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Abstract 

Background: Cognitive traits demonstrate significant genetic correlations with many psychiatric 

disorders and other health-related traits. Many neuropsychiatric and neurodegenerative disorders are 

marked by cognitive deficits. Therefore, genome-wide association studies (GWAS) of general cognitive 

ability might suggest potential targets for nootropic drug repurposing. Our previous effort to identify 

‘’druggable genes” (i.e., GWAS-identified genes that produce proteins targeted by known small 

molecules) was modestly powered due to the small cognitive GWAS sample available at the time. Since 

then, two large cognitive GWAS meta-analyses have reported 148 and 205 genome-wide significant loci, 

respectively. Additionally, large-scale gene expression databases, derived from post-mortem human 

brain, have recently been made available for GWAS annotation. Here, we 1) reconcile results from these 

two cognitive GWAS meta-analyses to further enhance power for locus discovery; 2) employ several 

complementary transcriptomic methods to identify genes in these loci with variants that are credibly 

associated with cognition; and 3) further annotate the resulting genes to identify “druggable” targets.  

 

Methods: GWAS summary statistics were harmonized and jointly analysed using Multi-Trait Analysis of 

GWAS [MTAG], which is optimized for handling sample overlaps. Downstream gene identification was 

carried out using MAGMA, S-PrediXcan/S-TissueXcan Transcriptomic Wide Analysis, and eQTL mapping, 

as well as more recently developed methods that integrate GWAS and eQTL data via Summary-statistics 

Mendelian Randomization [SMR] and linkage methods [HEIDI]. Available brain-specific eQTL databases 

included GTEXv7, BrainEAC, CommonMind, ROSMAP, and PsychENCODE. Intersecting credible genes 

were then annotated against multiple chemoinformatic databases [DGIdb, KI, and a published review on 

“druggability”]. 

 

Results: Using our meta-analytic data set (N = 373,617) we identified 241 independent cognition-

associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. 26 

genes were associated with general cognitive ability via SMR, 16 genes via STissueXcan/S-PrediXcan, 47 

genes via eQTL mapping, and 68 genes via MAGMA pathway analysis. The use of the HEIDI test 

permitted the exclusion of candidate genes that may have been artifactually associated to cognition due 

to linkage, rather than direct causal or indirect pleiotropic effects. Actin and chromatin binding gene sets 

were identified as novel pathways that could be targeted via drug repurposing. Leveraging on our 

various transcriptome and pathway analyses, as well as available chemoinformatic databases, we 

identified 16 putative genes that may suggest drug targets with nootropic properties.  

Discussion: Results converged on several categories of significant drug targets, including serotonergic 

and glutamatergic genes, voltage-gated ion channel genes, carbonic anhydrase genes, and 

phosphodiesterase genes. The current results represent the first efforts to apply a multi-method 

approach to integrate gene expression and SNP level data to identify credible actionable genes for 

general cognitive ability. 
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Introduction 

One central goal for genome-wide association studies (GWAS) is the identification of potential 

targets for clinically useful pharmacologic interventions; drugs whose targets have supporting genetic 

evidence of association to the indication are significantly more likely to successfully reach approval than 

those without such evidence
1–3

. While novel drug targets for major psychiatric illnesses have emerged 

from recent large-scale GWAS
4–7

, broad-based cognitive deficits are an enduring and disabling feature 

for many patients with severe mental illness that are inadequately addressed by current medications.
8
. 

Similarly, effective cognitive enhancing medications (“nootropics”) are limited for patients with 

dementias and other neurodegenerative disorders
9
. Thus, the genetic study of general cognitive ability 

(GCA) holds the potential for identifying novel targets for nootropic medications, that could have 

widespread applications
10

. The genetic architecture of general cognitive ability (GCA) has been examined 

with increasingly large sample sizes over the last few years
11–17

. Physical health, illness, mortality
18

, and 

psychiatric traits
19

 have shown significant genetic correlations with individual differences in GCA. 

Dissecting the pleiotropic genetic architectures underlying GCA, educational attainment, and 

schizophrenia. We have recently shown that neurodevelopmental pathways and adulthood synaptic 

processes are dissociable etiologic mechanisms relating to genetic liability to psychosis
20

.  

 

Nevertheless, identifying specific genes functionally linked to GCA, with protein products that 

could be targeted by pharmacological agents, remains a core challenge. Using a pathway-based 

methodology
21,22

, we previously reported that several genes encoding T- and L-type calcium channels, 

targeted by known pharmaceuticals, were associated with GCA
10

; however, that study was relatively 

underpowered. Now with much larger GWAS of cognition available
15,16

, we can more effectively and 

reliably identify putative drug targets for further investigation. Contemporaneously, the latest large-

scale brain eQTL databases substantially enhance the assignment of regional GWAS signals to specific 

genes that can then be interrogated for druggability
23–29

. Further, recent advances in genetic 

epidemiology methods (e.g. Mendelian randomization) have enabled identification of potentially 

spurious eQTL associations that may be based on linkage rather than meaningful biology. 
30

. Thus, the 

convergence of adequately powered samples coupled with cutting-edge statistical and bioinformatics 

tools sets the scene for novel genetic and biological mechanisms underlying GCA to be made that might 

be amenable to novel therapeutic strategies.  

 

Here, we jointly analysed the two largest GWAS of cognition to date
15,16

. In doing so, we 

harmonized the independent and/or convergent genome-wide signals associated with GCA across these 

studies at the levels of: individual variants, broader genomic regions of loci in linkage disequilibrium 

(LD), specific protein-coding loci/genes, and functional biological pathways. We also employed novel 

analytical methods not previously employed in cognitive GWAS studies to determine the direction of 

causality between GWAS hits for GCA and genetically correlated phenotypes. Large brain-based 

transcriptomic databases were then utilized to determine the biological underpinnings of the most 

credible and actionable cognitive GWAS to identify novel nootropic drug targets. 

 

Methods 

Study workflow is detailed in Figure 1. As can be seen, data analyses comprised several stages. 

The core analysis combined summary statistics of the two largest GWAS of cognition to date
15,16

. Savage 

et al (N = 269,867) analysed 9,395,118 single nucleotide polymorphisms (SNPs) for association to 

intelligence, and Davies et al. 
16

 (N = 283,531) analysed 12,871,771 SNPs in relation to the somewhat 
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broader general cognition phenotype. The latter set of summary statistics reported by Davies et al. 
16

 

was reduced from the original N = 300,486 due to data access limitations. It is important to note that the 

two studies had a relatively large degree of sample overlap; while statistical inflation of the combined 

results is well-controlled by MTAG, the relative increase in power available is more modest than would 

be expected for a meta-analysis of fully independent samples. 

1. Loci Discovery: MTAG-GWAS 

We meta-analysed both sets of summary statistics using the Multi-Trait Analysis of GWAS 

(MTAG
31

 v1.08). MTAG adjusts for sample overlaps based on LD score regression. It is notable based on 

reported sample sizes, that approximately 89% of samples between Davies et al. 
16

 and Savage et al.
15

 As 

part of the MTAG workflow, alleles in both sets of summary statistics were aligned against the 1000 

genomes phase 3 version 5a reference panel
54

. We set filters for sample size N > 10,000, and variations 

with minor allele frequency > 0.001. To obtain a single output from MTAG, we set covariance of both 

phenotypes to 1 and equivalent heritability across both phenotypes. This would approximate a fixed 

effect inverse variance meta-analysis but adjusting for sample overlaps across summary statistics input. 

We also carried out FDR Inverse Quantile Transformation analysis to account for potential Winner’s 

Curse
32

. Following MTAG, significant loci were identified as follows:  First, independent lead SNPs were 

identified using the clumping function in FUMA v1.3.5
33

 with default parameters of �� �  0.1, 250 kb 

window based on the 1000 Genomes Project Phase 3 European ancestry LD reference panel
34

. 

Independent loci were then identified by taking SNPs that are within an LD of �� �  0.6 of the lead SNP. 

Finally, loci within 250kb of each other were merged into a single locus. GWAS significant threshold was 

set to 	 �  5� � 8, this was also the threshold used by FUMA to identify the lead SNPs with P-values 

less than or equal to the GWAS significant threshold. Candidate SNPs in LD with the significant 

independent SNP were selected based on the secondary 	 �  0.05 threshold. The minor allele 

frequency threshold for SNPs to be included in annotation and prioritization MAF > 0.01. We applied the 

default value of 10 kb for positional mapping of SNPs to genes, or functional consequences. 

2. Genome-wide characterization 

We then carried out phenome-wide genetic correlation analysis using LD-hub
35

 (v1.9.3) to 

determine and visualize the relationship between cognition and other psychiatric and physical traits. In 

addition, to confirm that our genetic discoveries reflected brain-based biological traits underlying 

cognitive performance, a gene property analysis was used to screen gene-expression and localization in 

CNS tissue vs. all other biological tissue as implemented in MAGMA
36

 utilizing GTEx v7 

(http://www.gtexportal.org/home/datasets) tissues.  

3. S-PrediXcan/S-TissueXcan Transcriptome-Wide analysis of gene expression 

To expand our analysis from SNPs/loci and to identify putative causal genes, several methods 

were employed (See Workflow - Figure 1). First, genetically regulated gene expression was imputed for 

MTAG meta-analysis using tissue models from GTExv7, which contains 48 different tissue types across 

30 general tissue categories. The summary statistics from this meta-analysis were entered into the S-

PrediXcan (Web app 18 Apr 2019) framework (https://cloud.hakyimlab.org/). S-PrediXcan computes 
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gene-based associations where genetic effects on phenotypes are mediated through gene expression
37

 

(see also http://predictdb.org/). Next, we utilized S-TissueXcan to exploit the gene expression-mediated 

associations shared across multiple tissues to enhance power for gene identification. We combined all S-

PrediXcan results based on individual tissue types in GTEx v7 using S-TissueXcan. Gene-based p-value is 

computed via an omnibus test, which are then Bonferroni corrected. Both S-TissueXcan processing and 

post-processing pipelines are available online (http://cloud.hakyimlab.org/). We paid special attention 

to S-PrediXcan’s brain tissue annotations in later stages of the analysis, extracting genes that are 

significantly associated with cognition after Bonferroni correction for each brain tissue within the GTEX 

database to lend post-hoc support for the gene-identification approaches.    

4. Summary Statistics Based Mendelian Randomization (SMR and HEIDI)
30

 

As a more conservative approach to transcriptomic-based gene identification, we utilized SMR 

(Summary-based Mendelian Randomization) and HEIDI (Heterogeneity in Dependent Instruments) 

tests
30

 (v1.02). SMR uses a Mendelian Randomization (MR) approach where one or multiple SNPs could 

be used as instruments to identify gene expression effects on a given trait with estimated SNP-gene 

expression and SNP-phenotype effects. At the same time, the HEIDI test identifies SNP-gene expression 

effects and SNP-phenotype effects that are correlated with each other through LD rather than 

biologically related via pleiotropy or a causal pathway. We prioritized GWAS-identified genes for follow-

up functional studies by including only genes with biologically related expression and phenotype effects 

(i.e., excluding genes with PHEIDI < 0.01). For the SMR analyses, we utilized multiple transcriptomic 

reference datasets: (i) GTEx-brain eQTL data with estimated effective sample size (N) of 233, which 

includes an eQTL based meta-analysis of 10 brain regions from the GTEx, while correcting for sample 

overlap
24,25

; (ii) Brain-eMeta eQTL data with estimated effective N = 1,194, which includes an eQTL 

based meta-analysis of GTEx-brain, CommonMind Consortium, and xQTLServer (ROSMAP) datasets
24

; 

(iii) the PsychENCODE prefrontal cortex eQTL data (N = 1,866). Two sets of brain-based eQTL were 

generated from the PsychENCODE data based on earlier reports: (a) eQTL corrected for 50 Probabilistic 

Estimation of Expression Residuals (PEER), where only SNPs with expression association FDR <0.05 were 

included
28

 and (b) eQTL corrected for 100 Hidden Covariates with Prior knowledge (HCP) were included 

as covariates
29

. For brain-based eQTL datasets utilized by SMR and HEIDI, only SNPs within 1Mb of each 

probe were included as a proxy for cis-acting eQTL (See 

https://cnsgenomics.com/software/smr/#Overview).  Both SMR and HEIDI p-values were Bonferroni 

corrected for multiple testing in 15,302 genes. Due to SMR’s more conservative estimation of p-values, 

we also performed Benjamini-Hochberg false discovery rate (FDR) correction for SMR genes, subsequent 

to the primary analysis. 

5. MAGMA Gene- and Gene Set-based association analysis 

MAGMA
36

 (v1.07) gene-based association tests were carried out as part of the FUMA pipeline. 

The MAGMA gene-based test combines individual SNP p-values in a pre-defined gene region into a 

gene-based p-value by calculating the mean chi-square statistics accounting for LD between SNPs and 

correcting for gene size. LD between SNPs within the genes is estimated based on the 1000 genomes 

phase 3 European ancestry panel. MAGMA competitive pathway analysis was conducted with results 
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emerging from earlier MAGMA gene-based, S-PrediXcan/S-TissueXcan, and SMR/HEIDI analyses. Gene 

sets that were tested included custom-curated neurodevelopmental and other brain-related gene sets 

that had gone through stringent quality control in a study originally designed to interrogate rare variants 

in schizophrenia
38

. In the latter, pathways with more than 100 genes from Gene Ontology (release 146; 

June 22, 2015 release), KEGG (July 1, 2011 release), PANTHER (May 18, 2015 release), REACTOME 

(March 23, 2015 release), DECIPHER Developmental Disorder Genotype-Phenotype (DDG2P) database 

(April 13, 2015 release) and the Molecular Signatures Database (MSigDB) hallmark processes (version 4, 

March 26, 2015 release) were initially included. Additional gene sets were selected based on risk for 

schizophrenia and neurodevelopmental disorders, including those reported for schizophrenia rare 

variants
39

 (translational targets of FMRP
40,41

, components of the post-synaptic density
39,42

, ion channel 

proteins
39

, components of the ARC, mGluR5, and NMDAR complexes
39

, proteins at cortical inhibitory 

synapses
43,44

, targets of mir-137
39

, and genes near schizophrenia common risk loci
39,45

) and autism risk 

(These include: (1)targets of CHD8
46–48

,  (2) splice targets of RBFOX
48–50

, (3) hippocampal gene expression 

networks
51

, (4) neuronal gene lists from the Gene2cognition database 

[http://www.genes2cognition.org]
48

, as well as (5) loss of function intolerant genes (pLI > 0.9 from the 

ExAC v0.3.1 pLI metric), (6) ASD exomes risk genes for FDR < 10% and 30%, and (7) ASD/developmental 

disorder de novo genes hit by a LoF or a LoF/missense de novo variant
52,53

). Brain-tissue expression gene-

sets included the Brainspan RNA-seq dataset
54

 and the GTEx v7 dataset
25

. We report significant gene 

sets that were associated with GCA to identify biological pathways putatively associated with GCA. 

Moreover, we use this information to further interrogate genes within these pathways with protein 

products that may serve as druggable targets but which failed to attain genomewide significance on 

their own. As such, we extracted nominally significant (p<.05) genes within the significant gene sets for 

further drug target annotations; this threshold was selected to strike a balance between potential false 

positive and false negative associations within gene sets that had already demonstrated association 

signal to GCA.  

6. Brain-based eQTL mapping 

eQTL mapping was carried out as part of the FUMA pipeline. Brain eQTL annotations were 

utilized for eQTL mapping. Databases used for eQTL mapping include: (i) BRAINEAC 

(http://www.braineac.org).  A total of 134 neuropathologically confirmed control individuals of 

European descent from UK Brain Expression Consortium were included in the BRAINEAC data. All eQTLs 

with nominal p-value < 0.05 were identified in the cerebellar cortex, frontal cortex, hippocampus, 

inferior olivary nucleus, occipital cortex, putamen, substantia nigra, temporal cortex, thalamus, and 

white matter regions and based on averaged expression across all of them. (ii) GTEX v7: For the purpose 

of eQTL mapping analysis, we chose brain tissue expression from GTEX v7 and defined significant eQTLs 

as FDR (gene q-value) < 0.05. The gene FDR is pre-calculated by GTEx and every gene-tissue pair has a 

defined p-value threshold for eQTLs based on permutation. (iii) xQTLServer 

(http://mostafavilab.stat.ubc.ca/xqtl/): Expression of dorsolateral prefrontal cortex from 494 samples. 

(iv) Brain expression from 467 Caucasian samples available at the CommonMind Consortium 

(https://www.synapse.org//#!Synapse:syn5585484). Publicly available eQTLs from CMC are binned by 

FDR into four groups: <0.2, <0.1, <0.05 and <0.01.  
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Finally, we mapped several novel forms of molecular quantitative trait loci (QTL). These novel 

QTLs include expression variation, splicing, and translation using post-mortem prefrontal cortex tissue 

data from the PsychENCODE/BrainGVEX project. In these samples, gene transcription and translation 

activities were assayed by RNA-sequencing (N=416) and ribosome profiling (N=192); Annotation data 

was available for novel QTLs with SNPs at 	���� � 1 � 10��: (i) gene expression variation QTL (evQTL) 

analysis tests for genetic loci that influence variance of expression level, using Bartlett’s test
55

 on the 

RNA-seq data; (ii) splicing QTL (sQTL) analysis captures the effects of genetic variations on RNA splicing, 

using leafcutter
56

 on RNA-seq data (iii) ribosome occupancy QTL (rQTL) analysis identifies genetic 

variations that influence translation-related ribosome occupancy using Ribo-seq data; prior reports 

suggest that differences between transcription and translation QTLs may yield novel biological insights 

beyond standard eQTLs alone
57,58

. We focused on the cis-QTL by testing SNPs within 1 Mb of genes for 

the three molecular phenotypes. Significant QTL association was defined by FDR p value < 0.05. For this 

analysis, we carried out mean-variance QTL mapping, using on the double generalized linear model 

approach discussed in detail elsewhere
55,59

. In prior simulations, mean-variance approach to QTL 

mapping and associated permutation procedures have shown to be robust in reliably identifying QTL in 

face of variance heterogeneity. For comparison purposes, we also performed standard eQTL mapping on 

this dataset. 

7. “Druggable” Gene Annotations  

We identified a set of “druggable” gene targets derived from the Drug-Gene Interaction 

database (DGIdb v.2), Psychoactive Drug Screening Database KiDB, and a recent review on 

“druggability”
60

. The “Druggable genome” as previously identified by Finan et al.,
60

 includes 4,465 gene 

targets and is annotated into 3 Tiers based on “druggability” levels: (i) Tier 1 gene targets are those 

derived from FDA-approved compounds, or from compounds that are presently studied in clinical trials; 

(ii) Tier 2 gene targets include genes with high sequence similarity to Tier 1 proteins, or those that are 

targeted by small drug-like molecules; (iii) Tier 3 gene targets code for secreted and extracellular 

proteins, which also belong to “druggable” gene families. DGIdb v.2 integrates drug-gene interactions 

from 15 databases, including DrugBank and ChEMBL. The data is directly available as drug-gene pairs; 

the KiDB provides Ki values for drug/target pairs and is particularly relevant for psychoactive drugs. Using 

filtering criterion previously reported by Gaspar and Breen
21

 (KiDB: “With non-empty Ki field”, “Only 

Human”, “Ki not superior or inferior to a value”, “With molecule name”, “With gene-name”, “Unique 

pairs”, “With range pKi > 2”; DGIdb: “Number of unique gene-sets > 2”), we identified and updated 2,567 

potential gene targets from the chemoinformatic databases. For further gene-target annotations, we 

took the intersection between genes extracted from the chemoinformatic database, and those reported 

in Finan et al.,
60

. This resulted in 1,876 genes for further annotations. At the final stage of the analysis 

we annotated high confidence genes using the Broad Institute Connectivity Map, Drug Re-purposing 

Database
61

 which provides more in-depth details such as drug names, mechanism of action, and drug 

indications.  

Results  

1. Loci Discovery: MTAG-GWAS 
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 We carried out MTAG meta-analysis
31

 on the two largest GWAS of cognition. Median value of Z-

scores in Savage et al.
9
 was -0.001, mean �� � 1.688, and genomic inflation was ��� � 1.456; 13,173 

SNPs passed genome-wide significant thresholds (� � 5 � 10�	) and the LD-score regression (LDSC)
62,63

 

intercept was 1.051. Median value of Z-scores in Davies et al.
16

 was 0.0, mean �� � 1.455, and genomic 

inflation was ��� � 1.307; 11,244 SNPs passed genome-wide significant thresholds, and the LDSC-

intercept was 1.038. A total of 8,990,900 SNPs was present in both sets of summary statistics were 

extracted for use in the MTAG meta-analysis. Since both sets of GWAS summary statistics indexed GCA, 

we constrained MTAG analysis to give a single output; heritability and genetic covariance for 

phenotypes in either set of summary statistics was set to be the same. A grid search for maximum 

potential for false discovery using MTAG revealed very low probability of false positives (���
�� �

4.51 � 10�). The resulting mean chi-square values were as follows: mean �������
�  = 1.624, mean 

�������
� � 1.544, and mean �����

� � 1.783. The average projected GWAS equivalent sample size 

increase after MTAG analysis for Savage et al.
9
 was ������� � 338,737 and for Davies et al.

10
 

������� � 408,498, (approximate estimated sample size ~ 373,617) which shows substantial power 

improvement.   

Clumping procedures were carried out on 8,990,900 SNPs (See Methods). SNPs were extracted 

based on �� � 0.6 within each independent LD-block; we identified SNPs within 250kb of each other as 

an independent locus. These loci definitions were merged with previously reported loci by Savage et al.
15

 

and Davies et al.
16

. A total of 304 genomic loci were identified as potentially associated with GCA using 

this method. Of these, 241 loci were GWAS significant for the MTAG analysis (Figure 2), while 214 loci 

and 124 loci were GWAS significant for Savage et al.
15

, and Davies et al.
16

 respectively. It should be noted 

that 17 loci were not significant in any sets of summary statistics, likely due to the sample size reduction 

in the Davies et al.
16

. We also note that 38 loci reported as significant in Savage et al.
15

 and 8 loci in 

Davies et al.
16

 were no longer significant in the MTAG analysis (Supplementary Table 2; Figure 2). 

Winner’s curse analysis suggested that these loci were likely false positives in the original studies 

(Supplementary Table 3). A total of 39 of these were novel and not found in the input GWAS. We then 

looked up reports that have used multi-trait strategies to enhance power for GCA
17,20

 and found that of 

the 39 loci, 8 loci were also reported by Hill et al. 
17

, 1 locus was reported by Lam et al. 
20

 and 1 locus was 

reported by both of these studies.  

2. Genome-wide characterization 

Genetic correlations were conducted between GCA and 855 phenotypes from LD-hub
28

 and UK 

Biobank. MTAG summary statistics were merged and aligned with HapMap3 SNPs without the MHC 

region for genetic correlation analysis (1,190,946 SNPs remained). The reduced set of SNPs had a 

median Z-score of -0.001, mean �� � 2.120, LDSC-intercept = 1.067 and �� � 0.139. Of these, 297 

phenotypes showed significant genetic correlation with cognition at 	���
������ � 0.05. Consistent with 

prior reports
10,11,17,64

, traits genetically correlated with GCA, included education, reproduction, longevity, 

personality, smoking behavior, anthropometric, brain volume, psychiatric, dementias, lung function, 

sleep, glycemic, autoimmune, cardio-metabolic, cancer and several ICD-10 medical phenotypes. Several 
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novel traits that have not been previously reported to be genetically correlated with GCA are displayed 

in Figure 3. Full results are reported in Supplementary Table 4.  

SprediXcan/S-TissueXcan, SMR &HEIDI, MAGMA Gene Set Analysis and Brain-based eQTL mapping 

3. SprediXcan/S-TissueXcan 

 As described (Figure 1), we conducted a variety of complementary transcriptomics analyses, in 

order to convert SNP/locus results into directional, biologically interpretable, gene effects on GCA.  S-

TissueXcan
37

 analysis carried out in all 48 GTEXv7 tissues yielded 444  significant genes after Bonferroni 

correction (Supplementary Table 5). Of these, 194 genes were significant in one or more S-PrediXcan 

brain tissue annotations (Supplementary Table 6).  

4. SMR &HEIDI 

Using SMR, we were able to identify 166 genes that were genome-wide significant, where gene 

expression levels were contributing to variance of GCA (Supplementary Table 7). As discussed 

previously, SMR analysis tended to be more conservative than other gene identification 

methodologies
37

, hence we computed using the Benjamini and Hochberg method, FDR corrected p-

values for nominally significant genes (	��� � 0.05� The second approach yielded 1212 genes for follow 

up in the later gene annotation (Supplementary Table 8). Importantly, there were 412 genes associated 

with linkage 	�����  � 0.01 and these were excluded from subsequent “druggability” analysis. 

5. MAGMA Gene Set Analysis 

MAGMA gene-based analysis revealed that 652 of 18,730 genes were significantly associated 

with GCA after Bonferroni correction (Supplementary Table 14). MAGMA pathway analyses were carried 

out using gene-based effect sizes from MAGMA gene-based analysis, SMR analysis (only using 

PsychENCODE results), and S-TissueXcan analysis. MAGMA significant pathways after Bonferroni 

correction are reported in Supplementary Table 15. Additionally, we annotated all genes within each 

significant MAGMA significant gene sets, with p-values from the other earlier gene identification 

approaches described above. Of 54 gene sets identified as significantly (following Bonferroni correction) 

associated with GCA, 49 included Tier 1 “druggable” gene targets (Supplementary Table 15; Table 2).  

A total of 449 genes were identified as part of significant MAGMA pathways.  As shown in Table 

2, several gene sets were identified to be significantly associated with GCA, based on the lists of 

significant genes derived from MAGMA, SMR, or S-TissueXcan. Not surprisingly, gene sets that have 

been associated with neuropsychiatric disorders such as schizophrenia and ASD were highly significant, 

consistent with significant genetic correlations between GCA and these disorders. Relatedly, gene sets 

related to neurodevelopmental processes implicated in schizophrenia and ASD, including the CHD8, 

FMRP, and RBFOX pathways, were also implicated in GCA
65

.  Consistent with prior reports, a series of 

neuronal and dendritic development, differentiation, and regulation gene sets were associated with 

GCA
17

.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.06.934752doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.934752
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

There were also several classes of gene sets emerging from our data that are novel with respect 

to GCA; notably, these results emerged in the context of the SMR and S-TissueXcan results, 

demonstrating the value of leveraging multiple approaches to post-GWAS gene identification. First, 

genes responsible for cellular response to small molecules such as sugars and cytokines appear to be 

implicated. Cell signal transductions mediated by small monomeric GTPases also appear to be relevant 

for GCA. In addition, genes sets underpinning cell structure and binding mechanisms, including 

adhesion, protein complexes, acting and chromatin binding were identified. It should be noted that gene 

sets representing methylation processes, DNA complex, and nucleosomes, while significantly associated 

with GCA, do not contain any genes that are targeted by known drugs, based upon our “druggability” 

criteria described in the Methods section above.   

6. Brain-based eQTL mapping 

eQTL mapping for gene expression across brain tissue indexed by the FUMA
33

 pipeline revealed 

421 significantly expressed genes within GWAS significant regions (FDR corrected p-values; 

Supplementary Table 9). Additional mean variance QTL mapping of prefrontal cortex eQTL with GCA 

SNPs identified 638 genes with splicing activity, 42 genes implicated in ribosomal occupancy, 119 genes 

with expression variation levels, and 592 genes with eQTL (Supplementary Tables 10-13). 

7. Identifying Drug-Gene Targets for Nootropic Re-purposing 

 A total of 2,017 genes (See Figure 1) were identified via one or more methods discussed in the 

previous sections. At this stage, we also merged additional post-hoc SMR analysis using FDR correction 

of p-values (N genes = 695), and the S-PrediXcan brain tissue eQTL analysis (N genes = 166) for further 

annotation. Filtering on the 1,876 “druggable” genes identified in the earlier step, genes with 

	����� � 0.01, and genes that were identified by two or more gene-identification approaches, 91 genes 

were identified. We further annotated these genes with information from the Broad Institute CMAP 

Drug Repurposing Database
61

, drug indications for “Oncology” were filtered out mainly for drug delivery 

concerns; 76 “high-confidence” genes remained (Figure 4). These were annotated with eQTL directions 

(i.e., up- or down-regulation associated with higher GCA) for each gene. eQTL directions were obtained 

from earlier analysis, including brain-eQTLs from S-PrediXcan, SMR, PsychENCODE eQTL, RNA-seq 

Ribosomal and Splicing eQTL mapping, and overall S-TissueXcan GTEX eQTL analysis. Effect sizes that 

indicated up-regulation of the gene was denoted as “↑” and those that were down-regulated were 

denoted as “↓” (Supplementary Table 17).  We predicted the “mechanism of action” from the overall 

eQTL direction if each gene might require either an “Agonist” or “Antagonist” to enhance GCA. This is 

achieved by taking the sum of eQTL directions across tissues (See Supplementary Table 17). If overall 

eQTL indicates up-regulation, it would be more likely require an agonist and vice-versa. We eliminated 

”Ambiguous” gene-targets which have an equal number of tissues that show up- and down-regulated 

gene expression.  

CMAP Drug Re-purposing annotations which include drug names, mechanism of action (MOA), 

as well as drug indications were merged with the “high” confidence genes (Supplementary Table 18). 

We further filtered the high confidence genes based on the predicted and actual MOA. We were able to 
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identify potential drugs related to the matched MOA, and their indications with various types of physical 

or psychiatric conditions are listed in Table 3. Notably, the relationship between some of the drug MOA 

and gene targets do not always appear to be direct. For example, adrenergic receptor agonists can 

indirectly activate calcium channels of which CACNA2D2 is a constituent.  

Discussion 

 Here we report the largest meta-analysis of GCA using MTAG that adjusted for 

overlapping samples in the two largest GWAS of cognitive function yet. At an estimated sample size of 

approximately 373,617individuals, we identified 241 significant genetic loci, of which 39 are novel to the 

input GWASs, and 29 of these were not reported to be associated with GCA previously. The results are 

not surprising, in that the original sample overlap between the two reported GWAS were sufficiently 

large (89%). Consistent with earlier reports of GCA, gene property analysis revealed significant tissue 

expression overrepresented in GTEX v7/Brainspan brain related tissue compared with expression in 

other types of tissue. It is notable that some of these genes appear to be significantly expressed during 

the prenatal state, indicating a potential neurodevelopmental impact of genes that are associated with 

GCA. In the current study, we focused on identifying genes associated with GCA that could be 

“actionable” in terms of identifying pharmacological agents that could be re-purposed for nootropic 

utilization based on GWAS. We have earlier used a similar approach using MAGMA pathway analysis 

against drug-based pathway annotations on a smaller GWAS of GCA
10

, where we reported several T and 

L-type calcium channels as potential targets for nootropic agents. Here, we were able to leverage 

several novel developments: an expanded genome-wide analysis of GCA; newly available brain eQTL 

data and complementary transcriptomic methodologies, enabling estimation of directionality (i.e., up- 

vs. down-regulation of expression) of gene effects on cognition. Notably, our study is the first cognitive 

GWAS to employ HEIDI, an approach that allows pleiotropy (either vertical or horizontal) to be 

differentiated from linkage (A single variant is associated with the trait and with gene expression 

because it is linked by LD to a second variant. However, whilst the first variant is causally linked with the 

trait, the second variant is causally linked with gene expression). HEIDI tests against the null hypothesis 

that a single causal variant affects both gene expression and trait variation, and so HEIDI-significant 

genes are less likely to be causal and require closer inspection and further biological experiments to 

unravel any true functional effects of the genes. Therefore, we have filtered gene results based on a 

nominal threshold of 	����� � 0.01. Additionally, several novel classes of gene sets, such as cell 

binding, cell metabolism, and cell structure not previously reported as associated with GCA, created an 

additional pool of genes available for further “druggability” investigation.  

The most crucial stage of the current report involved the identification of genes that are 

potential drug targets. Using filtering methods that were detailed earlier, the 76 potentially “druggable” 

genes were selected for further annotation. Of these, 16 genes were identified as “most likely 

druggable” based their predicted function from eQTL results and the CMAP Drug Re-purposing 

database
61

. These selected genes could be further classified into broad gene classes i) Serotonergic 

genes ii) Carbonic Anhydrase iii) Phosphodiesterase iv) Ion channel v) Glutamatergic/GABA-ergic and vi) 

Others (See Table 4). Here, we provide further review of the genes/gene classes associated with GCA 

that could be targeted to improve nootropic function.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.06.934752doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.934752
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

Serotonergic Genes 

 The most novel and intriguing finding of the present study is the identification of several 

serotonergic genes as relevant to cognitive function. These genes were not identified under genome-

wide significant peaks, but rather emerged using our gene-set annotation strategy; therefore, some 

caution in interpretation should be exercised. Nevertheless, serotonergic mechanisms in cognition have 

support from several prior lines of research. For example, reduced serotonin may be linked to cognitive 

disturbances and certain conditions such as Alzheimer’s disease and mood disorder, and stimulating 

serotonin activity in depression may be beneficial to cognition independent of general relief of 

depressive symptoms
66–68

.  However, antidepressants typically inhibit the serotonin transporter, while 

the present results suggest that enhancing its function may have pro-cognitive effects. Perhaps more 

readily interpretable, results of the present study show generally that upregulation of HTR1D and 

downregulation of HTR5A are associated with enhanced cognitive function. One popular antidepressant,  

Vortioxetine, is a 5-HT1D agonist and demonstrates some evidence of pro-cognitive efficacy
69

. The 

triptans, a class of 5-HT1D agonists used for the treatment of migraine, have also demonstrated initial 

efficacy in rescuing migraine-induced cognitive deficits
70

. At the same time, antagonizing the 5-HT5A 

receptor has showed cognitive enhancement in a ketamine-based rat model of cognitive dysfunction 

and negative symptoms of schizophrenia
71. 

While ergot-derived migraine treatments with action at  5-

HT5A have not shown evidence of cognitive benefit
72

, these agents tend to have complex actions at 

multiple serotonin (and other neurotransmitter) receptors.
 
  

Carbonic Anhydrase Genes 

The current study is the first to report evidence that carbonic anhydrase genes may be 

implicated in cognitive function. Carbonic anhydrase activity within the hippocampal neurons modulates 

GABA-ergic functions, altering sensitivity of the gating function for signal transfer through the 

hippocampal network
73

. Modifying the function of carbonic anhydrase in animal models improved 

learning abilities, and possible perception, processing and storing of temporally associated signals
74

. 

Some early reports have also speculated the role of zinc homeostasis being related to cognitive 

impairment in Alzheimer’s disease
75–77

. While results of the present study suggest that inhibition of 

carbonic anhydrase activity may enhance cognition, pharmacologic evidence to date has supported the 

opposite conclusion. Specifically, carbonic anhydrase activation has shown enhancement in synaptic 

efficacy, spatial learning, memory, as well as object recognition in rodents
74,78

; in humans, topiramate, a 

carbonic anhydrase inhibitor has been associated with cognitive deterioration
79

. One mechanism by 

which carbonic anhydrase inhibition might improve cognitive function is in the context of amyloid 

pathology, which may be dependent on carbonic anhydrase activity. 

Phosphodiesterase Genes 

Phosphodieterases (PDEs) catalyze the only known reaction terminating cyclic nucleotide 

signals, as such, they are crucial regulators of physiological and pathophysiological mechanisms that 

underlie these processes. Here, we report that a class of PDE-4s, PDE4D and PDE4C demonstrate 

association with cognitive function. PDE4s are expressed in the cerebral cortex, hippocampus, 
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hypothalamus, striatum, dopaminergic neurons within the substantia nigra, and astrocytes
80,81

. 

Inhibiting PDE4 increases the phosphorylation of CREB and hippocampal neurogenesis propagating 

antidepressant mimicking and memory-enhancing properties
82,83

.Previously reported evidence 

implicated PDE4s, in particular, PDE4D, in possessing pro-cognitive and neuro-protective properties 

after the infusion of Rolipram
84,85

.  The development of therapeutic indications for Alzheimer’s Disease, 

Huntington’s disease, schizophrenia, depression and cognitive enhancement continues to be the subject 

of ongoing research
86,87

. Extensive discussion of PDE4D, previously discovered by large scale educational 

attainment GWAS, is reported elsewhere
88

. In the present study, improved eQTL mapping supports the 

nootropic function of inhibiting PDE4D. The role of PDE4C appear to be less understood. Earlier reports 

indicate that though PDE4C is expressed in the brain,  limited to the cortex, thalamic nuclei and 

cerebellum
81

. No evidence currently exists to show if activating PDE4C plays a conclusive role in rescuing 

cognitive deficits
89

.  

Glutamatergic Genes 

The role of excitatory glutamatergic and inhibitory GABA-ergic neurons are well researched in 

their relationship to cognitive function and presence in the brain
90,91

. Glutamate mediates fast synaptic 

transmission and plays a key role in long term potentiation
92

, synaptic plasticity, learning and memory, 

and other cognitive functions
93

. Extended glutamate stimulation can be damaging to neurons and give 

rise to excitotoxicity, regarded as a precursor mechanism to several neurodegenerative disorders
94,95

. 

Indirect modulation of the glutamatergic system via positive allosteric modulators of AMPAR have 

shown nootropic properties in laboratory animals and human patients
96–100

. Direct modulation of 

glutamatergic pathway via antagonists, co-agonizing the glycine site, potentiatiating the activity of 

agonists via polyamines, neurosteroids, and histamines for purpose of cognitive enhancement has also 

been explored
101

.  

Here, we identified AMPA4 agonists as potential cognitive enhancement agents. Within the 

CMAP Drug Re-purposing database
61

, we identified Piracetam, a known nootropic as an acetylcholine 

agonist that appear to have shown evidence for improving cognitive function
102

 via complex 

glutamatergic and calcium signalling pathways
103

. A counterintuitive result was that down regulation of 

eQTL for GRIN2A was related to higher cognitive function. However, it appears that there has been 

discussion of how low dose antagonism of glutamatergic receptors (N-methyl-D-aspartate: NMDA-R) 

might increase excitatory effects of glutamate neurons
104

. Supporting evidence for the precognitive 

effects of NMDAR antagonists like memantine has also been reported in animal models and humans
105

. 

Based on existing evidence, we also show that the GRIN2A gene might also be indirectly targeted by 

norepinephrine transporter inhibitors, serotonin-norepinephrine reuptake inhibitors, and calcium 

channel blockers (Table 4).  

Voltage-gated Ion Channel Genes 

Voltage-gated ion channels have originally been studied with respect to etiologies of excitability 

disorders of the heart and muscles. Nevertheless, there is currently emerging evidence for the role of 

calcium, sodium and potassium channels in the etiopathologies of neuropsychiatric disorders
106

. 
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Ostensibly, these neuropsychiatric disorders and accompanying cognitive function deficits could be 

rescued by therapeutics aimed at targeting the underlying putative channelopathies
107

. Voltage-gated 

calcium channels increase periplasmic calcium concentrations, which triggers a downstream  cascade of 

proteins involving ion channel function, vesicle docking and small molecule transport
108

. Calcium 

trafficking and signalling play a crucial role in cognitive function
109–116

. There is also evidence to suggest 

that voltage gated calcium channels are necessary for the function of dopaminergic neurons on 

mesolimbic and mesocortical regions
117,118

. Prior reports have suggested that blocking L-type calcium 

channels could be a viable strategy for Alzheimer’s disease but noted the paradoxical effect that these 

channels also promotes synaptic plasticity and spatial memory
119

. 

Here, we identify upregulation of CACNA2D2 and CACNG3 genes associated with cognitive 

function. Though calcium channel genes have been identified previously in both cognitive function and 

neuropsychiatric disease GWASs, work in identifying reliable compounds for calcium activation is 

relatively nascent. Existing drugs targeting calcium channel receptors are mainly antagonists There is 

evidence to suggest that indirect activation of calcium channel genes via activating sarco-/ER Ca2+ 

ATPase 2 (SERCA) appear to be neuroprotective and enhance cognition and memory in Alzheimer’s 

mouse model
120

. SERCA resides in the endoplasmic reticulum and its dysregulation is thought to affect 

cognitive function in Darier’s disease, schizophrenia, Alzheimer’s disease, and cerebral ischemia
121

. In 

the current report, adrenergic receptor agonists could also potentially play a role in activating calcium 

channel genes highlighted.   

Additional to calcium channels, current results also point to the potential role of the chloride 

voltage channel gene CLCN2 as a potential gene target for cognitive enhancement. CLCN2 plays a crucial 

role in background conductance, removing excess Cl- ions within pyramidal cells in the hippocampus, 

and regulates excitability in GABAergic interneurons
122

. Loss-of-function mutations in CLCN2 are 

associated with leukoencephalopathy
123

, and, controversially, with epilepsy
124,125

; therefore, it is 

plausible that activation of CLCN2 might serve to enhance cognitive function. By contrast, gain of 

function mutations
126

 are associated with primary aldosteronism and subsequent hypertension, without 

cognitive impairment. The only drug with such a function identified by CMAP search was 

lubiprostone
127

, which is utilized for constipation and has unknown activity in the CNS.  

Other Genes 

Several genes do not fall into clear categories but nonetheless are crucial in the context of 

cognitive function, I.e., DPP4, THRB, PSMA5, DHODH2. While little is known about potential cognitive 

functions of DHODH or PSMA5, we examine DPP4 and THRB below. 

Dipeptidyl Peptidase 4 

Dipeptidyl peptidase IV (DPP-IV) is a serine protease is known to inactivate glucagon-like 

peptide-1 (GLP-1), pituitary adenylate cyclase-activating polypeptide (PACAP) and glucose-dependent 

insulinotropic peptide (GIP), which gives rise to pancreatic insulin secretion. Inhibition of DPP-IV enzyme 

activity via the gliptin class of medications has thus been widely utilized as a treatment option for 

diabetes
128

. However, aside from glucose control, animal studies have shown pro-neurogenic
129

, anti-
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inflammatory
130

 and neuroplasticity
131

 properties. DPP-4 inhibitors appear to improve glucose control 

and protect against worsening in cognitive functioning in older patients with type 2 diabetes
131

, and in 

some cases improve cognitive function
132

. Benefits of DPP-4 inhibition in the post-stroke recovery phase 

and long-term clinical outcome had also been extensively discussed
133

. Reports have also shown that 

linagliptin possess neuroprotective properties attributed to elevated levels of incretins in the brain
134

, 

while sitagliptin appear to regulate synaptic plasticity in AD mice via activating GLP-1 and BDNF-Trkb 

signaling
135

. Data from the current report suggest that downregulation of DPP4 in is associated with 

better cognitive function, and therefore DPP4 inhibitors have been identified as potential drug 

repurposing candidates for pro-cognitive investigation. 

Thyroid Hormone Receptor Beta 

Thyroid hormones (TH) has a vital function in neurodevelopment and its receptors known to 

regulate neurogenesis in the hippocampus, hypothalamus and subventricular zone
136–138

.  In adults, 

hypothyroidism is related to depressive-like symptomatology, dementia, memory impairment, and 

psychomotor deficits
139

. These syndromes are thought to be mediated through serotonergic
140

 and/or 

catecholaminergic
141

 pathways. Treatment of hypothyroidism improved cognitive performance in a 

mouse model of Alzheimer’s disease
142

 and patients
143

. Evidence for thyroid hormones implicating 

learning and memory through synaptic plasticity, neuronal cell differentiation and maturation had also 

been presented
144

. These evidences converge with the data presented in the current study showing that 

activating the thyroid hormone beta receptor would potentially yield nootropic effects.  

The results here have generated leads for further investigation into potential drug functions and 

how they might provide nootropic function. There are also limitations to the evidence that we report. 

First, though the evidence reported comprises the largest and most well-powered MTAG analysis of 

cognitive function, there continues to be potential to expand sample size to increase power. The modest 

increase in novel loci reported in the current study could be accounted for by substantial sample overlap 

in the earlier GWAS reports. Second, identifying eQTL for a particular phenotype is challenging– as with 

most summary statistics approaches, it is not always possible to directly ascertain that eQTL is 

necessarily leading to variation in the phenotype
145

. As case in point, S-TissueXcan was used as one of 

the indicators of gene expression direction. Results of S-TissueXcan are powerful in that they index 

overall potential of expression of the gene investigated but remains a noisy indicator for expression 

direction. Nevertheless, due to the modest sample sizes available in the annotation databases, our 

strategy is reasonable at this stage of advancement of biology.  Direct experimentation is required to 

rule out potential extraneous factors that might be pleiotropic to both phenotypic variation and eQTL 

effects. Third, the issue of LD within GWAS loci has been remained complex
146

, since there are often 

many genes that reside in some of the genomic regions.  

Here, we attempted to identify functionally relevant genes by examining the convergence across 

a range of complementary methodologies in order to overcome some of the limitations noted above. In 

addition, we used the HEIDI test to explicitly exclude genes marked by linkage that might be inaccurately 

labelled as “causal.“ Nevertheless, the challenge of regions of large LD and genes should be addressed in 

future studies, perhaps incorporating recently developed methods for examining three-dimensional 
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properties of the genome
147

. Though we have focused the discussion of results explicitly on identifying 

potential targets for nootropic purposes, the converse could also be relevant– where there might be 

commonly administered drugs that appear to result in cognitive deficits e.g. topiramate
148

, 

gabapentin
149

, and vinorelbine
150

.  

We also observed several counter-intuitive findings with respect to directionality of effects; for 

example, with respect to carbonic anhydrase inhibition.  It is plausible that many molecular functions in 

the brain observe either a U-shape or inverted U-shape curve, such that effects of up- or down-

regulation are not strictly linear. Moreover, the results reported here are with reference to MTAG 

conducted in the general population and might appear to be counterintuitive if interpreted with respect 

to a disease population. For instance, calcium channel blockers might rescue cognitive impairments in 

schizophrenia, but blocking calcium channel function in the general population could be detrimental to 

synaptic function. Or enhancing prothrombin in the general population might offer nootropic effects 

through microtubule function but would potentially increase neurofibrillary tangles in Alzheimer’s 

disease. At the same time, our GWAS cohorts included older adults, and some findings may be a 

function of cryptic pathologic processes occurring in these apparently normal subjects. Further work is 

necessary to replicate evidence reported here into disease populations, along with more precise data on 

biological mechanisms underlying cognitive function to ensure that compounds identified as nootropic 

in a population is indeed applicable in certain other disease contexts.  

Conclusions 

 We performed the largest MTAG analysis for GCA. Aside from identifying 29 fully novel loci in 

the current study, the effort has included the most well powered cognitive MTAG analysis for identifying 

genes that are “druggable” and potential drugs that could be repurposed for nootropic utilization. Gene 

set analysis identified known neurodevelopmental and synaptic related pathways, but also novel cell 

structure and binding pathways that appeared to subserve known “druggable” genes. Utilizing multiple 

chemoinformatic and drug repurposing databases, along with eQTL and GWAS data, we identified 

Serotoninergic, Carbonic Anhydrases, Voltage-gated Ion channels, Glutamatergic/GABA-ergic, and 

Phosphodiesterase gene classes contribute to GCA, along with miscellaneous genes such as Diphenyl-

Peptidase 4, and others.  Our efforts show that within these pathways, specific gene classes coding for 

cellular components and functions could be targeted for nootropic purposes. Further work is necessary 

to confirm the role of these genes and receptors, to specify their biological mechanisms influencing 

cognition, and to consider potential CNS effects (including blood-brain barriers permeability) of the 

putative nootropic compounds nominated by this approach.  
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Figure Captions 

Figure 1 | Workflow for GWAS, Gene Identification Approaches, and Drug Database Annotations 

Figure 2 | GWAS association plots for Cognitive MTAG 

A. QQ-plot B. SNP annotation plot C. MAGMA gene property analysis for overall GTEXv7 D. MAGMA 

gene property analysis using BrainSpan E. Venn Diagram showing loci overlap 

Figure 3 | Genetic Correlations for UK Biobank ICD-10 and Medication phenotypes 

Error bars denote standard errors. Yellow bars denote medication phenotypes. Blue bars denote ICD-

10 phenotypes.  

Figure 4 | Venn Diagram of “High Confidence” Genes and Gene Identification Approaches  

Genes highlighted in blue were deemed as most likely having gene targets that were suitable for 

nootropic re-purposing 

 

Table Captions 

Table 1 | Methodological Overview and Analytical Approaches 

Table 2a | MAGMA Gene Sets Associated with Cognitive Function 

Table 2b | SMR Gene Sets Associated with Cognitive Function 

Table 2c | S-TissueXcan Gene Sets Associated with Cognitive Function 

Table 3 | Prioritized Gene for Nootropic Re-purposing 

Note: MOA: Mechanism of Action. Predicted Nootropic Function was obtained from gene expression 

association with general cognitive ability. MOA, Drug names and Drug Indications were annotated via 

Broad Institute Connectivity MAP: Drug Re-Purposing hub.   
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 Table 1. Methodological Overview and Analytic Approaches 

Analysis Methodology 

 

Software/Algorithm/Pipeline 

1 

 
 

 

 
 

 
 

 

 

Loci discovery 

 

- Leverage on existing cognitive summary statistics from Davies 

et al., 2018 and Savage et al., 2018. 

- Meta-analysis of summary statistics adjusting for sample 
overlaps. 

- Harmonized independent significant loci of meta-analysis and 
earlier input summary statistics. 

 

 
- Check for potential Winner’s Curse effect on non-significant loci 

after meta-analysis. 

 

 
Multi-Trait Analysis of GWAS 

(MTAG). 

 
FUMA – Clumping approach for 

independent significant SNPs. Merge 
independent loci identified by FUMA 

based on physical distance threshold 

of 250kb. 
 

FIQT 

2a 

 

 
 

Genetic Correlation – Ldhub/UKBB  

 

- Perform LD score regression on meta-analyzed summary 
statistics on traits curated in LD-hub and Oxford BIG. 

 

LDSC/LD-hub/Oxford BIG. 

 
 

2b MAGMA gene property analysis – eQTL screen 

 

- Gene property analysis of top results is conducted to 
demonstrate if certain tissue types are over-represented in the 

top GWAS results. As cognitive function is mainly a brain trait we 
expected to observe brain tissue being overrepresented.  

 

 

FUMA - MAGMA gene property 
analysis 

3 S-Predixcan and S-TissueXcan 

 

Genome-wide SNP-based p-values and eQTL expression effects 

could be combined at the summary statistics level, to identify 
potential functional genes. The entire GTEX database could be 

leveraged to yield a list of functional expressed genes associated 
with cognitive function.  

 

 
 

SPredixcan/SMultixcan approaches 

were applied across all GTEX tissue 

4 Summary Statistics Mendelian Randomization  

 

Targeted identification of brain expressed genes associated with 
cognitive function could be carried out using a mendelian 

randomization approach using genome-wide SNP effects as 
instruments, leveraging on known SNP-gene expression effects 

in brain tissue to estimate functional effects of gene expression 

on cognitive function. 

 

 

SMR/HEIDI v1.02 

5 MAGMA gene-based and pathway identification 

 
Using genome-wide LD, pooled effect sizes, gene level p-values 

could be identified using physical start-end annotations. Naïve 

gene identification using SNP-based p-values could be carried 
out. Using gene lists obtained from earlier gene-based analysis 

such as MAGMA, SMultixcan, SPredixcan, and SMR/HEIDI 
analysis, we were able to include genes in pathway based 

analysis using MAGMA with curated gene sets. Within significant 

pathways, we extracted nominally significant genes for further 
evaluation. 

 

 

 

 
MAGMA gene-identification. This 

was part of the FUMA gene-

identification pipeline. 
 

MAGMA pathway analysis  
 

Neuro gene-set annotations from 

Singh et al., 2016 
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Table 1 (cont’d). Methodological Overview and Analytic Approaches 

Analysis Methodology 

 

Software/Algorithm/Pipeline 

6 Brain Expression eQTL mapping 

 
Based on regions harboring significant SNPs, eQTL mapping 

could be carried out. Brain tissue gene expression within these 

regions could be mapped. Genes are identified based on 
significant gene-expression p-values. 

 
- Using the postmortem pre-frontal cortex tissue data of 

PsychENCODE/ BrainGVEX project, gene transcription and 

translation activities were assayed by RNA-sequencing (n=416) 
and Ribosome Profiling (n=192). 

 

- Four molecular phenotypes were used to further annotate 
results of cognitive GWAS (i) expression variant QTL (ii) 

ribosome occupancy QTL (iii) expression QTL (iv) splicing QTL 
 

 

 

 
FUMA: eQTL mapping based on brain 

tissue expression within GTEX, 

BrainEAC, CMC, PsychEncode, 
xQTLServer. 

 
Leafcutter 

 

 
 

 

vQTL Colocalization  
Partitioned Heritability Analysis 

7 ‘Druggable’ Gene Annotations 

 

- Drug gene-target annotations are curated from 
chemoinformatic databases. These genes have been previously 

identified to be functional, and can be quickly repurposed for 

pharmacological investigation. We carefully curated only the 
overlapping drug targets across the indicated databases for 

further annotations.  
 

Broad Institute Connectivity Map – Drug Repurposing 

annotations 

 

In addition to the drug-gene databases indicated above, we 
filtered gene lists obtained from various approaches identified 

above using the CMAP-DR database for disease indications, as 

well as if the drugs were antagonists or agonists. 

 

 

Drug gene-targets curated from 
Finan et al., 2017, DGIdb v.2, KiDB 

1,876 genes that were ‘druggable’ 

after filtering 
 

 
CMAP-DR 
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Table 2a. MAGMA Gene Sets Associated with Cognitive Function 

Gene Sets Gene Set P Gene Set Categories 

brain_enriched_gtex

 

4.86E-20 Gene expression in the Brain 

cerebellum_expressed_brainspan 2.81E-09 Gene expression in the Brain 

constrained_genes_0_10 6.14E-12 Functional Genes /including brain 

constrained_genes_pLI_90 4.04E-15 Functional Genes /including brain 

constrained_top_3 2.45E-06 Functional Genes /including brain 

cortex_expressed_brainspan 9.53E-08 Gene expression in the Brain 

cotney_2015_hNSC_Chd8_prom 1.22E-13 Neurodevelopmental 

cotney_2015_hNSC+human_brain_Chd8_prom 8.61E-10 Neurodevelopmental 

cotney_2015_hNSC+human+mouse_Chd8_prom 1.60E-08 Neurodevelopmental 

cotney_2015_human_brain_Chd8_prom 5.53E-08 Neurodevelopmental 

darnell_2011_fmrp_targets 2.84E-09 Neurodevelopmental 

ddg2p_dominant_lof_brain 3.28E-07 Functional Genes /including brain 

ddg2p_dominant_mis_all_brain 1.25E-08 Functional Genes /including brain 

GOBP:central_nervous_system_neuron_differentiation 1.21E-05 Neuronal/Dendritic 

regulation/development 

GOBP:positive_regulation_of_cell_development 1.67E-05 Neuronal/Dendritic 

regulation/development 

GOBP:positive_regulation_of_nervous_system_development 9.15E-07 Neuronal/Dendritic 

regulation/development 

GOBP:positive_regulation_of_neurogenesis 1.29E-05 Neuronal/Dendritic 

regulation/development 

GOBP:regulation_of_cell_development 9.09E-07 Neuronal/Dendritic 

regulation/development 

GOBP:regulation_of_nervous_system_development 1.35E-09 Neuronal/Dendritic 

regulation/development 

GOBP:regulation_of_neurogenesis 7.29E-09 Neuronal/Dendritic 

regulation/development 

GOBP:regulation_of_neuron_differentiation 3.99E-07 Neuronal/Dendritic 

regulation/development 

GOBP:regulation_of_neuron_projection_development 1.61E-05 Neuronal/Dendritic 

regulation/development 

GOCC:dendrite 4.17E-07 Neuronal/Dendritic 

regulation/development 

GOCC:dendritic_spine 9.58E-06 Neuronal/Dendritic 

regulation/development 

GOCC:neuron_projection 8.33E-08 Neuronal/Dendritic 

regulation/development 

GOCC:neuron_spine 2.47E-06 Neuronal/Dendritic 

regulation/development 

GOCC:somatodendritic_compartment 1.10E-05 Neuronal/Dendritic 

regulation/development 

sanders_2015_asd_lofmis3_genes 2.69E-05 Neuropsychiatric Disorders 

scz_gwas_genes_2_p_1e_04 6.22E-27 Neuropsychiatric Disorders 

scz_gwas_genes_2_p_5e_08 1.66E-14 Neuropsychiatric Disorders 

scz_gwas_genes_5_p_1e_04 2.33E-34 Neuropsychiatric Disorders 

scz_gwas_genes_5_p_5e_08 1.41E-15 Neuropsychiatric Disorders 

scz_gwas_genes_all_p_1e_04 1.43E-70 Neuropsychiatric Disorders 

scz_gwas_genes_all_p_5e_08 2.43E-49 Neuropsychiatric Disorders 

sugathan_2014_chd8_binding 5.78E-06 Neurodevelopmental 

weynvanhentenryck_2014_rbfox_clip 1.51E-06 Neurodevelopmental 
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Table 2b. SMR Gene Sets Associated with Cognitive Function 

Gene Sets Gene Set P Gene Set Categories 

GOBP:regulation_of_binding 8.54E-06 Cell binding 

REACTOME:Signaling_by_Rho_GTPases 2.28E-06 Cell metabolism 

GOBP:small_GTPase_mediated_signal_transduction 2.13E-05 Cell metabolism 

REACTOME:Signaling_by_Rho_GTPases 3.05E-07 Cell metabolism 

GOBP:nucleosome_organization 5.92E-06 Cell structure 

GOBP:protein-DNA_complex_assembly 1.81E-06 Cell structure 

GOBP:protein-DNA_complex_subunit_organization 2.17E-07 Cell structure 

GOBP:cell-substrate_adhesion 5.06E-06 Cell structure 

GOBP:response_to_glucose 4.80E-06 Interaction with small molecules 

GOBP:response_to_hexose 3.73E-06 Interaction with small molecules 

GOBP:response_to_monosaccharide 8.65E-06 Interaction with small molecules 

GOBP:macromolecule_methylation 4.62E-08 Methylation 

GOBP:methylation 3.29E-07 Methylation 

REACTOME:Ion_channel_transport 1.00E-05 Neuronal/Dendritic 

regulation/development 

 

Table 2c. S-TissueXcan Gene Sets Associated with Cognitive Function 

Gene Sets Gene Set P Gene Set Categories 

GOMF:actin_binding 6.44E-06 Cell binding 

GOMF:chromatin_binding 4.52E-06 Cell binding 

GOBP:cellular_macromolecular_complex_assembly 1.71E-07 Cell structure 

GOBP:cellular_protein_complex_assembly 1.68E-07 Cell structure 

GOBP:cellular_response_to_interferon-gamma 2.67E-06 Interaction with small 

molecules 
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Table 3. Prioritized Genes for Nootropic Drug Re-purposing 

Gene ID Gene Name Predicted Nootropic 

Function 

Drug Name(s) MOA Drug Indications 

CA1 Carbonic anhydrase 1 Antagonist acetazolamide 

benzthiazide 

brinzolamide 

chlorthalidone 

diclofenamide 

dorzolamide 

ethoxzolamide 

methazolamide 

topiramate 

trichlormethiazide 

methyclothiazide 

levosulpiride 

zonisamide 

bendroflumethiazide 

hydroflumethiazide 

coumarin 

amlodipine 

 

• carbonic anhydrase inhibitor 

• glutamate receptor antagonist 

• kainate receptor antagonist 

• chloride channel blocker 

• chloride reabsorption inhibitor 

• dopamine receptor antagonist 

• sodium channel blocker 

• T-type calcium channel blocker 

• sodium/potassium/chloride transporter 

inhibitor 

• vitamin K antagonist 

• calcium channel blocker 

congestive heart failure 

duodenal ulcer disease 

dyspepsia 

edema 

epilepsy 

glaucoma 

hypertension 

migraine headache 

ocular hypertension 

acute glomerulonephritis (AGN) 

anxiety 

asthma 

celiac disease 

chronic renal failure 

chronic stable angina 

coronary artery disease (CAD) 

hepatic cirrhosis 

irritable bowel syndrome 

nephrotic syndrome 

premature ejaculation (PE) 

psychosis 

schizophrenia 

seizures 

ulcerative colitis 

vertigo 

CA13 Carbonic anhydrase 13 Antagonist ethoxzolamide 

zonisamide 
• carbonic anhydrase inhibitor 

• sodium channel blocker 

• T-type calcium channel blocker 

glaucoma 

duodenal ulcer disease 

epilepsy 

CACNA2D2* Calcium voltage-gated channel 

auxiliary subunit alpha2delta 2 

Agonist gabapentin-enacarbil adrenergic receptor agonist restless leg syndrome 

postherpetic neuralgia 

CACNG3 Calcium voltage-gated channel 

auxiliary subunit gamma3 

Agonist gabapentin-enacarbil adrenergic receptor agonist restless leg syndrome 

postherpetic neuralgia 

CLCN2 Chloride voltage-gated channel 2 Agonist lubiprostone chloride channel activator Constipation 

Irritable bowel syndrome 

DHODH Dihydroorotate dehydrogenase 

(quinone) 

Antagonist leflunomide 

atovaquone 

teriflunomide 

• dihydroorotate dehydrogenase 

inhibitor 

• mitochondrial electron transport 

inhibitor 

• PDGFR tyrosine kinase receptor inhibitor 

multiple sclerosis 

rheumatoid arthritis 

pneumonia 
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Table 3. Prioritized Genes for Nootropic Drug Re-purposing (cont’d) 

Gene ID Gene Name Predicted Nootropic 

Function 

Drug Name(s) MOA Drug Indications 

DPP4* Dipeptidyl peptidase 4 Antagonist alogliptin 

anagliptin 

linagliptin 

saxagliptin 

sitagliptin 

teneligliptin 

trelagliptin 

vildagliptin 

atorvastatin 

• dipeptidyl peptidase inhibitor 

• HMGCR inhibitor 

diabetes mellitus 

stroke 

cholesterol reduction 

GRIA4 Glutamate ionotropic receptor 

AMPA type subunit 4 

Agonist piracetam Acetylcholine agonist senile dementia 

GRIN2A Glutamate ionotropic receptor 

NMDA type subunit 2A 

Antagonist acamprosate 

amantadine 

felbamate 

halothane 

memantine 

atomoxetine 

milnacipran 

gabapentin 

• glutamate receptor antagonist 

• norepinephrine transporter inhibitor 

• serotonin-norepinephrine reuptake 

inhibitor (SNRI) 

• calcium channel blocker 

 

abstinence from alcohol 

Alzheimer's disease 

epilepsy 

general anaesthetic 

influenza A virus infection 

Parkinson's Disease 

restless leg syndrome 

senile dementia 

virus herpes simplex (HSV) 

attention-deficit/hyperactivity disorder 

(ADHD) 

fibromyalgia 

seizures 

pain from shingles 

HTR1D 5-hydroxytryptamine receptor 1D Agonist serotonin 

almotriptan 

dihydroergotamine 

eletriptan 

frovatriptan 

naratriptan 

rizatriptan 

sumatriptan 

zolmitriptan 

aripiprazole 

oxymetazoline 

bromocriptine 

cabergoline 

lisuride 

pramipexole 

ropinirole 

• serotonin receptor agonist 

• adrenergic receptor agonist 

• dopamine receptor agonist 

• growth factor receptor activator 

 

bipolar disorder 

depression 

migraine headache 

schizophrenia 

sleeplessness 

acromegaly 

hyperprolactinemia 

nasal congestion 

Parkinson's Disease 

restless leg syndrome 
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Table 3. Prioritized Genes for Nootropic Drug Re-purposing (cont’d) 

Gene ID Gene Name Predicted Nootropic 

Function 

Drug Name(s) MOA Drug Indications 

HTR5A 5-hydroxytryptamine receptor 5A Antagonist ergotamine 

yohimbine 

asenapine 

clozapine 

loxapine 

olanzapine 

vortioxetine 

ketanserin 

methysergide 

• serotonin receptor antagonist 

• adrenergic receptor antagonist 

• dopamine receptor antagonist 

• serotonin receptor agonist^  

 

bipolar disorder 

bradycardia 

cardiac arrythmia 

depression 

headache 

hypertension 

migraine headache 

schizophrenia 

SLC6A4 Solute carrier family 6 member 4 Agonist Vortioxetine 

dopamine 

dextromethorphan 

tapentadol 

• serotonin receptor agonist 

• dopamine receptor agonist 

• glutamate receptor antagonist 

• opioid receptor agonist 

• sigma receptor agonist 

depression 

acute pain 

cough suppressant 

headache 

muscle pain 

tremors 

ventricular arrhythmias 

PDE4C* Phosphodiesterase 4C Agonist ketotifen • phosphodiesterase inhibitor 

• histamine receptor agonist 

• leukotriene receptor antagonist 

itching 

PDE4D Phosphodiesterase 4D Antagonist aminophylline 

doxofylline 

caffeine 

dyphyllin 

ketotifen 

ibudilast 

apremilast 

dipyridamole 

pentoxifylline 

roflumilast 

iloprost 

• phosphodiesterase inhibitor 

• adenosine receptor antagonist 

• histamine receptor agonist 

• leukotriene receptor antagonist 

• platelet aggregation inhibitor 

• prostanoid receptor agonist 

asthma 

bronchitis 

chronic obstructive pulmonary disease  

claudication 

coronary artery disease (CAD) 

drowsiness 

emphysema 

fatigue 

hypertension 

itching 

peripheral artery disease (PAD) 

psoriasis 

psoriatic arthritis 

pulmonary arterial hypertension (PAH) 

stroke 

PSMA5* Proteasome subunit alpha 5 Antagonist bortezomib 

carfilzomib 
• proteasome inhibitor 

• NFkB pathway inhibitor 

multiple myeloma 

mantle cell lymphoma (MCL) 

THRB* Thyroid hormone receptor beta Agonist levothyroxine 

liothyronine 

tiratricol 

• thyroid hormone receptor beta myxedema coma 

hypothyroidism 

Refetoff syndrome 
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3b.S-Predixcan Brain only 

194 genes [Table S6] 

4b. SMR FDR only 

1212 genes [Table S8] 
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2. GWAS characterization Figure 1 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.06.934752doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.934752
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 

 

 

MTAG mean chi-square = 1.783 

maxFDR = 4.51e-7 

Heritability (H2) = 0.139  

LDSC – intercept = 1.067  

A. B. 

C. 

D. E. 

F. 

Figure 2 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2020. ; https://doi.org/10.1101/2020.02.06.934752doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.06.934752
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 

 

 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Diagnoses - main ICD10: R10 Abdominal and pelvic pain

Medication for pain relief_ constipation_ heartburn: Laxatives (e.g. Dulcolax_ Senokot)
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Figure 3 
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