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Abstract

RNA tertiary structure is crucial to its many non-coding molecular functions. RNA architecture is shaped by
its secondary structure composed of stems, stacked canonical base pairs, enclosing loops. While stems
are captured by free-energy models, loops composed of non-canonical base pairs are not. Nor are distant
interactions linking together those secondary structure elements (SSEs). Databases of conserved 3D
geometries not captured by energetic models are leveraged for structure prediction and design, but the
computational complexity has limited their study to local elements, loops, and recently to those covering
pairs of SSEs. Systematically capturing recurrent patterns on a large scale is a main challenge in the study
of RNA structures.
In this paper, to automatically capture this topological information, we present a new general and efficient
algorithm that leverages the fact that we can assign a proper edge coloring to graphs representing such
structures. This allows to generalize previous approaches and systematically find for the first time modules
over more than 2 SSEs, while improving speed a hundredfold. We then proceed to extract all recurrent
base pairs networks between any RNA tertiary structures in our non-redundant dataset. We observed
occurrences that are over 36 different SSEs, between the 23S ribosomes of E. Coli and of Thermus
thermophilus. In addition to detecting them, our method organizes them into a network according to
the similarities of their structures. Relaxing constraints, as not differentiating between local and distant
interactions, reduces the number of isolated component in the network of structures. This behaviour can
be leveraged to study the emergence of those intricate structures.

1 Introduction
RNA tertiary structures are mainly stabilized by canonical Watson-Crick
base pairs and base pairs stacking that constitute the secondary structure.
The secondary structure is composed of helices of stacked canonical base
pairs (stems) separated by loops (terminal loops, bulges, interior loops,
multiloops, etc,...) which are mainly structured by non-canonical base
pairs. Compared to loops, stems are relatively easier to predict since both

the contributions of canonical base pairs and stacking are relatively well
known and modelled. Non-canonical base pairs pose a greater challenge,
due to their relative rarity and lesser stability. However, the position of
the stems depends on the structure of loops and interactions between
distant secondary structure elements (SSEs), which may also involve non-
canonical base pairs. A way to circumvent this issue lies in recurrent base
pairs patterns often observed in those motifs, called RNA modules.

RNA modules are small and (generaly) densely connected base pairs
patterns that can be observed in a variety of different molecules, sometimes
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2 A. Soulé et al.

Fig. 1. Secondary structure and module In (1) we show an RNA secondary structure
augmented with non-canonical interactions. Double lines indicated canonical base pairs
forming the secondary structure. Interactions blue are local while the ones in red are between
two distant elements. Each loop is surround by green dotted lines, A and C are hairpins, D
and E are interior loops, while B is a multi-loop. In (2) we show the two parts comprising a
module. On the right there is the base pair pattern of the module and on the left sequences
that have been observed in that configuration. The first sequence is the one in the structure
(1).

in multiple locations. We show in Fig. 1 an RNA secondary structure
with its SSEs (A, B, C, D, . . . ) and, below, a module from the same
structure. The conservation of RNA modules suggests an evolutionary
pressure to preserve specific interaction patterns, constraining the possible
set of sequences adopting those interactions. As such, identifying RNA
modules in a sequence provides information about base pairs that can be
used to infer the 3D structure of the whole molecule [11, 15, 16, 14, 20, 13].

Some RNA modules have received a specific attention such as GNRA
loops, Kink-turns, G-bulges, and the various types of A-minors. However,
in this work, we rather consider the whole landscape of RNA modules
rather than an RNA module in particular. Furthermore, we aim at extracting
recurrent patterns in the secondary structure rather than in the sequence
or in the tertiary structure. However, those patterns capture topological
information that implies a similar tertiary structure and a consensus RNA
sequence can be derived from it. As such they constitute interesting RNA
modules candidates. Our goal is to automatically capture this topological
information. We thus introduce RNA structural elements (RSEs) as a
medium for this topological information. RNA structural elements are
subgraphs of RNA tertiary structures represented as graphs.

Several works have been presented, proposing computational methods
to detect RNA modules in tertiary structures using either geometry or
graph-based approaches [1, 5, 6, 7, 8, 9, 19, 23, 25, 27, 28, 4, 2]. However,
the purpose of the majority of those methods is to search known modules in
new structures. A couple of methods have been proposed that search local
modules without any prior knowledge of their geometry or topology [5,
9]. In addition to those methods, databases of RNA modules found in
experimentally determined RNA tertiary structures have been proposed
such as RNA 3D Motif Atlas [20] and RNA Bricks [3]

In previous work, we presented an algorithm to find between two
RNAs all identical interaction networks [22], which capture the topological
information of interaction modules (i.e. RNA modules over two, non-
adjacent, secondary structure elements or SSEs) but not the sequences.
We also presented an extensive catalogue, named CaRNAval, of the
Recurrent Interaction Networks (RINs) computed on the non-redundant
structures in RNA3DHub [18]. RINs are common subgraphs of RNA
structure graphs with additional constraints. Those constraints aim at
ensuring the soundness of the RINs but some also lower the execution
time. For instance, RINs do not capture pure stems extensions (i.e. stems
without non-canonical interactions) since they are of little interest in this
context. This spares us the need to extend matches through pure stems past
a certain point.

The method developed for CaRNAval is automated and does not
use any prior knowledge of neither the topology nor the geometry of
the structures it detects. Doing so allows to underline the universality
and fundamental nature of these recurrent architectures. The collection of
RINs is organized and made available on a dedicated website that provides
additional information such as the RNA sequences associated with each
RINs and the structural contexts they have been found in as well as different
search tools.

In this paper, we present a novel algorithm to find similar topologies
between RNAs structures. Leveraging the proper edge coloring of a
structure graph allows to improve execution time a hundredfold on the
method in CaRNAval. The time gains allows to extend the idea of RINs
to an arbitrary large number of SSEs. As discussed in Sec. 3.2.5, the largest
generalized RIN spans 36 SSEs.

2 Method
From a set of mmCIF files describing 3D structures of RNA chains, we
first annotate the interactions with FR3D. The method presented analysis
these annotations in four steps.
1. We first build for each chain a directed edge-labelled graph such that

the edges represent the phosphodiester bonds as well as the canonical
and non-canonical interactions. The labels on the edges corresponding
to the interaction types plus the indication of the interaction being
either local (inside one SSE) or long-range (between two SSEs)

2. For each pair of RNA graphs, we extract all the Maximal Common
Subgraphs such that edges are matched to edges with the same labels

3. Each Maximal Common Subgraph is then filtered to obtain the
Recurrent Structural Elements (constrained common subgraphs) it
contains

4. Finally we gather the Recurrent Structural Elements found together
into a non-redundant collection and create a network of direct
inclusions.

2.1 RNA 2D Structure Graphs

We rely on RNA 2D structure graphs to represent the structures of
RNA chains. RNA 2D structure graphs are directed edge-labelled graphs.
Each node represents a nucleotide, each edge represents an interaction
(basepair or backbone). The edge are labelled according to the annotation
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Finding recurrent RNA structural networks 3

of the interaction they correspond to. Annotations of basepairs interactions
follows the Leontis-Westhof geometric classification [12]. They are any
combination of the orientation cis (c) (resp. trans (t)) with the name of
the side which interacts for each of the two nucleotides: Watson-Crick
(W) cis ● (or ○ for trans), Hoogsteen (H) ■ (or □) or Sugar-Edge (S)
▶ (resp. ▷). Thus, each base pair is annotated by a string from the
set: {c,t}×{W,S,H}2 or by combining previous symbols. To represent
a canonical cWW interaction, a double line is generally used instead of (●
●). Moreover, each basepairs interaction can also be annotated as either
local or long range, depending on the secondary structure elements the
nucleotides involved are found in (our method to generate the secondary
structure is described in section 3.1). The backbone is represented with
directed edges, labelled b35.

As a consequence, an annotation (and thus a label) is composed of three
characters xY Z ∈ [c ∣ t][W ∣ S ∣ H]2 plus a parameter C ∈ [local ∣
long-range]. Interactions are either symmetric (xY Y ) or not symmetric
(xY Z). Each non symmetric interaction between nucleobases xY Z is
complemented by an interaction xZY between the same nucleobases and
the same value ofC but in the opposite direction. We introduce an abstract
type/label b35 to complement the b53 label. We can thus define a bijection
ι as follow:

• ι(xY Z,C) = xZY,C
• ι(xY Y,C) = xY Y,C
• ι(b53, local) = b35, local
• ι(b35, local) = b53, local

An interactions of type t between nucleotides a,b (represented by nodes
va,vb), is represented by two directed edges {va, vb} and {vb, va} whose
respective labels are t and ι(t).

We represent each RNA chain in the dataset as a RNA 2D structure
graph, the annotations of the RNA basepairs interactions corresponding to
the labels of the edges of the graph (cf. Fig. 2).

2.2 Graph Matching & Proper Edge-Coloring

As we transpose RNA structures into edge-labelled graphs, finding
common substructures in the RNA structures comes down to finding
common subgraphs in the RNA 2D structure graphs.

Problems that consist in matching graphs or parts of graphs are called
Graph Matching problems. We are especially interested in finding common
subraphs, a NP-hard problem in general. However, RNA 2D structure
graphs inherit some of the constraints of the RNA structures they represent,
constraints that translate into a graph property useful for graph matching.

The chemical constraints of nucleotides interactions are such that
each edge of a nucleotide should be involved in at most one interaction.
This translates in terms of graphs as follows: for all RNA 2D structure
graphs G = {V,E} and for all a node v ∈ V , there are no two edges
e1, e2 ∈ E that originate from v with the same label. To put it differently,
the set of labels on the edges of any RNA 2D structure graphs naturally
forms a Proper Edge-Coloring (PEC). We designed three graph matching
algorithms designed to take advantage of the proper edge-coloring the
RNA 2D structure graphs come equipped with.

2.3 Exceptions

We observed a few nucleotides annotated with two interactions involving
the same Leontis-Westhof edges in some RNA structures (0.02% of the
nucleotides of our reference dataset cf. section 3.1). Those interactions
could either be annotation errors or biologically relevant. Given the rarity of
those exceptions, we chose to duplicate the graphs concerned into different
proper edge-colored versions, each covering a different interpretations.

a.

b.

c.

d.

Fig. 2. From 3D structure to directed edge-labelled graph In this figure we illustrate
the transition from the 3D structure (a) to RNA 2D structure graph (b) and finally directed
edge-labelled graph (c) with a simple RNA structure. Each edge label of the directed edge-
labelled graph is a pair whose first element represent the type of interaction (using the
same symbols as in the RNA 2D structure graph) while the second denote the local (blue)
vs. long-range (red) property of the interaction (using the same colors as in the RNA 2D
structure graph). Moreover, the set of edge labels forms a directed proper edge-coloring, as
illustrated with the last panel (d).

Details about the duplication procedure and the different versions are
provided in section 2.1 of the supplementary material.

2.4 Graph Matching Algorithms

In this section we briefly present our 3 algorithms, the 3 problems they solve
and how we take advantage of the PEC. Formal and complete descriptions
are provided in the supplementary material (sections 1.2, 1.3 and 1.4).
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4 A. Soulé et al.

2.4.1 Definitions & Notations
Two graphsG = {VG, EG} andH = {VH , EH} are isomorphic iff there
is a bijection b from VG to VH that respects the edges and their labels. A
graph G = {VG, EG} is a subgraph of graph H = {VH , EH} iff there
exists at least one injection i from VG to VH that respects the edges and
their labels.

Given two graphsG,H , a graphS = (VS , ES) is a common subgraph
of G and H if it is a subgraph of G and a subgraph of H . A common
subgraph S of G and H is maximal iff for all S ′ subgraph of G and H ,
S ⊂ S

′
⟹ S = S

′. All three algorithms take two properly edge-colored
graphs G = {VG, EG} and H = {VH , EH} as an input. For any color c,
the sets of c-colored edges are noted EGc and EHc.

2.4.2 Using the PEC when extending a matching
The three algorithms presented in this paper revolves around exploiting
the constraints that the PEC places on the matching of the two graphs. In
all three algorithms, matching the two graphs is done by starting with a
minimal match and then extending it through the neighbours of the already
matched nodes. This strategy is common and usually requires to test all
permutations between the two sets of neighbours. However, the constraint
of respecting the PEC only leaves at most a single valid affectation of the
neighbours, as illustrated in figure 3. As a consequence, the complexity of
the extension process is linear in the number of nodes (since the number
of colors is fixed, cf. section 1.2.3 of the the supplementary material).

2.4.3 Graph Isomorphism Algorithm:
The Graph Isomorphism problem consists in determining if two properly
edge-colored graphs G and H are isomorphic. Our Graph Isomorphism
Algorithm determines the color c that minimizes the product ∣EG,c∣ ×
∣EH,c∣. Then, for all pairs of edges ({g1, g2}, {h1, h2}) ∈ EG,c×EH,c,
the algorithm launch an extension with the matching ((g1, h1), (g2, h2))
as starting point. The two graphs are isomorphic iff any matching can
be extended into a bijection of VG and VH that respects the edges and
their coloring. As we mentionned previously, the extension process is in
O(∣C∣ × n) (assuming n = ∣VG∣ = ∣VH ∣, if not, G and H are trivially
not isomorphic) and the number of starting point is capped byO(n2/∣C∣)
resulting in a O(n3) complexity for the algorithm (cf. section 1.2.3 of the
the supplementary material).

2.4.4 Subgraph Isomorphism Algorithm:
The Subgraph Isomorphism problem consists in, given two properly edge-
colored graphs G and H , determining if G is a subgraph of H . Our
Subraph Isomorphism Algorithm is derived from our Graph Isomorphism
Algorithm, the difference between the two being that G is a subgraph of
H iff any matching can be extended into an injection of VG in VH that
respects the edges and their coloring. The complexity is the same as the
Graph Isomorphism Algorithm: O(n3) with n =min(∣VG∣, ∣VH ∣) (cf.
section 1.3.3 of the the supplementary material).

2.4.5 All Maximal Common Subgraphs Algorithm:
The All Maximal Common Subgraphs problem consists in finding all
maximal common subgraphs between two properly edge-colored graphs
G and H (please not that this differs slightly from the maximal common
subgraph problem which usually consists in finding the largest common
subgraph). This algorithm relies on the same extension strategy than
the two previous ones. However, unlike the two previous problem,
encountering a discrepancy during the extension does not implies that this
extension can be abandoned (as illustrated in Fig. 4). Instead, it suggests the
existence of an alternative way of matching the graphs by considering the
nodes in a different order than in the current extension. As we are looking
for all maximal common subgraphs, this alternative has to be explored as

well. As a consequence, we designed an unconventional backtracking
mechanism. For any new discrepancy encountered, we launch a new
extension with a list of constraints such that this new extension will explore
the alternative suggested by the discrepancy. Such an extension can also
encounter new discrepancies and so on and so forth. Figure 5 illustrates
this process and a complete description of this mechanism is provided in
sections 1.4.2 of the supplementary material as well as a formal proof of
its correctness in section 1.4.3.

G H

0

1

2

3

a

b

c

d

0 - a
matched

1 - d
2 - c
3 - b

Fig. 3. Impact of proper edge-coloring on graph-matching This figure displays a piece
of two graphs (G on the right and H on the left) in which the nodes 0 and a are already
matched together. The next step is to match their neighbours. In the generic case, all
permutations have to be tested. On the contrary, in the example displayed, the colors of the
edges limit the options to consider to a single one.

2.5 From common subgraphs back to RNA structures

By transposing the RNA structures to graphs and using our algorithms, we
are thus able to obtain the set of All Maximal Common Subgraphs contained
in any dataset. However, as the number of common subgraphs grows
exponentially with the size of the graphs, we expect this set to be unsuited
for any practical study. As a consequence, we designed our method to
extract a subset of all the structural elements contained in the dataset,
defined by the user through rules or restrictions. Our method extracts and
organize such subset from the set All Maximal Common Subgraphs

2.5.1 Recurrent Structural Element (RSE)
We call Recurrent Structural Elements (RSEs) any recurrent subgraph of
RNA 2D Structure Graphs (i.e. observed in at least two RNAs of the
dataset). A RSE is formally defined as a pair (S,O) with:

• S = {VS , ES} a connected graph with the properties of a RNA 2D
structure graph

• O a collection of occurrences. An occurrence records an observation
of S in the dataset. We represent an occurrence as a pair (G, i) with
G = {VG, EG} a RNA 2D structure graph and i an injection from VS
to VH such that:
n,n

′
∈ VS , {n,n′} ∈ El,S ⟹ {i(n), i(n′)} ∈ El,G

• ∃(G, i), (H, i′) ∈ O s.t. G ≠ H (i.e. it should be recurrent)

This minimal definition encompass a broad diversity of structural
elements. As a consequence, we expect that any study of structural
elements to be focalized on a subset rather than all RSEs. We call such a
subset a class of RSEs. A class is defined by a set of rules/restrictions R,
which are to be designed by the users to invalidate structural elements that
fall out of the scope of the study they are conducting.
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Fig. 4. Illustration of the extension process This figure illustrates the extension process from a "starting point" (here ((g0, h0), (g0, h0)), in blue). We first consider the neighbours
of g0 and h0 (in purple). Thanks to the PEC, there is only one way to match. We then consider the neighbours of g1 and h1 (in green). We match g5 and h5 but discover that the their
neighbourhoods are not compatible. At this point the behaviours of the three algorithms differ. This discovery implies that the matching cannot be extended to cover all of G so the Graph
Isomorphism and Subgraph Isomorphism will abandon it and pass on to another "starting point". The All Maximal Common Subgraphs on the contrary will take note of this discrepancy
and keep extending the matching nevertheless. This extension will output a maximal common subgraph of G and H and a new branch will be created to explore the alternative solution
suggested by the discrepancy found.

Our method can handle any setR that can be translated into a filtering
function f ∶ G → CRSE with G a graph that shares the same properties
as an RNA 2D structure graph andCRSE the collection of RSEs inG that
respects the rules in R.

We also designed our method to offer the possibility of providing a
second filtering function f ′ ∶ G → G

′ that takes a RNA 2D structures
graphs G in the dataset and output another graph G′, which is a subgraph
of G without the edges and nodes in G that already infringe a rule of R
(and thus have cannot possibly be part of any valid RSE). f ′ is optional as
it only improves performances by reducing the search space.

2.5.2 Extraction of RSEs
For every pair of RNA 2D Structure Graphs in the dataset (after the
application of f ′ if provided), we use our algorithm solving the maximal
common subgraphs problem to extract the set of all maximal common
subgraphs between the two graphs (as illustrate in Fig. 6). The filtering
function f (derived from the rules defining the class of RSEs currently
extracted) is applied to each maximal common subgraph found. The sets
of RSEs obtained are gathered and clustered using our graph isomorphism
algorithm. This process involves non trivial yet incidental mechanisms
which we describe in section 2.2 of the the supplementary material.
Please note that our implementation relies on parallelization to improve
the performances by distributing the pairs of graphs to process (cf. section
2.3 of the the supplementary material).

2.5.3 Network of RSEs
To study how similar RSEs are one to another, we organize the set of
RSEs into a network G = {V,E}. A node in V represent RSE. An edge
e = {r1, r2} from RSEs r1 = (S1,O1), r2 = (S2,O2), is in E iff S1

is a subgraph of S2. We rely on our subgraph isomorphism algorithm to
build this network.

3 Applications & Results
In this section, we present three applications of our method to three
different classes of RSEs and the corresponding results.

3.1 Dataset

All three applications use the same dataset of RNA structures: the non-
redundant RNA database maintained on RNA3DHub [18] on Sept. 9th

2016, version 2.92. It contains 845 all-atom molecular complexes with a
resolution of at worse 3Å. From these complexes, we retrieved all RNA
chains also marked as non-redundant by RNA3DHub. The basepairs were
annotated for each chain using FR3D. Because FR3D cannot analyse
modified nucleotides or those with missing atoms, our present method
does not include them either. If several models exist for a same chain, the
first one only was considered.

To distinguish between local and long-range interactions, we define a
secondary structure from the ensemble of canonical CWW interactions.
This task can be ambiguous for pseudoknotted and large structures. We
used the K2N algorithm [26] from the PyCogent library [10]. A case that
can not be treated by K2N is when a nucleotide is annotatedÂ as having two
CWW interactions. Since this is rare, we decided to keep the interaction
belonging to the largest stack.

3.2 Interaction networks over 2+ SSEs

The CaRNAval project [22] aimed at extracting RNA structural motifs
containing non-canonical base pairs and long range interactions involving
exactly 2 SSEs: the Recurrent Interaction Networks (RINs). The algorithm
developed in CaRNAval to extract RINs is also graph based and relies
on a greedy algorithm. That algorithm generates seeds (basically minimal
common subgraphs) and tries enlarges them step by step. The decision of
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Fig. 5. Exploration tree with backtracking This figure displays the exploration tree
representing a posteriori the relation between the different branches created. In this tree, the
root is a starting point (i.e. the nodes that are already matched at the start of an exploration)
and each leaf is a maximal common subgraph. Each path from the root to a leaf describes
an exploration. For instance, the node (14,20) corresponds to the action of matching the
node 14 from G to the node 20 of H. All the leafs in the right subtree have matched 14 to
20 and all the ones in the left subtree did not. Please note that only the nodes with a left
child are represented, all other nodes have been collapsed since they bear no information.
The first exploration always produces the right most maximal common subgraph. This
exploration encountered two conflicts and the algorithm thus produced two new branches
which respectively were instructed not to add (24,26) and not to add (14,20). The first of
the two produced another maximal common subgraph without any trouble but the second
encountered another conflict and so on and so forth.

limiting RINs to exactly two SSEs was both sound as it is a property of
known motifs this project was looking for (such as A-minors for instance)
but it was also necessary given the performances of the greedy algorithm.
On the contrary, our method does not need such limitation: we can work
with any number of SSEs and are thus able to extract more structures.
Moreover, despite working on a generalization of the problem studied in
CaRNAval, we still process the same dataset more than 50 times faster.

In this section, we introduce Generalized Recurrent Interaction
Networks (GRINs), a generalization of RINs without a limitation on the
number of SSEs. We then describe how we applied our generic method to
the problem of extracting GRINs through the presentation of the filtering
function fGRIN . Finally, we compare the results of the generic method
over the one initially used inCaRNAval through both the sets of structures
extracted and the performances.

3.2.1 Generalized Recurrent Interaction Networks (GRIN)
The GRINs are a class of RSEs and a generalization of the RINs. GRINs
have to include at least 2 SSEs while RINs had to include exactly 2. A
GRIN is a pair {S,O}, where S is a canonical graph representing the
interactions network while O is the collection of occurrences. A GRIN, in
addition to the constraints that defines RSEs, must respect the following
ones:

1. each node in the canonical graphS belongs to a cycle in the undirected
graph induced by S. (The undirected graph induced by S is obtained
by replacing every directed edge by a undirected edge and merging
those between the same nodes.)

Mining Pipeline

For G,H in Data

maximal 

common 

subgraphs

f

All

RSEs

RNA 2D

Structure Graphs

Pre-processed 

RNA 2D

Structure Graphs

mcsgs in G-H

f'

G H

RSEs in G-H

Pre-processing graphs

Find all maximal common 

subgraphs between G and H

Filter and transform the

maximal common subgraphs

into RSEs 

Merge partial collections of RSEs 

into the final collection of RSEs

RSEs in all 

pairs of graphs

isomorphism

+

Subgraph

Raw Data

Build RNA 2D structure graphs Fr3D

Fig. 6. Simplified display of the full pipeline The RNA 2D structure graphs given as input
are pre-processed for the sake of optimization. Each pair of graphs in the pre-processed
data is then given to the maximal common subgraphs algorithm as input and the output is
post-processed into partial sets of RSEs. All partial sets of RSEs are finally merged into the
complete set of RSEs which is the output of the whole pipeline.

2. Each node in S is involved in a canonical or a non-canonical
interaction (i.e. no nodes with only backbone interactions)

3. If two nodes, a and b in S, form a local canonical base pair, there
exists a node c in S such that c is a neighbour to a or b, and c is
involved in a long-range or non-canonical interaction. In other words
we do not extend stacks whose nucleotides are involved in canonical
base pairs only.

4. S contains at least two long-range interactions, i.e. four edges labeled
as long-range since each interaction is described with two directed
edges.

Each of the above constraints is justified as follows:

1. This condition is enforces the cohesiveness of the interaction network
by preventing danglings that would create variations of little interest.

2. The interaction networks are intended to capture a representation
of the geometry. Non interacting nucleotides do not have geometric
constraints.

3. Stacks of canonical base pairs (i.e. at least two consecutive cWW
with no other interaction) form the core of the structure and are either
embedded in the secondary structure with little geometric variation
or result from the folding of the tertiary structure (co-axial stacking
between helices, loop-loop interactions or pseudo-knots) with often a
larger geometric variation.

4. This is a property observed in all known interaction networks like the
A-minor and the ribose zipper.

Those rules are inherited from CaRNAval and are, especially for rule #4,
partially arbitrary. We conserve those rules in the definition of the GRINs,
including #4, as a first step. Indeed, relaxing too many constraints in a
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Finding recurrent RNA structural networks 7

single step would have made any comparison of the results and validation
of our method difficult. However, we will be relaxing rule #4 in a second
step (cf. section 3.3).

Filtering functionfGRIN : We translate the rules defining GRINs into
the filtering function fGRIN required for our pipeline by converting each
rule into a corresponding filter. We provide the details of this conversion
in the Sup. Mat. The rules defining the GRINs class happen to be directly
transposable to the input. As a consequence we can also use fGRIN as a
pre-filtering function f ′GRIN .

3.2.2 Comparison of the results
Comparison between RINs and GRINs The original version of
CaRNAval presents 337 RINs and a total of 6056 occurrences. From the
same dataset, our new method has extracted 557 GRINs and a total of
7709 occurrences. Amongst the 337 original RINs, 243 are isomorphic to
a GRIN. Of the remaining 94 RINs, 88 are found inside larger GRINs, i.e.
the canonical graph of the RIN is a subgraph of canonical graph of at least
one GRIN. To put it differently, those 88 RINs are still captured but are
always found inside “larger contexts” that could not be perceived before
because of the limitation on the number of SSEs. Now that we relaxed
this constraint, the “larger contexts” are now captured as new GRINs that
“assimilated” those 88 RINs. We elaborate further on the question of the
SSEs in subsection 3.2.4. For the same reason, the numbers of observations
of the 243 RINs/GRINs common to both versions have changed for 81 of
them (+4 observations in average). All the signal captured by the original
version of CaRNAval is present in the new results: all observations of any
of those 331 RIN is covered by at least one observation of a GRIN.

The 6 last RINs are not represented in the new collection and neither
are they included in a new GRIN. 4 of them were already invalid and
should not have passed the filters of the previous version, their absence
actually validates our method. The 2 last RINs are a special case: they
both have only 2 observations with both observations inside a single RNA
chain. We chose not to test a RNA 2D structure graph against itself in the
new method and so are not capturing those two RINs. Please note that we
could test a graph against itself, it would only require to add the constraint
that “a node should not me matched with itself” to the Maximal Common
Subgraph Algorithm algorithm.

3.2.3 Network of GRINs
Let us now compare the RINs networks with the GRINs ones (cf.
subsection 2.5.3:Network of RSEs). The network formed by the RINs
consists of 3 main connected components and named after a characteristic
RIN they contained. They are the Pseudoknot mesh, the A-minor mesh
and the Trans W-C/H mesh, respectively containing 59, 196 and 22 RINs.
The remaining RINs are shared between 25 other components, each of size
1 to 4.

In contrast, the network of GRINs only has 16 components, twelve
less. It suggests that the newly found interaction networks connects RINs
components together. This claim is supported by the fact that, in the
network of GRINs, the Pseudoknot and A-minor meshes have merged
into one containing 482 GRINs. This new giant mesh contains all the
elements in the two main meshes of CaRNAval plus another 230 GRINs.
The Trans W-C/H mesh remains disconnected and gains 16 elements for
a total of 38 GRINs.

3.2.4 GRINs and SSEs
The main artificial constraint on RINs was their restriction to exactly two
SSEs. While biologically justificable, it allowed to strongly constrain the
problem making the previous method computable on a large server. By
removing this constraint, we observe GRINs covering a varied amount of

SSEs. We show in Fig 7 the distribution of SSEs in the GRINs and of their
occurences.
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Fig. 7. Distribution of GRINs (in blue) and all their occurrences (in green) over the different
numbers of SSEs.

Since GRINs can be over an arbitrary number of SSEs, occurences
of the same base pair network can cover a different number of them. We
show in Table. 1 that it is not the case. Out of the 557 GRINs, 435 had
all of their occurences span the same number of SSEs. There are 116 that
can be over two different number of SSEs, and only 6 GRINs have their
occurences cover three different number of SSEs.

Variation in number of SSEs 0 1 2

Numbers of GRINs 435 116 6

Table 1. GRINs and variation on SSEs span For each GRIN we compute how the number
of SSEs covered varies between the occurences. A value of 0 means that all occurences are
over the same number of SSEs while ±1 (resp. ±2) means that the GRIN can span two
different number of SSEs (resp. three).

3.2.5 Large GRINs
While the largest RIN has 26 nodes, a GRIN can potentially encompass an
entire molecule. There are 64 GRINs with more than 26 nodes, amongst
them 4 have above 100 nodes, the largest GRIN containing 293 nucleotides.
Those new giants are found in structures of ribosomal subunits. The
existence of those GRINs shows that the dataset we are using contains
extremely similar structures. The RNA3DHub non-redundant RNAs can
still share a considerable portions of their geometry, on up to 293 connexe
nucleotides. As a consequence, we might have to update our method, either
by modifying our definition of GRIN to limit their size or by adding an
additional screening to the dataset.

3.3 Generic Interaction Networks (GINs)

In the previous section we created GRINs as a generalization of RINs. A
natural way to relax even further the problem is to remove the constraint
on the 2 required long range interactions. We call Generic Interaction
Networks (GINs) the class obtained from the GRINs by removing rule #4
(cf. definition of GRINs in 3.2.1). While it is a simple modification, trivial
to implement, the search space increases drastically.

3.3.1 Collection of GINs
Our methods finds 920 GINs for a total of 12 239 occurences. All 557
GRINs have their canonical graph isomorphic to the canonical graph of
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8 A. Soulé et al.

a GIN. The RINs to GRINs transition was done by allowing more than
2 SSEs, which opened the possibility of finding new larger “including”
structures. In contrast removing the constraint on the number of long range
interaction does not.

We show in Fig. 8 the distribution of the GINs and of their occurences in
function of the number of long range interactions they have. Amongst the
remaining 363 GINs, 222 contain no long range interaction and 141 have
exactly 1. Those represent 39% of the GINs and 37% of the occurrences.
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Fig. 8. Distribution of GINs (in red) and all their occurrences (in rose) over the different
numbers of long range interactions they contain.

In Fig. 9 we show the distribution of the number of SSEs that are
covered by the GINs. Compared to previously, most GINs span two SSEs.
This shift from the previous, more constrained, results is due to the 222
GINs with no long range.
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Fig. 9. Distribution of GINs (in blue) and all their occurrences (in green) over the different
numbers of SSEs.

As previously, for any given GIN the occurences span a consistent
number of SSEs. As we show in Table 2, the same trend as for the GRINs
is followed.

Variation in number of SSEs 0 ±1 ±2

Numbers of GINs 754 159 7

Table 2. Variation in the number of SSEs over the occurrences of the same GIN
(Cf. Table 1). Those numbers show that the variation in the number of SSEs
amongst the occurrences of GINs is both uncommon and limited, even more
than with GRINs, albeit slightly (82% of GINs with no variation vs 78% of
GRINs).

3.3.2 Network of GINs
Almost all the structures are connected together. There are 888 GINs
connected toge ther in a giant component. Of the remaining 32 GINS,
twenty three are singletons, and it remains 6 mini components.

3.3.3 Performances
Reproducing the CaRNAval dataset we tested the validity of our method
and its performances. As all the RINs found and all their occurrences were
present in the collection of GRINs, it shows that our method captured
strictly more signal than the previous one. In term of performances, the
runtime dropped from around ~330 hours to ~200 minutes (both are total
runtime over the same 20 cores, for the same dataset), despite solving a
more general problem. Relaxing the problem to a maximum by computing
the GINs took 19 hours, to analyze the entire non-redundant database of
RNA structures.

3.4 Applications to RNA 3D module-based RNA structure
prediction

As described earlier, the methods described in this paper were implemented
with rules independent from the isomorphism, subgraph and maximal
common subgraph algorithms, in order to allow some modifications of
the rules to extend the range of applications of caRNAval.

This modularity can namely be applied to the problem of RNA
3D structure prediction. RNA 3D modules are small RNA substructures
involved in structural organization and ligand binding processes. They
can be defined with rules similar to the ones describing RINs, with two
major differences. First, RNA modules do not need to include long range
interactions, and many of the well characterized modules are entirely local,
namely the kink-turn and g-bulged modules. Second, unlike RINs, RNA
modules are defined by both their structure and sequence profiles rather
than exclusively the former.

RNA 3D modules can be leveraged in the prediction of a full 3D
structure. The fragment-based method implemented by Parisien and
Major in MC-Sym[17] constructs a full 3D structure from an augmented
secondary structure by mapping the components of this secondary structure
to a database of 3D structure fragments. The prediction of 3D modules
has been shown to improve this class of methods by providing more
informative fragments, namely in RNA-MoIP[21]. Further progress has
since been made in this direction with recent improvements in RNA 3D
modules identification in sequences[29][24].

The main limitation of this type of method remains the difficulty
of assembling a strong dataset of modules. RNA modules are typically
identified by searching RNA 3D structure for recurrent subgraphs, a task to
which caRNAval should be able to contribute. Unfortunately, as of now, no
fragment-based method has been able to integrate long-range modules into
a 3D structure prediction pipeline, and the published version of caRNAval
cannot be applied to the discory of common subgraphs without long range
interactions as its execution time would explode.

However, the modularity of the methods previously presented, as
well as the improved complexity allow for the tackling of this problem.
The implemention of those methods constitutes the first software able to
discover both long-range and local RNA modules and as such, a significant
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Finding recurrent RNA structural networks 9

step towards more accurate fragment-based prediction of 3D structure from
sequence.

4 Conclusion
In this paper we present a novel algorithm that can find arbitrarily
large recurrent structural elements (RSEs) between two RNA structures,
represented as graphs. By leveraging a proper edge coloring of those
graphs, we improve drastically on previous methods, and allow for the
first time to identify modules arbitrarily large.

We show that we are a hundred time faster than our previous method,
CaRNAval. The gain in efficiency allows to relax the constraints and
search for generic interaction networks (GIN), which can span any number
of SSEs, and have any number of long range interaction, even none.

In CaRNAval the network of found modules had three clear main
components. We show that the network of found GINs is a massive
components linking together more that 95% of the recurrent structures
together. This can be key to understand how those structural feature
emerged and where propagate, or for the design of artificial RNAs.
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