogenate (BH), including BH treated with collagenase (BHC). 

For human brain-derived EVs, abundant CD63 and CD81 levels were observed in F2 and F3 from 

SDGU and F7-10 from SEC+UC, while F11-14 (SEC) were positive for CD63 but not CD81. 

Compared with sEVs, IEVs had lower but still detectable CD63 and CD81. bdEVs from human 
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samples generally did not have detectable calnexin or GM130, in contrast with the source BH and 

BHC (Figure S1E-F). However, mouse bdEVs retained some amount of cellular markers regardless 

of separation technique (Figure S1G-H). Additionally, some apparent differences between EV 

markers in the different fractions were also observed between human and mouse. 

Characterization of human bdEVs obtained by three combinations of methods 

Based on the results above, we focused on F2 of SDGU and F7-10 of SEC and examined the output 

of SDGU compared with SEC+UC and SEC+UF. In these experiments, NTA suggested that the SEC 

methods yielded a slightly higher number of particles as compared with SDGU (Figure 2A). TEM 

revealed particles consistent with EV morphology ranging in diameter from 50-200 nm from all 

methods (Figure 2B). There was no significant protein concentration difference of sEVs obtained 

by the three methods (Figure 2C), but particle:protein ratio, often used as a surrogate of EV 

preparation purity, was highest for the SEC + UC methods (Figure 2D). Particles defined as lEVs 

were indeed larger on average by TEM and contained less CD63 and CD81 than sEVs. They also 

had lower particle:protein ratios than SEC-purified sEVs. 

In terms of putatively EV-enriched and -depleted markers, all methods were consistent with EV 

marker enrichment and cellular marker depletion (Figure 2E). A small amount of calnexin was 

found in an SEC+UF lane, though, possibly consistent with the TEM results indicating retention of 

some fragments by UF. We concluded from these results that, following SEC, UC may have a slight 

advantage in increasing purity compared with UF.  

Comparison of methods for murine bdEV separation 
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We next applied the same methods to mouse brain. Since our preliminary results indicated more 

contamination of mouse bdEVs with cellular markers, we also added a fourth method, in which 

both SEC and SDGU were used. Yield of particles was highest for the SEC+UF combination (Figure 

3A), while there were no significant differences in protein yield (Figure 3B). Purity, as estimated 

by particle:protein ratio, was highest for SEC+UF, then SEC+SDGU and SEC + UC, while SDGU was 

the lowest (Figure 3C). However, particles obtained by SEC+UF included more non-vesicular 

material, suggesting again that concentration by UC also served a purification function relative 

to UF (Figure 3D). However, cellular markers GM130, Calnexin, and Bip were found despite 

method (Figure S1G, H, Figure S2). Interestingly, in contrast with the human brain results, the 

particle concentration of bd-lEVs was higher than that of sEVs, and protein content was also 

higher, contributing to a moderate particle/protein ratio compared with sEVs (Figure 3A-C). As 

expected, lEVs were larger by TEM (Figure 3D) and included a large number of cellular proteins 

(Figure S1G,H, Figure S2). 

Does PBS perfusion at necropsy affect bdEV separation? 

Considering the large amount of cellular markers detected in bdEV preparations from mouse, we 

reasoned that tissue preparation might be altered to reduce this influence. For example, in 

animal models, it is often possible to perfuse with buffer (such as PBS) at necropsy, flushing blood 

from the tissues. We thus separated bdEVs from tissue of animals perfused or not with PBS. 

Although no remarkable differences were observed for particle or protein yield (Figure 3E), 

perfusion appeared to reduce the amount of GM130 in bdEVs. However, presence of calnexin 

and BiP was similar, and apparent changes in some EV-associated proteins were observed (Figure 

3F).  
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What is the effect of post-mortem interval on bdEV separation? 

Whereas brain tissue from animal models such as mouse can be processed (or snap-frozen and 

stored) immediately after necropsy, human brains are acquired, cut, stored, and/or otherwise 

processed after varying times and incubation temperatures. To assess the influence of one part 

of the length of time between death and processing (post-mortem interval, PMI), specifically the 

time after sectioning and before final bdEV extraction, we obtained occipital lobe of macaques 

that were sacrificed in the course of other studies (the information for used samples sees Table 

1). Lobes from the same subject were divided into three parts and incubated at room 

temperature for two, six, or 24 hours (2, 6, 24H). bdEVs were then obtained using the method 

ending with SEC+UC as outlined above. bdEVs from tissue incubated for 24H had the highest 

particle yield (Figure 4A). By TEM, bdEV morphology was the same for macaque as for human 

and mouse EVs (Figure 4B). In contrast, particle concentration of lEVs did not appear to be 

affected by the investigated PMI time points (Figure 4A). 

Effect of PMI on bdEV small RNA and protein content 

Ligation-dependent small RNA sequencing was used to assess the effects of PMI on bdEV small 

RNA content from tissues of two macaques (Table 1, macaque 3 and 4). Only 2H and 6H libraries 

were sequenced because quality control electropherograms of sequencing libraries prepared 

from 24H PMI samples suggested some level of degradation (Figure S3). The mapped read counts 

were also slightly lower at 6H compared with 2H for both lEVs and sEVs from two macaques 

(Figure 4C). Strikingly different proportions of RNA biotypes were detected for sEVs and lEVs, but 

with minimal differences from 2H to 6H (Figure 4D). Prominently, sEVs contained a smaller 
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percentage of tRNA-related sequences than lEVs. In terms of miRNA diversity, “detected” 

miRNAs were defined inclusively as those with greater than 5 counts per million mapped reads 

(CPM). In sEVs, 153 miRNAs were mapped in common for PMI of 2H and 6H, while 147 and 78 

miRNAs were detected only at 2H and 6H, respectively. In lEVs, 143 miRNAs were found in 

common at 2H and 6H, and few miRNAs were detected only at 2H and 6H (Figure 4E). These 

findings suggest that miRNA diversity may decrease somewhat as PMI increases, perhaps due to 

degradation.  

Because of limited input of macaque protein for proteomics (1 µg), compared with the human 

studies, only limited number of proteins were identified in sEVs and lEVs from the qualitative 

proteomics analysis. The number of identified proteins increased for sEVs and lEVs with greater 

PMI, while it appeared to decrease in BH (Figure S4 A). Almost all sEV and lEV proteins identified 

at 2H and 6H were also identified at 24H. Many proteins were found only at 24H. 75% of proteins 

were found at all time points in BH. Moreover, in both BH and EV subtypes, the overlap of 

proteins at 6H and 24H was greater than that for 2H and 24H, indicating a time-dependent shift 

in protein detection. Based on pathway involvement, proteins identified in sEVs were especially 

enriched for known EV (“extracellular exosome”), cytoplasmic, lysosomal, and membrane-

associated proteins (Figure S4 B). A stronger enrichment of cytoplasmic components at 24H 

might indicate more cell disruption in these samples (Figure S4 B). lEVs shared many components 

with sEVs, but were also enriched for terms such as desmosome and centrosome that did not 

appear in sEVs. Importantly, though, the meager protein coverage from these samples limits the 

conclusions we we can draw from the effect of PMI on EV protein content. We also validated the 

EV-enriched and -depleted markers. Both EV (CD63, CD81, TSG101, syntenin) and cellular 
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(calnexin) markers were higher at 24H in sEVs (Figure S4C), while CD63 and calnexin were lower 

at 24H in lEVs.  

Small RNA profiling of brain-derived sEVs and lEVs 

We next examined small RNA and protein profiles of brain sEVs and lEVs of human and macaque. 

These included two macaque brains and seven human brains without recorded neurologic or 

cognitive abnormalities (Table 1, macaque 3 and 4 and Table 2, human 4-10). Total RNA 

extraction and quality control indicated a slightly higher RNA yield from lEVs compared with sEVs 

(Figure 5A). Small RNA sequencing revealed a difference in small RNA biotype distribution 

between BH, lEVs, and sEVs. miRNAs, snoRNAs, and scaRNAs were more enriched in BH, while 

tRNA fragments were more enriched in lEVs, and rRNA and mRNA fragments in sEVs. Consistent 

with results for macaque bDEVs (as shown previously in Figure 4D), tRNA and miRNA sequences 

were enriched in lEVs over sEVs (Figure 5B). The pattern of small RNA expression was thus 

different not only between BH and EVs overall, but also between sEVs and lEVs (Figure 5C).  

For macaque samples, numerous miRNAs were found in lEVs but not in sEVs, while only one 

miRNA appeared to be detected uniquely in sEVs (Figure 5D). For human samples, 118 miRNAs 

were detected in common between the two EV classes and BH. All 154 miRNAs found in lEVs but 

not sEVs were also detected in brain tissue, while additional miRNAs were found in tissue but not 

EVs (Figure 5D). Normalizing by CPM, among 41 macaque miRNAs found in both lEVs and sEVs, 

28 with putative differential abundance were used for unsupervised clustering (Figure 5E, where 

clusters 1 and 2 are enriched in sEVs and lEVs, respectively). Similarly, unsupervised clustering 

was done with 48 human miRNAs with fold change >2 between BH and sEV (Figure 5F, where 
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clusters 1 and 2 are enriched in BH and sEVs, respectively). Interestingly, but perhaps not 

unexpectedly, lEVs have a miRNA profile different from but intermediate between BH and sEVs. 

We were also able to identify a small minority of miRNAs that appeared to be enriched in small 

EVs, with consistency across the two investigated species (Figure 5G). 

Proteomic profiling of brain-derived sEVs and lEVs 

The same samples were then examined for protein concentration and profile. As expected, for 

both human and macaque materials, protein concentration decreased from BH to lEVs to sEVs 

(Figure 6A). For macaque samples, numerous proteins were identified in tissue only, with just a 

handful identified in sEVs and lEVs (Figure S4 A). The lower proteome coverage is likely due to 

the lower protein input for macaque EVs. Better coverage was obtained with human samples, for 

which more protein was available. Proteins identified in samples from at least five donors were 

included in analysis. 167 proteins (42.2%) were found in both the large and small EVs. Around 

45.7% of proteins were detected only in sEVs, 12.1% only in lEVs. 99% of the detected proteome 

matched entries in existing EV databases Vesiclepedia35, EVpedia35, and Exocarta36. 71 sEV 

proteins and 65 lEV proteins were found among the top 100 most commonly reported EV 

proteins in these databases (Figure 6C, Table 3).  

Based on published literature and MISEV2018 suggestions, we examined known markers of cells 

(focusing on presumably or reportedly “EV-depleted” proteins), EVs, and the central nervous 

system. For the most part, presumed cellular proteins were enriched in BH, including those 

associated with mitochondria, ribosomes, nucleus, endoplasmic reticulum (ER), and Golgi (Figure 

6D, left panel). Only small amounts of these proteins were found in bdEV preparations; of these, 
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nuclear proteins were found mostly in lEV preparations, while apolipoprotein D associated with 

sEVs (Figure 6D). Presumed EV proteins were found in all types of samples (Figure 6D, middle 

panel) but were almost all enriched in EV preparations. A clear enrichment of certain EV markers 

was observed for sEVs, including tetraspanins (CD81 and CD9), cytosolic proteins (FLOT1, FLOT2), 

annexins (ANXA11, ANXA3, ANXA4), RABs (RAB14 and RAB1A) and cytoskeleton proteins (ACTN1). 

Importantly, bdEVs also carried markers of central nervous system cell types: neurons, microglia, 

oligodendrocytes, and astrocytes (Figure 6D, right panel). Some of these associations (e.g., for 

TMEM30A), may suggest selective protein packaging into EVs that could be exploited for selective 

enrichment of specific bdEV populations from tissue or biofluids. Presence of brain proteins was 

corroborated by an analysis using the DAVID database, revealing a high enrichment of brain-

derived proteins in sEVs (n=264), lEVs (n=179) and BH (n=358) (Figure 6E). Of note, a small 

number of proteins enriched for terms such as platelet, blood, plasma, T-cell, fibroblast, and 

erythrocyte may indicate blood cell debris, infiltrating immune cells, or simply non-specificity of 

some proteins. 

GO ontology analyses by STRING and FunRich were used to determine the cellular compartment 

of proteins recovered from BH and bdEV preparations (Figure 6F). Again, a large portion of 

proteins associated with both sEVs and lEVs were enriched for EV-related terms like exosomes, 

vesicle, and cytoplasmic vesicle. The terms membrane, plasma membrane, and whole membrane, 

instructively, were enriched only for sEVs, while nucleosome, nucleolus, protein containing 

complex, and intracellular part were enriched only for lEV and BH. Cytoplasm, lysosome, and 

cytoskeleton were common terms enriched for all groups, while some were exclusively enriched 

in one group. KEGG and Reactome analyses further confirmed processes related to the CNS, 
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including synaptic vesicle cycle, axon guidance, neuronal system, and L1CAM interactions, but 

also identified processes related to metabolism, endocytosis, the immune system, hemostasis, 

vesicle-mediated transport, membrane trafficking, and signal transduction (Figure 6G). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.10.940999doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.940999
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion 

Adapting the protocol previously published by Vella, et al.13, we evaluated application of SEC to 

bdEV enrichment from brain tissue. The modified method including SEC achieves a bdEV 

separation efficiency that may achieve acceptable results compared with SDGU. Furthermore, 

the modified method decreases operation time after the 10,000 x g centrifugation step from  

three hours (SDGU spin time) to 15 minutes (SEC on-column collection time), and the SEC step 

can be almost fully automated, potentially reducing operator variability. We do not suggest that 

SEC replaces SDGU, which may still be required when the highest levels of purity are needed. 

Rather, SEC may be an acceptable alternative to process larger numbers of samples or to achieve 

automation. 

 

Both protocols worked well for human tissues, as assessed by the depletion of “deep cellular” 

markers. However, for murine and macaque brain in particular, a substantial cellular component 

was still detected consistently. Since tissue preparation variables might contribute to cellular 

contamination, we tested for the first time the effects of tissue perfusion and postmortem 

interval. While perfusion had a noticeable effect in depleting cellular contaminants like GM130, 

cellular markers were still observed even in bdEVs from PBS-perfused murine brain. Regarding 

PMI before final bdEV processing, 24 hours of tissue storage resulted in higher particle recovery, 

but also with a significantly higher number of intracellular proteins in macaque bdEVs. PMI did 

not substantially change the RNA biotypes of macaque bdEVs, but some small RNA degradation 

and lower miRNA diversity was associated with long PMI. On the contrary, we did not observe 
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significant protein and RNA difference among bdEVs from tissues from humans with different 

PMI (death to acquisition), possibly indicating tissue fragility differences among species. However, 

we also used cortical tissues (mostly gray matter) for human, while a more varied mixture of gray 

matter and white matter is typically present for the much smaller structures that are available 

for macaque and mouse bdEV preparation. This factory could partly confound species 

comparisons. We conclude that perfusion is advised if possible (with animal models), and that 

PMI, storage temperature, and other details about tissue preparation and processing should be 

recorded and reported when describing bdEV separation. We note that it was recently reported 

that flotation density gradient separation showed lower detectable intracellular proteins 

compared with velocity gradients 17; however, flotation gradients require even more time than 

velocity SDGU. Since overly aggressive tissue digestion may contribute to release of cellular 

materials37, and since tissue structure may vary by species, types and concentrations of enzymes 

and different incubation times and temperatures should be explored to find the minimal 

adequate digestion condition for tissues of different organisms as well as different tissue regions. 

We would like to point out that our study of PMI is limited. Further studies are needed to 

understand factors such as: temperature and time of brain in the skull after death and before 

removal; brain storage parameters before sectioning; and additional storage conditions before 

bdEV extraction.  

Since the study of bdEV small RNAs is still in an early phase13, 14, we investigated small RNA 

composition of brain tissue and different sizes of bdEVs. The results, with slightly different 

composition of large and small bdEVs, suggested that not all small RNAs are uniformly loaded 

from cells into EVs. Consistent with other reports 13, 38-42, we also found that fragments of rRNA 
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and tRNA, were more abundant than miRNAs in EVs, even without employing ligation-dependent 

sequencing library preparation43. Although some publications have reported a higher miRNA 

proportion in EVs 44, 45 than in cells, our results suggested that mapped miRNA reads and diversity 

gradually decreased from brain homogenate to large EVs and then small EVs. At least as assessed 

by our library preparation and analysis methods, miRNAs account for less than 1% of small RNA 

in both human and macaque small bdEVs. Nevertheless, several miRNAs were highly enriched in 

small versus large EVs and/or tissue. These included miRNAs (miR-423, miR-320a, miR-186, miR-

146a, miR-1180, let-7b, and let-7d) that were also reported by Vella, et al., who collected data 

following DGUC bdEV separation 13. Additionally, miRNAs such as miR-7, miR-21, miR-1260, miR-

146a, and miR-222, were enriched in small over large EVs in both macaque and human datasets. 

Collectively, these data show that lEVs and sEVs, despite some likely overlap, may harbor 

different proportions of small RNA including miRNA, which may further differ from the ratios in 

parent cells. Whether this observation is explained by active packaging/exclusion or passive 

factors (i.e. average distance of specific RNAs from sites of EV biogenesis) remains unresolved, 

with evidence for and against active sorting 38, 46 39, 45, 47, 48.  

Since numerous publications have reported tissue-derived EVs without thorough protein 

characterization of EV-depleted cellular markers and specific EV subtype markers12, 15, 16, 49-52, we 

compared the BH and bdEV proteomes with established EV-related databases. Substantial 

concordance between our data and the databases was clear (Tabe 3). However, reduced 

presence of most cellular proteins in bdEVs compared with BH indicated relatively minimal cell 

disruption during EV separation. In larger EVs, however, EV markers were found alongside higher 

levels of histones and other proteins that may have derived from broken nuclei or formation of 
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amphisomes40, 53. Additionally, sensitive proteomics methods indicated several cellular or co-

isolate markers, including calnexin, GLIPR2, and ApoD in sEVs, though we did not find Calnexin or 

GM130 expression by WB. These proteins that are associated with intracellular compartments 

beyond plasma membrane (PM)/ endosomes54 may be contaminants, but could also be bona fide 

cargo of small bdEVs55-59: calnexin is carried by syncytiotrophoblast EVs with immunoregulatory 

function in preeclampsia56, while ApoD transported by astroglial cells can exert neuroprotective 

effects58. Numerous cytosolic, annexin, Rab, and cytoskeleton proteins were also found. We 

conclude from the endosomal and PM markers that sEVs prepared by our method are a mixture 

of different subtypes of EVs, including true exosomes and ectosomes/microvesicles60, 

accompanied by lower amounts of proteins from other cellular compartments. 

We further propose that our dataset from bdEVs can suggest important tools for biomarker 

discovery and mechanistic studies in neurological disease. For example, capturing bdEVs in 

peripheral samples can assist with monitoring neuropathological changes in the brain. Recently, 

L1CAM and NCAM 1, 61, 62 have been used to capture plasma neuron-derived EVs, and GLAST for 

astrocyte-derived EVs63. Our data may suggest additional CNS cell-enriched markers that could 

be used to capture or characterize bdEVs in the periphery. For example, neuron-specific markers 

detected here include enolase 2 (ENO2) and vesicle-associated membrane protein 2 (VAMP2). 

Also, many small RNA and protein components of bdEVs are involved in neuronal functions and 

neurodegenerative diseases. Of the miRNAs highly enriched in brain-derived sEVs from both 

human and macaque samples (Figure 5G), miR-21 was reported to have neurotoxic effects in 

bdEVs in simian immunodeficiency virus (SIV)-induced central nervous system (CNS) disease14, 

while miR-764, miR-125b64，and miR-22265, 66 were up-regulated in brain tissue64, CSF66 or 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2020. ; https://doi.org/10.1101/2020.02.10.940999doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.940999
http://creativecommons.org/licenses/by-nc-nd/4.0/


plasma65 of Alzheimer's disease (AD) patients. Based on protein findings, functional annotations 

and pathway analyses support contributions to neuronal functions. Tau protein is extensively 

used as a diagnostic tool for AD dementia67. TMEM30A interacts with the β carboxyl-terminal 

fragment of amyloid-β (Aβ) precursor protein in endosomes68 and is released from the blood-

brain barrier69. Members of the 14-3-3 protein family and DJ-1 confirm previous findings in CSF 

derived EVs70. We expect that ongoing analyses of these data and future studies of bdEVs from 

different neurological diseases will yield further insights into mechanisms of neuropathology.  

In summary, we characterized bdEVs from human, non-human primate, and mouse tissue 

harvested under different conditions, testing several variations on EV separation. We hope that 

this study will add to the growing understanding of the small RNome and proteome composition 

of bdEVs. We further trust that this study and the associated data will be used to further our 

knowledge of the regulatory roles of EVs in brain and to facilitate biomarker discovery for 

neurological diseases. 
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Methods 

Tissue Collection and Preparation 

Post-mortem tissues were obtained from separate studies: macaque (Table 1, occipital lobe, 

perfused, fresh, different post-mortem interval), human (Table 2, Cortex, frozen, Johns Hopkins 

Alzheimer's Disease Research Center) and mouse (C57BL/6 mice, hemi brains (without the 

cerebellum and olfactory bulbs), fresh, perfused and non-perfused). All procedures were 

approved by the Johns Hopkins Univeristy Institutional Review Board (human samples) or the 

Johns Hopkins University Institutional Animal Care and Use Committee (IACUC, animal studies) 

and conducted in accordance with the Weatherall Report, the Guide for the Care and Use of 

Laboratory Animals, and the USDA Animal Welfare Act. For macaque, fresh occipital lobes was 

divided into three pieces and stored in Hibernate-E medium (Thermo Fisher A12476-01) for 2 

hours, 6 hours, and 24 hours, respectively, at room temperature before EV separation to 

investigate effects of post-mortem interval (PMI) 24. For mouse, whole brains with or without 

perfusion with PBS (Thermo Fisher 14190250) through the left ventricle were collected. A total 

of 50 ml PBS was used for perfusion at a speed of 20 ml/min. Perfused mouse brains were snap 

frozen on dry ice. All tissues were stored at −80°C before use unless otherwise noted. 

Separation of Extracellular Vesicles from Tissue 

EVs were separated from tissue using the protocol established previously by Vella, et al, 13 with 

minor modifications. Before extraction, a small (~50 mg) piece of tissue was stored at −80°C for 

later protein and RNA extraction. The remaining frozen tissue was weighed and briefly sliced on 

dry ice and then incubated in 75 U/ml collagenase type 3 (Worthington #CLS-3, S8P18814) in 
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Hibernate-E solution (human tissue for 20 min, macaque and mouse tissue 15 min, based on 

previous findings that macaque and mouse brains are more fragile and sensitive to digestion) at 

37°C. PhosSTOP and Complete Protease Inhibitor (Sigma-Aldrich PS/PI 

4906837001/11697498001) solution was then added to stop digestion. The dissociated tissue 

was spun at 300 × g for 10 min at 4°C. Small pieces of the pellet (“brain homogenate with 

collagenase”) were stored at −80°C for later protein extraction, while supernatant was 

transferred to a fresh tube and spun at 2000 × g for 15 min at 4°C. Supernatant was filtered 

through a 0.22 μm filter (Millipore Sigma, SLGS033SS) for further depletion of tissue debris and 

spun at 10,000 × g for 30 min at 4°C (AH-650 rotor, Beckman Ultra-Clear Tube with 5 ml capacity). 

The pellet was resuspended in 100 μl PBS and considered to be “large EVs” (IEVs). The 10,000 × 

g supernatant was then processed by sucrose DGUC, as previously 13, or SEC followed by 

concentration by ultracentrifugation or ultrafiltration. 

Sucrose Density Gradient Ultracentrifugation (SDGU) 

For SDGU, the small EV-containing supernatant from the 10,000 x g step was overlaid on a triple 

sucrose cushion (F2: 0.6 M, F3: 1.3 M, F4: 2.5 M) and ultracentrifuged for 3 hours at 180,000 × g 

(average) at 4°C (TH-641 rotor, Thermo Fisher, thinwall polypropylene tube with 13.2 ml capacity) 

to separate EVs and other particles based on density. After the spin, F1 (1.2ml above F2), F2 and 

F3 were collected, diluted with PBS, and spun for 70 min at 110,000 x g (average) at 4°C (TH-641 

rotor, Thermo Fisher, thinwall polypropylene tube with 13.2 ml capacity) to collect EVs. F2 was 

defined previously as the EV-enriched fraction 13. Supernatant was discarded, and the pellet was 

resuspended in 100 μl PBS. 
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Size Exclusion Chromatography followed by Ultracentrifugation/Ultrafiltration (SEC and UC / 

UF) 

For SEC, the small EV-containing supernatant from the 10,000 x g step was concentrated with a 

100 kilodalton (kDa) molecular weight cut-off (MWCO) protein concentrator (Thermo Fisher 

88524) from 5 ml to 0.5 ml before application onto qEV Original SEC columns (IZON Science SP1-

USD, Christchurch, New Zealand) that had been pre-rinsed with 15 ml PBS. 0.5 ml fractions were 

collected by elution with PBS. The first 3 ml (F1-6) eluate was considered the void volume, and a 

total of 2 ml eluate (Fractions 7-10) were collected and pooled as EV-enriched fractions. The total 

collection time from SEC columns was around 15 min per sample. 

To further purify and concentrate EVs, either ultracentrifugation or ultrafiltration was used. 

Ultracentrifugation was for 70 min at 110,000 x g (average) at 4°C (TH-641 rotor, Thermo Fisher, 

thinwall polypropylene tube with 13.2 ml capacity). Supernatant was removed, and the pellet 

was resuspended in 100 μl PBS. Ultrafiltration was through a 10 kDa MWCO protein concentrator 

(Thermo Fisher 88516), concentrating the original 2 ml to 100 μl. 

Brain homogenate preparation 

For protein extraction, brain was processed to brain homogenate (BH) or brain homogenate with 

collagenase treatment (BHC) by grinding in cold PBS containing PI/PS with a handheld 

homogenizer (Kontes Pellet Pestle Motor) for 10 s. RIPA lysis buffer (Cell Signaling Technology 

9806) was added, and the mixture was sonicated on ice for 2 min. Homogenate was rotated at 

4°C for 2 h and spun 15 min at 14,000 x g at 4°C. Supernatant was transferred to tubes and stored 

at -80°. 
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For RNA extraction, Trizol (Thermo Fisher 15596018) was added to frozen brain tissue and 

homogenized with Lysing Matrix D beads (MP Biomedicals 116913100) on using a tissue 

homogenizer (FastPrep-24, MP Biomedicals). 

Nanoparticle Tracking Analysis 

Particle size and concentration were measured in scatter mode (488 nm laser) with Particle 

Metrix ZetaView QUATT® and ZetaView® software version 8.05.10 (Particle Metrix, Germany). EV 

samples were diluted to a volume of 1 ml and injected into the viewing chamber by syringe. Light 

scattering was then recorded for 2 minutes with the following settings: Focus: autofocus; Camera 

sensitivity for all samples: 80.0; Shutter: 70; Scattering Intensity: 4.0; Cell temperature: 25°C. 

Analysis was done with parameters: Maximum particle size 1000; Minimum particle size 5; 

Minimum particle brightness 20.  

Transmission Electron Microscopy 

10 µL EV preparations were adsorbed to glow-discharged 400 mesh ultra-thin carbon coated 

grids (EMS CF400-CU-UL) for two minutes, followed by 3 quick rinses in TBS and staining in 1% 

uranyl acetate with 0.05 Tylose. Grids were immediately observed with a Philips CM120 

instrument set at 80 kV, and images were captured with an AMT XR80 high-resolution (16-bit) 8-

Megapixel camera.  

Western Blotting 

EV fractions were lysed in 1X RIPA lysis buffer. Protein concentrations were determined by BCA 

protein assay kit (Thermo Fisher). Equivalent total protein amounts from BH and EVs were 
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separated on 4−15% stain-free pre-cast SDS-PAGE gradient gels (Bio-Rad) under non-reducing 

conditions and transferred onto PVDF membranes (Sigma Aldrich). After 1 hour blocking in 5% 

non-fat milk solution (Bio-Rad 170-6404) at room temperature, membranes were incubated with 

anti-CD63 (1:1000 dilution), anti-Bip (1:1000 dilution) (BD Biosciences 556019 and 610978, 

respectively), anti-CD81(1:1000 dilution), anti-Rab27 (1:1000 dilution) (Santa Cruz Biotechnology 

sc23962, sc74586), anti-TSG101 (1:500 dilution), anti-CD9 (1:500 dilution), anti-Syntenin (1:500 

dilution), anti-Calnexin (1:2000 dilution), or anti-GM130 (1:1000 dilution) (the last five antibodies 

were Abcam ab125011, ab92726, ab133267, ab22595, and ab76154) overnight at 4°C. The 

membrane was washed 3 times for 8 minutes in PBST while shaking, then incubated with HRP-

conjugated secondary antibody (1:10000 dilution) (Santa Cruz Biotechnology sc-2357, sc-516102) 

at room temperature for 1 hour. After washing again in PBST, the enzyme-linked antibody was 

detected by incubation with Pico chemiluminescent substrate (Thermo Fisher 34580) and 

recording on film (Millipore Sigma GE28-9068-38). In some cases, as indicated, total protein was 

visualized using stain-free gel technology on a ChemiDoc™ Imaging System (Bio-Rad). 

RNA extraction and quality control 

RNA was extracted by miRNeasy Mini Kit (Qiagen 217004) according to the manufacturer’s 

instructions. EV small RNA size profiles were analyzed using capillary electrophoresis by RNA 

6000 Pico Kit (Agilent Technologies 5067-1513) on a Fragment Analyzer (Advanced Analytical). 

Total RNA and small RNA from BH were analyzed using capillary electrophoresis by RNA 6000 

Nano Kit (Agilent Technologies 5067-1511) and RNA 6000 Pico Kit.  

Small RNA sequencing 
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Small RNA libraries were constructed from 50 ng of RNA extracted from brain homogenate or 5 

µl of RNA from bdEVs using the Ion Total RNA-Seq Kit V2 (Life Technologies 4475936). Barcoding 

was performed with the indices from the Ion Xpress™ RNA-Seq Barcode 1-16 Kit (Life 

Technologies 4471250) according to the manufacturer’s protocol and as previously published25. 

The yield and size distribution of the small RNA libraries were assessed using the Agilent 2100 

Bioanalyzer™ instrument with DNA 1000 chip (Agilent Technologies 5067-1504). Libraries were 

prepared for deep sequencing using the Ion Chef system (Life Technologies 4484177) and 

sequenced on the Ion Torrent S5™ using Ion™ 540 chips (Life Technologies A27765).  

Sequencing data analysis 

Original BAM files were converted into FASTQ format using picard tools (SamToFastq command). 

Reads shorter than 15 nt were removed from the raw FASTQ using cutadapt software v1.18. The 

size-selected reads were aligned to human reference transcriptomes using bowtie software (1 

mismatch tolerance) in a sequential manner. Specifically, reads were first mapped to rRNA, tRNA, 

RN7S, snRNA, snoRNA, scaRNA, VT-RNA, Y-RNA as well as the mitochondrial genome. All reads 

which did not map to the above RNA species were aligned to human miRNA reference (miRBase 

22 release). The remaining reads were further aligned to protein-coding mRNAs and long non-

coding RNA (lncRNA) references (GENCODE Release 29). The numbers of reads mapped to each 

RNA type were extracted using eXpress software based on a previous publication 26. miRNAs 

identified with at least 5 reads were used for further analysis. miRNA reads were normalized as 

reads per million miRNA reads (RPM). Differential gene expression was quantified using 

R/Bioconductor packages edgeR and limma as described27. Hierarchical clustering of miRNAs was 

performed with Heatmapper28. 
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Mass spectrometry 

Samples were resuspended in 1 X RIPA buffer (20mM Tris-HCl pH7.5, 150mM NaCl, 1mM 

Na2EDTA, 1mM EGTA, 1% NP-40, 1% SDS, 2.5mM sodium pyrophosphate, 1mM β-

glycerophosphate, 1mM Na3VO4, 1ug/ml leupeptin) and protease inhibitors and incubated on 

ice for 5 min. The samples were then sonicated for 15 min in an ice water bath before 

centrifugation at 14,000g at 4°C for 10 min. Protein concentration or the supernatant was 

determined by Micro BCA assay (Thermo Fisher Scientific 23235). Brain homogenate (3 µg for 

human, 2 µg for macaque) and 10K pellet and EV samples (2 µg for human, 1 µg for macaque) 

were buffer exchanged to remove detergent. Protein was resuspended in 8M Urea, 50 mM Tris 

pH=8.3. 1 µL of TCEP (tris [2-carboxyethyl] phosphine hydrochloride, 200 mM solution in water) 

was then added to the samples and incubated for 4 hours at 21°C in a ThermoMixer (Eppendorf 

AG). 4 µL of 1M IAA (iodoacetamide in water) was then added, and samples were incubated in 

the dark at 21°C. 800 µL of 50 mM Tris (pH 8.3) and 1 μg trypsin were then added to samples 

prior to overnight incubation at 37°C. 10 μL of 10% trifluoroacetic acid (TFA) was added to each 

sample to acidify. Samples were cleaned using stage-tips preparations using 3 plugs of Empore 

polystyrenedivinylbenzene (SBD-XC) copolymer disks (Sigma Aldrich, MO, USA) for solid phase 

extraction.  

Peptides were reconstituted in 0.1% formic acid and 2% acetonitrile and loaded onto a trap 

column (C18 PepMap 100 μm i.d. × 2 cm trapping column, Thermo Fisher Scientific) at 5 µL/min 

for 6 min using a Thermo Scientific UltiMate 3000 RSLCnano system and washed for 6 min before 

switching the precolumn in line with the analytical column (BEH C18, 1.7 μm, 130 Å and 75 μm 

ID × 25 cm, Waters). Separation of peptides was performed at 45°C, 250 nL/min using a linear 
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ACN gradient of buffer A (water with 0.1% formic acid, 2% ACN) and buffer B (water with 0.1% 

formic acid, 80% ACN), starting from 2% buffer B to 13% B in 6 min and then to 33% B over 70 

min followed by 50% B at 80 min. The gradient was then increased from 50% B to 95% B for 5 

min and maintained at 95% B for 1 min. The column was then equilibrated for 4 min in water 

with 0.1% formic acid, 2% ACN. Data were collected on a Q Exactive HF (Thermo Fisher Scientific) 

in Data Dependent Acquisition mode using m/z 350–1500 as MS scan range at 60 000 resolution. 

HCD MS/MS spectra were collected for the 7 most intense ions per MS scan at 60 000 resolution 

with a normalized collision energy of 28% and an isolation window of 1.4 m/z. Dynamic exclusion 

parameters were set as follows: exclude isotope on, duration 30 s and peptide match preferred. 

Other instrument parameters for the Orbitrap were MS maximum injection time 30 ms with AGC 

target 3 × 106, MSMS for a maximum injection time of 110 ms with AGT target of 1 × 105.  

Proteomics data analysis 

Protein sequence data for human (last modified date: 16 May 2019) and pigtailed macaque (last 

modified date: 26 October 2018) were downloaded from the Uniprot database and used as the 

database for the search engine. Common Repository of Adventitious Proteins (CRAP) was used 

as the potential lab contaminant database. Protein identification was performed using the 

proteomics search engine Andromeda built in to Maxquant V 1.16.0. Trypsin with a maximum of 

two missed cleavages was used as the cleavage enzyme. Carbamidomethyl of cysteine was set as 

fixed modification and oxidation of methionine was set as variable modification. The Percolator 

results were set to reflect a maximum of 1% false discovery rate (FDR). The Label Free 

quantification was done with match between runs using a match window of 0.7 min. Large LFQ 

ratios were stabilized to reduce the sensitivity for outliers. For human datasets, data 
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normalization was done using the Cyclicloess method. For pigtailed macaque, LFQ values were 

normalized using the delayed normalization described in Cox et al.29. 

Tissue expression data were retrieved using the Database for Annotation, Visualization, and 

Integrated Discovery (DAVID) 30, while the cellular component annotations of identified proteins 

were enriched by Funrich31 and STRING32. Kyoto Encyclopedia of Genes and Genomes (KEGG)33 

and Reactome34 was used to enrich pathway involvement of identified proteins. Statistical 

significance of enrichment was determined by the tools mentioned above. Only significant 

categories (p < 0.05) were included for analysis. 

Statistical analysis 

Statistical significance of differences in total EV particle concentration, protein, and 

particle/protein ratio harvested from different combination of protocols of in Fig. 2 A-C and Fig. 

3 A-C were assessed by one-way analysis of variance (ANOVA) with Tukey’s multiple comparison 

test. 
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Figure Legends  

Figure 1. Workflow for brain tissue-derived EV (bdEV) enrichment. Following digestion and 

differential centrifugation, density gradient ultracentrifugation (DGUC) or SEC was applied to 

10,000 x g supernatants to enrich bdEVs (specifically sEVs). The 10,000 x g pellets were collected 

and defined as the lEV fraction.  

  

Figure 2. Characterization of human bdEVs obtained by three combinations of methods. (A) 

Particle concentration of human bdEVs separated by three combinations of methods was 

measured by NTA (Particle Metrix). Particle concentration for each group was normalized by 

tissue mass (per 100 mg). (B) Protein concentration of human bdEVs separated by different 

methods and measured by BCA protein assay (per 100 mg tissue). (C) Ratio of particles to protein 

(particles/µg). (A)-(C): Data are presented as the mean with range. *p < 0.05 by two-tailed 

Turkey’s multiple comparison test. (D) bdEVs were visualized by negative staining transmission 

electron microscopy (scale bar = 100 nm). TEM is representative of five images taken of each 

fraction from three independent human tissue samples. (E) Western blot analysis of GM130, 

calnexin, CD81, CD63, and syntenin associated with BH and EV fractions. WB are representative 

of three independent human tissue EV separations from SDGU and SEC+UC methods, and one 

independent human tissue EV separation from SEC+UF method.  

  

Figure 3. Characterization of murine bdEVs. (A) Particle concentration of 

murine bdEVs separated by different methods was measured by NTA (Particle Metrix, 

normalized per 100 mg tissue). (B) Protein concentration of murine bdEVs separated by different 
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methods and measured by BCA protein assay kit (per 100 mg tissue). (C) Ratio of particles to 

protein (particles/µg). (A)-(C): Data are presented as the mean with range. (D) bdEVs were 

visualized by negative staining transmission electron microscopy (scale bar = 100 nm). TEM is 

representative of five images taken of each fraction from three independent tissue samples. (E) 

Particle and protein concentration of murine bd-sEVs from PBS-perfused and non-perfused 

brains. Data are presented as the mean with range (n = 4). (F) Western blot analysis of 

GM130, Bip, calnexin, TSG101, syntenin, and CD9 associated with BH and EV fractions from 

perfused and non-perfused murine brains. WB are representative of three 

independent murine tissue EV separation from SDGU method. 

 

Figure 4. Effect of postmortem interval on bdEV separation. (A) Particle concentration 

of bdEV preparations from 2H, 6H and 24H postmortem interval (PMI) macaque brains was 

measured by NTA (Particle Metrix, normalized per 100 mg tissue). Data are presented as the 

mean with range (n=4). (B) BdEVs from 2H, 6H and 24H PMI macaque brains were visualized by 

negative staining transmission electron microscopy (scale bar = 100 nm). TEM is representative 

of five images taken of each fraction from two independent tissue samples. (C) Small RNA 

sequencing, total reads from sEVs and lEVs from 2H and 6H PMI (n=2). (D) Average percent (n=2) 

of mapped reads for the nine most abundant RNA classes in sEVs and lEVs at 2H and 6H PMI. (E) 

Venn diagram of detected miRNAs (mean reads > five counts per million mapped reads (CPM)) 

from two independent sEV and lEV preparations at 2H and 6H PMI.   
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Figure 5. Small RNA profiles of bdEVs from two primate and seven human brain tissues. (A) RNA 

concentration of lEV and sEV fractions from NHP and human brain. Data are presented as the 

mean with range. (B) Average percent of mapped reads of the nine most abundant RNA classes 

in BH, lEVs, and sEVs (human, n=7). (C) Multidimensional scaling analysis based on quantitative 

small RNA profiles of BH, lEVs and sEVs. (n=2 for NHP, n=7 for human) (D) Venn diagram of 

miRNAs (mean raw reads greater than 5) in lEVs, sEVs, and BH from non-human primate and 

human brain (n=2 for NHP, n=7 for human). (E) Unsupervised hierarchical clustering of 28 

differentially abundant miRNAs of lEVs and sEVs (NHP, n=2). Cluster 1: enriched in sEVs; Cluster 

2: enriched in lEVs. (F) Unsupervised hierarchical clustering of 48 differentially abundant miRNAs 

(BH vs sEVs, mean fold change > 2; human, n=7). Cluster 1: enriched in BH; Cluster 2: enriched 

in sEVs. (G) Abundance comparison of five miRNAs enriched in sEVs vs lEVs and/or BH for both 

primate species.  

  

 Figure 6. Protein profiles of EVs from two primate and seven human brain tissues. (A) Protein 

concentration of BH, lEV, and sEV fractions from NHP and human brain (BCA). (B) Venn diagram 

of identified proteins in lEVs and sEVs of human (proteins identified in 5 from n=7 individuals). 

(C) Ven diagram of human EV and lEV proteins matched to the top 100 proteins in EV 

databases Vesiclepedia, EVpedia, and Exocarta. (D) Enrichment of intracellular, extracellular 

vesicle (EV) and central nervous system (CNS) proteins in human brain sEV, lEV, and BH 

preparations. (n=7) (E) Tissue derivation of human BH, lEV, and sEV proteins (DAVID 

knowledgebase). (F) Cellular compartments of human BH, lEV and sEV proteins (STRING 
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and FunRich). (G) Pathway involvement of human bd-sEV proteins according to the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) and Reactome.  

  

Figure S1. Comparison of bdEVs in different fractions of SDGU and SEC: human and mouse 

brain. (A) Particle concentration of SDGU fractions from human and murine brain by NTA 

(Particle Metrix). (B) Particle concentration of SEC fractions from human and murine brain (NTA). 

(A)-(B): Data are presented as the mean with range. (C) Three fractions from SDGU visualized by 

TEM (scale bar = 100 nm). (D) Fractions 7-10 from SEC (TEM, scale bar = 100 nm). TEM is 

representative of five images taken of each fraction from three independent human tissue 

samples. (E) Western blot analysis of calnexin, CD63, TSG101, CD81, and CD9 of brain tissue and 

SDGU fractions (human) (n=1). (F) Western blot analysis of GM130, calnexin, CD63, syntenin, and 

CD81 of brain tissue and SEC fractions (human) (n=1). (G) Western blot analysis of GM130, 

calnexin, Bip, TSG101, syntenin, CD9, and CD81 of brain tissue and SDGU fractions (mouse) (n=1). 

(H) Western blot analysis of Bip and Rab27a of brain tissue and SEC fractions (mouse) (n=1).  

 

Figure S2. Western blot analysis: murine brain tissue and EV preparations. In each of the 

following, tissue proteins were compared with EV fractions obtained as indicated. (A) SDGU 

fractions; immunoblotting for GM130, calnexin, Bip, and TSG101 (n=3). (B) SEC + SDGU and SEC 

+ UF fractions; immunoblotting for calnexin, Bip, and TSG101 (n=1). (C) SEC + UF 

method fractions; immunoblotting for calnexin, Bip, CD9, and TSG101 (n=2). (D) SEC + UC; 

immunoblotting for GM130, calnexin, and TSG101 (n=1).  
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Figure S3. Bioanalyzer analysis of bdEV small RNA libraries. Size distribution of bdEV libraries 

from 2H, 6H, and 24H postmortem interval (PMI) macaque brains (n=2), measured by 

Bioanalyzer.  

Figure S4. Effect of postmortem interval on bdEV protein contents. (A) Venn diagram of 

identified protein number of sEVs and lEVs at 2H, 6H, and 24H PMI in either two macaques. (B) 

Enrichment of cellular compartments of proteins identified in sEVs and lEVs at 2H, 6H, and 24H 

PMI (FunRich).. (C) Western blot analysis of calnexin, CD63, CD81, TSG101, 

and syntenin associated with BH and EVs of macaque brain tissue at different PMI. WB are 

representative of two independent tissue EV separations.  
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