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Abstract 12 

Field-based observational research is the first step in understanding the factors that 13 

predict the biogeography and community structure of soil microbes. The Serengeti National 14 

Park in Tanzania is an ideal location for this type of research because active volcanoes 15 

generate strong environmental gradients due to ash deposition and a rain shadow. Also, as one 16 

of the last remaining naturally grazed ecosystems on Earth, the Serengeti provides insights 17 

about the influence of herbivory on microbial communities. We used 16S rRNA amplicons to 18 

characterize bacterial and archaeal communities in soils from a 13-year herbivore removal 19 

experiment to study the influence of environmental factors and grazing on the natural 20 

distribution of soil microbes. We collected soil samples from seven sites, each with three 21 

naturally grazed plots and three plots that were fenced to prevent grazing by large mammalian 22 
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herbivores. Soil fertility (phosphorus, nitrogen, iron, calcium, organic matter), texture, and pH 23 

were measured at each plot. Beta diversity of bacterial and archaeal communities was most 24 

strongly correlated with soil texture (R2 = 32.4%). The abundance of many operational 25 

taxonomic units (OTUs) were correlated with soil texture, and the evenness of taxa within 26 

samples increased with fine-textured soil. Removal of grazing shifted community structure, with 27 

31 OTUs that were significant indicator taxa of the ungrazed treatment and three OTUs that 28 

were significant indicators of the grazed treatment.  29 

Importance 30 

Our results show that in this regional scale study, soil texture was the best 31 

environmental predictor, and grazing by large mammals also structures bacterial and archaeal 32 

communities. When large mammals are removed, as humans have been doing for millenia, 33 

there are cascading effects into the microbial world that can influence ecosystem functions like 34 

carbon and nitrogen cycles. These empirical findings from a natural tropical savannah can help 35 

inform models of the global distribution and function of soil microbes.  36 

Introduction 37 

Soil bacteria and archaea serve critical functions in natural ecosystems. Many 38 

environmental factors can be used to predict the distribution and diversity of communities of 39 

bacteria within the soil (Fierer, 2017). Although recent studies have elucidated patterns in the 40 

structure of bacterial communities, disentangling their biogeography by determining the 41 

underlying mechanisms affecting the distribution of bacteria and archaea (hereafter referred to 42 

as microbes) remains a challenge. The Serengeti National Park in Tanzania provides an ideal 43 

environmental gradient for investigating the effects of abiotic and biotic factors on microbial 44 

communities. Four mechanisms underlying the biogeography of soil microbes have been 45 

identified: selection, dispersal, drift, mutation (Hanson et al., 2012). The purpose of this study is 46 
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to consider how environmental selection and dispersal by large animals influences the 47 

biogeography of soil microbes in the Serengeti. To accomplish this, we examined the diversity 48 

and distribution of microbial communities across a natural gradient of abiotic conditions that is 49 

superimposed on a replicated experiment that removed large mammalian herbivores for 13 50 

years.  51 

In the Serengeti, local topography and volcanic inputs have created inverse gradients of 52 

soil properties and precipitation (Anderson & Talbot, 1965; Ashley et al., 2014). Active 53 

volcanoes to the east continue to influence the geologic context with eruptions as recent as 54 

2008 (Sinclair & Arcese, 1995; Vaughan et al., 2008). Ash deposits from the nearby Ngorongoro 55 

Volcanic Highlands create gradients of calcium, iron, phosphorus and pH (Anderson & Talbot, 56 

1965; Ruess & Seagle, 1994; Ashley et al., 2014). Many studies have found that pH is a 57 

significant driver of microbial community composition globally (Fierer & Jackson, 2006; Lauber 58 

et al., 2009; Griffiths et al., 2011; Kaiser et al., 2016). Phosphorus availability is linked to soil pH, 59 

calcium, and iron because of chemical interactions on soil particles. Phosphorus availability is 60 

highest in neutral pH ranges. Calcium immobilizes phosphorus above neutral pH ranges 61 

(Schachtman et al., 1998; Brady & Weil, 2017), and iron can immobilize phosphorus below a 62 

neutral pH, indirectly affecting the growth of microbes and plants (Vance et al., 2003; Pigna & 63 

Violante, 2003). Increasing phosphorus availability can influence microbial communities by 64 

altering assemblages or increasing diversity (Beauregard et al., 2009; Kuramae et al., 2011, 65 

2012; Tan et al., 2012). Abiotic soil characteristics directly affect microbial communities by 66 

influencing resource availability and habitat structure, and they indirectly affect bacterial 67 

communities by influencing biotic factors such as vegetation and food webs. 68 

Soil microbes exist within a complex web of organisms that includes large grazing 69 

animals with many potential mechanisms for affecting microbial communities. The Serengeti 70 

hosts one of the largest natural grazing ecosystems in the world with currently over two million 71 

large mammalian herbivores (Eby et al., 2014). Moderate levels of grazing can alter soil nutrient 72 
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concentrations by transporting nutrients and modifying plant communities (Anderson et al. 73 

2007). In ecosystems with high soil fertility where nutrient cycling is dominated by bacteria, 74 

grazing may have a positive effect on decomposer bacteria (Bardgett & Wardle, 2003). In 75 

addition to the direct effects of urine and dung on soil biota (McNaughton et al., 1997; Bardgett 76 

et al., 1998), grazing can indirectly influence microbial diversity by stimulating net primary 77 

productivity and aboveground biomass  (McNaughton, 1979, 1985), leading to increased 78 

photosynthesis and root exudation (Bardgett et al., 1998). Also, grazing may influence the 79 

composition of plant communities which may alter the composition of microbial communities 80 

(Prober et al., 2015). Comparison of soil microbes between grazed and ungrazed treatments in 81 

a long-term field experiment will help elucidate shifts in bacterial communities resulting from the 82 

cascade of biotic and abiotic responses to the activities of large mammalian herbivores. 83 

Although no single factor consistently explains the biogeography of soil microbes, certain 84 

environmental variables tend to correspond with spatial patterns in the composition and 85 

abundance of bacteria. Soil organic matter, pH, redox status, soil moisture, nitrogen and 86 

phosphorus availability, and soil texture appear to be important predictors of the structure of soil 87 

microbial communities (Fierer, 2017). Our study tests the hypothesis that selection by many of 88 

these abiotic factors structures microbial communities. Also, we compared microbial 89 

communities inside and outside grazing exclosures to test the hypothesis that seasonal 90 

defoliation by large mammalian herbivores structure microbial communities. The goal of this 91 

study is to increase our understanding of the biogeography of soil microbes in a naturally 92 

grazed, tropical grassland. This knowledge can inform the development of general principles to 93 

help predict the structure and function of soil bacterial communities in changing environments.  94 

 95 
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Methods 96 

Sites 97 

In 1999, a herbivore removal experiment was installed at eight sites within the Serengeti 98 

National Park, Tanzania (Fig. 1) (Anderson et al., 2007). Six plots (4 x 4 m) were established at 99 

each site with three randomly assigned plots open to grazing and the other three plots had 2 m 100 

tall chain-linked fences to exclude grazing by large animals including wildebeest, zebras, 101 

Thomson’s gazelles, buffalo, and topi (McNaughton, 1985; Anderson et al., 2007). Theft of all 102 

the fences at one site in the eastern corridor prevented its inclusion in this study. Soil samples 103 

were collected from the remaining seven sites during the rainy season in May, 2012. 104 

Precipitation in the Serengeti National Park in 2012 was lowest in the southern (662 mm) and 105 

highest in the northern sites (1143 mm; Table 1).  106 

Soil analyses 107 

Soil samples were collected from holes (approximately 15 cm deep) created by 108 

excavating grasses at all seven sites (n = 42). Within six hours of collection, soils were dried for 109 

48 hours in a solar drier. After 2 weeks, the dry samples were brought to the laboratory and 110 

frozen for long-term storage. Frozen soil samples were dried at 103°C and sieved (< 2 mm). 111 

Soil organic matter was measured using loss on ignition, 2 g subsamples were weighed, heated 112 

to 550°C for 24 hours in a Lindberg HB muffle furnace (Lindberg/MPH, Riverside, MI 49084) 113 

then reweighed (Heiri et al., 2001). Soil pH was measured potentiometrically in a 1:2.5 114 

water:soil paste at the Soil Science Laboratory of Sokoine University of Agriculture in Morogoro, 115 

Tanzania (Klute, 1986). To measure total phosphorus, calcium, and iron concentrations, 0.3 g 116 

subsamples were ground and digested in 7 mL concentrated nitric acid and 3 mL 30% hydrogen 117 

peroxide in Milestone 900 Microwave Digestor (Ethos Inc., Bristol, United Kingdom). Samples 118 

were digested for 20 minutes and reached a maximum temperature of 425°C. Total soil 119 
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phosphorus concentration converted to orthophosphate was quantified via colorimetry 120 

(Grimshaw, 1987) on a QuikChem 8000 Series FIA+ (Lachat Instruments, Milwaukee, WI 121 

53218) using QuikChem Method 10-115-01-1-A. Total iron and calcium were measured on an 122 

AAnalyst 100 Atomic Absorption Spectrophotometer (Perkin Elmer, Waltham, MA 02451). 123 

Samples were compared to in-house standards and external standards produced by Ricca 124 

Chemical Company (Arlington, TX 76012) and Hach Company (Loveland, CO 80539). 125 

Soil texture was determined using laser diffraction particle size analysis (Beuselinck et 126 

al., 1998). Unsieved soil samples were suspended in water and analyzed on a LS 13 320 Series 127 

Laser Diffraction Particle Size Analyzer (Beckman Coulter Brea CA 92821). Particle sizes were 128 

grouped according USDA soil texture classification. Our soil textural classification figure was 129 

generated from R code available online (Hamilton, 2014). Soil bulk density and total soil 130 

nitrogen concentrations were obtained from previous analyses from the same plots (Antoninka 131 

et al., 2015). Measurements of soil organic matter, total phosphorus, nitrogen, calcium, and iron 132 

were adjusted by bulk density. 133 

Molecular analysis 134 

Amplicons were produced in a two-step protocol (Berry et al., 2011). Samples were 135 

amplified in triplicate PCR reactions for the 16S v4 region using the universal bacterial primers 136 

515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-3’) 137 

(Bates et al., 2011). First round reactions were performed in triplicate in 384 well plates. The 8 138 

µL volumes contained the following: 1 µM each primer, 200 µM each dNTP (Phenix Research, 139 

Candler, NC), 0.01 U/µL Phusion HotStart II DNA Polymerase (Life Technologies), 1X HF 140 

Phusion Buffer (Life Technologies), 3 mM MgCl2, 6% glycerol, and 1 µL normalized template 141 

DNA. Cycling conditions were: 2 minutes at 95°C followed by 20 cycles of 30 seconds at 95°C, 142 

30 seconds at 55°C, 4 minutes at 60°C. Triplicate reactions for each sample were pooled by 143 

combining 4 µL from each well, and 2 µL was used to check for results on an agarose gel. The 144 
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remainder was diluted 10-fold and used as template in a second PCR reaction in which indexed 145 

tails (Caporaso et al., 2012) were added. Second round reaction conditions were identical to the 146 

first round except only one reaction was conducted per sample and only 15 total cycles were 147 

performed. Indexed PCR products were purified using carboxylated magnetic beads (Rohland & 148 

Reich, 2012), quantified by PicoGreen fluorescence, and an equal mass of each sample was 149 

combined into a final sample pool. The pool was purified and concentrated, and subsequently 150 

quantified by quantitative PCR against Illumina DNA Standards (Kapa Biosystems, Wilmington, 151 

MA). Sequencing was carried out on a MiSeq Desktop Sequencer (Illumina Inc, San Diego, CA) 152 

running in paired end 2x150 mode. Upon acceptance, sequence will be archived in the NCBI 153 

Sequence Read Archive.  154 

Data analysis 155 

The forward reads of the 16S amplicons were imported into QIIME 2 version 2018.11 156 

(Bolyen et al., 2018). Demultiplexing was carried out using minimum quality threshold of q20 157 

and default parameters in QIIME 2. Based on quality threshold, visualized with FastQC version 158 

11.7, reads were trimmed to 139 bases (Andrews, 2010). To determine phylogenetic diversity 159 

metrics, a rooted phylogenetic tree was created with MAFFT sequence alignment and FastTree 160 

in QIIME 2. QIIME 1.9.1 was used to filter samples below 0.005% abundance (Caporaso et al., 161 

2010; Bokulich et al., 2013). To remove singletons by sample, the otu_picking_workflow.sh 162 

command in akutils v1.1.1 was performed (Andrews, 2018). Alpha and beta diversity metrics 163 

were performed with the q2-diversity plugin for QIIME 2 using the core-metrics-phylogenetic 164 

command with a sampling depth of 45000. We used Shannon diversity index to capture 165 

bacterial richness and evenness. To estimate alpha diversity with phylogenetic structure, we 166 

used Faith’s Phylogenetic Diversity index (Faith, 1992). To separate community evenness, we 167 

used Pielou’s evenness index, where values are constrained to 0 and 1, with higher values 168 

representing even abundance of community members. To generate figures, we used the scikit-169 
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bio 0.2.3 (http://scikit-bio.org), matplotlib 3.1.0, and seaborn 0.9.0 python packages. Upon 170 

acceptance, our environmental data, correlation matrix, and OTU table will be made publically 171 

available on Dryad Digital Repository (https://datadryad.org). 172 

Statistical analyses 173 

In an attempt to account for spatial autocorrelation, beta diversity of bacterial 174 

communities were analyzed with single regressions (Anderson et al., 2011) of Bayesian general 175 

linear mixed effects models using the “rstanarm” R package version 2.17.4 (Stan Development 176 

Team, 2017). Weighted and unweighted UniFrac (Lozupone & Knight, 2005), and Bray-Curtis 177 

dissimilarity for all unique non-zero pairs of plots was the response variable (n = 861 for each 178 

metric). Standardized values for distance between continuous environmental variables were 179 

used to predict beta diversity. Grazing treatment categories were created for all possible 180 

combinations of treatments (e.g. beta diversity of grazed vs grazed, grazed vs ungrazed, and 181 

ungrazed vs ungrazed samples). We included a random effect for spatial autocorrelation that 182 

represented all unique alphabetized combinations of sites. Additionally, we used a random 183 

slope for each model.  184 

Eleven predictor variables were analyzed for all models; grazing treatment, soil organic 185 

matter (SOM), pH, rainfall, percent sand, silt, and clay, and total concentrations of nitrogen, 186 

phosphorus, calcium, and iron. Rainfall for 2012 was as determined by satellite measurements 187 

from NASA’s Global Precipitation Measurement mission (Hou et al., 2013). Means and a 95% 188 

credible interval for the posterior distribution are reported in Table 2 and Fig. 7. To estimate 189 

variation explained by each model, the ‘bayes_R2’ function in ‘rstanarm’ was used to calculate 190 

an r-squared (Stan Development Team, 2017). To determine the variation explained by the 191 

fixed effect of each model, the full model r-squared (R2 Full) was partitioned into an r-squared 192 

for the fixed (R2 Fixed) and random effect (R2 Random) by calculating the sum squared error for 193 

the full model and for a null model with random effects only. All models used three chains with 194 
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default parameters (family = gaussian, prior = normal, iterations = 2000, adapt = 0.99), and all 195 

models converged (Rhat < 1.05). 196 

To summarize overall patterns between bacterial community composition and abiotic 197 

factors, we used principal coordinate analysis (PCoA) and the Spearman’s rank correlation 198 

coefficient in the BIOENV function from scikit-bio. To test the effect of abiotic characteristics on 199 

bacterial community composition, we used a distance-based redundancy analysis (db-RDA) 200 

(Legendre & Anderson, 1999) performed with forward and backward model selection using the 201 

‘capscale’ and ‘ordistep’ functions in the vegan package version 2.5-4 (Oksanen et al., 2018). 202 

We performed the db-RDA analysis on Bray-Curtis dissimilarity with default parameters. Percent 203 

sand was removed from the selected db-RDA model post hoc because it did not contribute to 204 

the overall model. Indicator species analyses of OTUs (operational taxonomic units) were used 205 

to determine which bacteria were associated with grazing treatments and sites using the 206 

‘multipatt’ function in the ‘indicspecies’ package version 1.7.6 (De Cáceres & Legendre, 2009) 207 

package in R (version 3.3.0) with default values. Only OTUs with significant indicator species (P 208 

< 0.05) are reported. P-values were determined with 999 permutations. The square root of the 209 

indicator value (func = “IndVal.g”) was used as the test statistic. 210 

Results 211 

Soil nutrient analyses indicated significant edaphic gradients created by the Ngorongoro 212 

Volcanic Highlands (Fig. 1; Table 1). As expected, soil throughout the southern Serengeti plains 213 

is enriched by volcanic deposits rich in phosphorus, iron, and calcium, with deposits gradually 214 

decreasing with increasing latitude. Soil phosphorus concentration was significantly higher in 215 

the southern site (6.1 mg cm-3) than the northern site (0.1 mg cm-3; Table 1). Total soil nitrogen 216 

concentration was between 1.1 and 2.3 (mg cm-3) throughout the seven sites (Table 1). Soil 217 

organic matter ranged from 6.9% (BAL) to 16.2% (BRS; Table 1). Total calcium and iron 218 

concentrations were lowest in the northern site (1.8 and 4.5 mg cm-3, respectively) and highest 219 
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in the southern site (20.2 and 24.0 mg cm-3, respectively; Table 1). Sites in the north were 220 

comprised of sandy loam soil with low phosphorus concentration while sites in the south were 221 

silty loam with high phosphorus concentration (Fig. 1; Fig. 2; Table 1). Because of the influence 222 

of volcanic ash, many of the environmental variables were highly correlated (Fig. S1). Notably, 223 

percent sand, silt, and clay were more than 90% correlated with each other and between 70 and 224 

90% correlated with phosphorus concentration (Fig. S1). 225 

After read quality filtering, sequencing resulted in a total of 5,702,184 reads matching a 226 

total of 32,372 OTUs. To remove potentially erroneous OTUs (operational taxonomic units), we 227 

used a stringent OTU table filtering threshold that removes singletons by sample and OTUs 228 

below 0.005% of total sequence abundance (Bokulich et al., 2013). OTU table quality filtering 229 

resulted in 4,431,104 (78.7%) sequences matching 2,782 OTUs (8.6%). For all 42 samples, we 230 

had an average of 105,502 sequences per sample, with a minimum of 52,139 and maximum of 231 

162,093 sequences. 232 

Microbial communities in this study were primarily dominated by Actinobacteria (19.5%), 233 

Proteobacteria (19.5%), and Acidobacteria (19.2%). Other significant (> 5%) phyla included 234 

Verrucomicrobia (8.0%), Firmicutes (6.0%), Chloroflexi (6.0%), and Planctomycetes (5.5%). 235 

Phyla with 5% or less relative abundance comprised 16.2% of the overall abundance. Average 236 

relative abundances for each site are reported in Fig. 3a. We used four different alpha diversity 237 

metrics to determine if environmental variables are related to richness and evenness (Fig. S2). 238 

We highlight the strong correlation between percent silt and evenness in Fig. 3c. Average 239 

Shannon diversity for each site ranged from 8.8 (± 0.2) in BAL to 9.3 (± 0.1) in BRS and was 240 

correlated positively with percent silt (R2 = 0.17) and total phosphorus concentration (R2 = 0.14). 241 

Overall, evenness was high throughout our study, ranging from 0.86 (± 0.01) to 0.91 (± 0.01). 242 

Evenness of communities was positively correlated with silt (R2 = 0.16), phosphorus (R2 = 0.25), 243 

and pH (R2 = 0.11), and negatively correlated with rainfall (R2 = 0.33). Average Faith PD, a 244 

phylogenetic diversity estimate, was lowest in BAL (61.2 ± 14.3) and highest in MSB (82.1 ± 245 
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6.0) and was not highly correlated with environmental variables. Similarly, richness as 246 

measured by the number of observed OTUs, was lowest in BAL (859 ± 242.2) and highest in 247 

MSB (1253 ± 156.2) and was not correlated with environmental variables. Relative abundances 248 

of many of the 50 most common OTUs were strongly correlated with one or more environmental 249 

variables, mainly soil texture (Fig 4; Table S2). Of the 12 strongest correlations, nine had 250 

positive and three had negative relationships with percent silt (Fig. S3; Table S2). Indicator 251 

species analysis of the grazing treatments revealed that all indicator OTUs were in the bacterial 252 

kingdom (Table S3), three OTUs were indicators of grazed plots and 31 were indicators of 253 

ungrazed plots (Figure 3b; Table S3).  254 

To estimate the importance of environmental variables on the beta diversity of bacterial 255 

communities, we used spearman rank correlation coefficients with distance matrices for three 256 

different beta diversity metrics. Phylogenetic (UniFrac) and non-phylogenetic (Bray-Curtis) 257 

metrics were similar across four highlighted environmental variables, phosphorus concentration, 258 

rainfall, percent silt, and pH (Fig. S4). Despite high correlations between the measurements 259 

(Fig. S1) of phosphorus with silt (r = 0.71) and pH (r = 0.75), spearman correlations were much 260 

higher for percent silt (30.5 to 40.6%; Fig. 3d; Fig S4), and low for pH (between -7 and -2.9%; 261 

Fig. S4). Phosphorus concentration and rainfall are highly correlated with each other (r = -0.83; 262 

Fig. S1), and spearman correlations were similar for both variables and all three beta diversity 263 

metrics (Fig. S4). Much of the dissimilarity of bacterial communities can be attributed to the 264 

presence or absence of OTUs, indicated by the similarities of unweighted UniFrac correlations 265 

and Bray-Curtis (Fig. S4). Slightly higher correlations for the first two PCoA axes of weighted 266 

UniFrac, when compared to unweighted UniFrac, indicates that some variation in the bacterial 267 

communities can be explained by the phylogenetic structure of abundant OTUs (Fig. S4). In 268 

addition, we used a dbRDA to understand the effect of environmental variables on Bray Curtis 269 

distances of bacterial communities. Model selection of dbRDA indicated that soil texture, rainfall, 270 

and phosphorus and iron concentration were important in explaining variation in bacterial 271 
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community composition (F = 2.6, p < 0.001; Fig. S5). Overall, the dbRDA explained 16% of the 272 

variation in community composition (adjusted R2 = 0.164).  273 

To gain a deeper understanding of the relationship of the effects of grazing and abiotic 274 

characteristics on beta diversity, we used Bayesian linear mixed effects models. To avoid the 275 

multicollinearity between environmental variables, we compared single linear regressions. We 276 

used the leave-one-out information criterion to compare models. Similar to Akaike's information 277 

criterion, lower values indicate better model fit. Model results are reported in Table S4 and 278 

visually represented in Fig. S6. Soil texture and phosphorus provided the best fit for determining 279 

the structure of bacterial communities. Results for both weighted and unweighted UniFrac were 280 

remarkably similar to those of Bray-Curtis. Percent clay, silt, and sand were three of the top four 281 

models. Total phosphorus concentration ranked third on our list of models, the 95% credible 282 

interval for phosphorus concentration in relation to beta diversity slightly overlapped zero (CI = 283 

[0.00, 0.53]), however, the mean of the posterior distribution (0.27) was the largest and was 284 

consistent with an effect, which may indicate that a large portion of the bacterial community 285 

structure is determined by levels of this important nutrient. Beta diversity values (y) range 286 

between 0.19 and 0.85, and standardized coefficients (x) ranged from 0 to approximately 3. 287 

Therefore, a mean posterior distribution for a coefficient with a value of 0.27 (phosphorus) would 288 

indicate that for every 1 unit of change in the standardized x-value, beta diversity increases by 289 

0.27, a large difference considering the range of possible values. Linear mixed models with 290 

other environmental variables produced fixed effect correlations near zero. Model results for the 291 

grazing treatment (CI = [-0.07, -0.02]) are consistent with an effect of grazing on the beta 292 

diversity of bacteria (2% of variation explained). 293 

Discussion 294 

Because the Serengeti is a relatively undisturbed grassland, we can assume that the soil 295 

microbes observed in this study represent a long-term, stable community, notwithstanding 296 
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seasonal fluctuations. Furthermore, microbial populations likely reflect interactions with the 297 

macrofauna through reciprocal upward and downward trophic cascades (Sinclair et al., 298 

2010)(Anderson et al., 2007; Stevens et al., 2018)(Sinclair et al., 2010); Stevens et al., 2018). 299 

Results of this study reveals the importance of soil texture and mineral content in structuring 300 

microbial communities, and we also show that grazing by large, migratory mammals impacts 301 

microbial communities within the topsoil of the Serengeti National Park. The global distribution 302 

of bacteria has been linked to a hierarchy of correlated factors, and especially soil pH, organic 303 

matter and nitrogen availability (Fierer, 2017). Many studies have found that soil pH is a 304 

significant driver of bacterial diversity (Fierer & Jackson, 2006; Lauber et al., 2009; Griffiths et 305 

al., 2011; Kaiser et al., 2016); but we observed pH to have little relationship with the soil 306 

microbes in the Serengeti (Figs. 4, S2-S6; Table S4). A likely reason why our results are not 307 

consistent with the literature is that the neutral soil pH range (6.3 to 7.8) observed in this study 308 

which is ideal for microbial diversity, as opposed to the larger range of pH (3 - 9) captured 309 

globally (Fierer & Jackson, 2006). Furthermore, in contrast to a global analysis showing 310 

relationships between soil microbial communities and organic matter and nitrogen availability 311 

(Fierer 2017), our study showed no relationship between microbial diversity and these soil 312 

variables (Figs. 4, S5, and S6; Table S4). Instead, we found that the richness and evenness of 313 

microbes increased in sites with finer textured soil (Figs. 3 and S2) and specific OTUs were 314 

highly correlated with texture variables (Fig. 4).  315 

For organisms living at the scale of soil particles, the size and manner in which those soil 316 

particles coalesce can have a profound influence. Many studies have reported a connection 317 

between soil particle size and microbial diversity (Sessitsch et al., 2001; Carson et al., 2010; 318 

Chau et al., 2011; Neumann et al., 2013). Sand has larger pores with higher connectivity and 319 

therefore retains less water and nutrients than finer textured soil. The strong relationship 320 

between microbial community structure and soil texture could be linked to water potential, soil 321 

moisture, pore connectivity, and nutrient diffusion, rather than the texture itself (Saxton & Rawls, 322 
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2006; Dechesne et al., 2008; Carson et al., 2010; Serna‐Chavez et al., 2013; Neumann et al., 323 

2013). A previous study found microbial abundance to be positively correlated with water 324 

holding capacity and soil moisture in finer textured soil in the Serengeti (Ruess & Seagle, 1994).  325 

Biotic interactions are influenced by water content, pore connectivity, and nutrient diffusion and 326 

could also influence microbial abundance and diversity. Small soil pores in fine textured soils 327 

may provide microbes a refuge from predation by bacterivorous protozoa and nematodes; and 328 

thus, loss through predation is likely to be higher in wetter, coarser soils that enable motility 329 

(Hassink et al., 1993; Nielsen et al., 2014). Furthermore, highly connected water-filled pores 330 

may favor competitive interactions (Treves et al., 2003). Models of two bacterial species indicate 331 

less coexistence in wet soil conditions because connectivity facilitates interactions among 332 

microbes such that  highly competitive species can more easily exclude poor competitors in 333 

saturated soil compared to dry soil (Hardin, 1960; Dechesne et al., 2008; Long & Or, 2009). 334 

Overall, the structure of microbial communities in the Serengeti likely reflect both the top-down 335 

biotic influences of predation and bottom-up abiotic factors.  336 

Our results indicate that environmental gradients resulting from volcanic inputs of ash 337 

influence the biogeography of microbes in the Serengeti, but it is impossible to uncouple the 338 

interconnected soil factors that arise from the volcanic deposits. Phosphorus concentration 339 

explained 14% of the variation in community composition and was consistent with a strong 340 

effect on beta diversity (Table S4; Fig. S6). Soil texture, on the other hand, explained 17% of the 341 

variation but was inconsistent with an effect on beta diversity (Table S4; Fig. S6), even with a 342 

strong gradient in soil texture (from 25% to almost 60% silt). Therefore, it is likely that both 343 

phosphorus concentration and soil texture directly and indirectly (through biotic interactions) 344 

influence microbial community structure. Results from our mixed models indicate that further 345 

research is necessary to completely disentangle the effects of soil texture and phosphorus 346 

concentration. An experimental design created to separate mineralogy from soil texture could 347 

help separate these effects. 348 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.06.936625doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.936625
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 349 

Life in Serengeti soil evolved to co-exist beneath one of the largest mammalian 350 

migrations on Earth. We would expect the exclusion of large herbivores should have an effect 351 

on the microbial communities and our linear mixed model results are consistent with that 352 

prediction (Fig. 3b; Table S4; Fig. S6). Further, we found 34 total indicators of grazing, including 353 

one OTU within Rhizobiaceae (Table S3), some of which are known to fix nitrogen within plant 354 

roots (Spaink et al., 2012). An association between Rhizobiaceae and plants within grazed plots 355 

could indicate a cooperative strategy to compensate for aboveground herbivory (Ramula et al., 356 

2019). Specifically, we found three indicators of grazing and 31 indicators of ungrazed plots 357 

(Fig. 3b, Table S3). There are many potential mechanisms by which herbivory might influence 358 

soil microbial communities (Bardgett et al., 1998). The influx of nutrients from mammalian waste 359 

products could cause a shift in bacterial communities, increasing community differences 360 

between grazed plots, especially at larger spatial distances, while ungrazed plots maintain 361 

higher similarity, as our data implies (Figs. 3 and S6; Tables S3 and S4). Herbivory has altered 362 

the composition of plant communities at our sites, which in turn could alter bacterial 363 

communities (Anderson et al., 2007; Prober et al., 2015). Arbuscular mycorrhizal fungi can 364 

influence the community structure of soil bacteria (Artursson et al., 2006), and the abundance of 365 

these fungi has been shown to be higher inside the fences that exclude herbivores and also in 366 

the southern sites with fine textured soil and higher phosphorus content (Antoninka et al., 2015; 367 

Stevens et al., 2018, 2020). Millions of migratory mammals offer soil microbes dispersal 368 

opportunities resulting in more homogenous communities (Vos et al., 2013). Future research is 369 

needed to link the mammalian microbiome with the soil microbiome using a time-series of 370 

sampling that coordinates with the grazing cycle in the Serengeti.  371 

Much of the biogeography of microbial communities remains a mystery, but our data 372 

provides some insights into the distribution of soil microbes in a naturally grazed grassland. This 373 

study highlights the importance of soil properties, and especially texture in structuring a 374 
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significant portion of microbial evenness and beta diversity. Additionally, we discovered that the 375 

removal of mammalian herbivores had a measurable effect on the beta diversity of microbial 376 

communities. Together, these results may help inform predictions of the regional biogeography 377 

of bacteria in natural, tropical grassland ecosystems. Future studies will benefit from a deeper 378 

understanding of microbial functional diversity and the spatial and temporal dynamics of life in 379 

the Serengeti soil.  380 
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Figures and Tables 548 

Table 1. Annual precipitation (AP), and edaphic properties of the seven study sites in the 549 

Serengeti National Park, Tanzania. 550 

See attached .xlsx spreadsheet 551 
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 552 

Figure 1. Locations of the seven study sites within the Serengeti National Park, 553 

Tanzania: Balatines (BAL), Barafu (BRS), Klein’s Camp West (KCW), Kuku Hills 554 

(KUH), Soit le Motonyi (SOT), Togora (TOG), and Musabi Plains (MSB). The gradient in soil 555 

texture is illustrated in green, darker color indicates higher percent silt. 556 
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 560 

Figure 2. Soil texture and phosphorus concentration of each plot at seven sites in this study. 561 

Plots are colored by soil phosphorus concentration, where darker red indicates fine-textured, 562 

high phosphorus soil that result from deposition of volcanic ash from highlands south of the 563 

Serengeti National Park.  564 
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 566 

Figure 3. Illustrations of the bacterial community structure across environmental gradients and 567 

grazing treatments in the Serengeti. a) Correlation between Pielou's evenness, where 1 is 568 

completely even community and 0 in uneven. Points are colored by percent silt, darker colors 569 

are higher values, to facilitate interpretation of b) beta diversity as determined by Bray-Curtis 570 

dissimilarity. Spearman’s rho value is reported to illustrate the correlation between beta diversity 571 

and percent silt (green gradient). c) Relative abundance of bacterial phyla. d) Visualization of 572 

indicator species grouped by phyla, indicated by colors. Area of each circle represents the 573 

number of indicator OTUs within each phylum. 574 
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 576 

Figure 4. Correlation values for comparisons of relative abundance of 16S rRNA for individual 577 

operational taxonomic units (OTUs) and abiotic variables. Phyla for the 50 most abundant OTUs 578 

are displayed on the y-axis. The top-left most value is the highest correlation, and values are 579 

sorted into descending order for each abiotic variable and OTU. Blue bars above the heatmap 580 

represent the average correlation, with a 95% confidence interval, for each environmental 581 

variable. Blue shades are used to emphasize visual differences and do not represent a 582 

statistical difference. 583 
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