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Abstract

Autism spectrum disorder (ASD) has no objective diagnosis method despite

having a high prevalence. Machine learning has been widely used to develop

classification models for ASD using neuroimaging data. Recently, studies have

shifted towards using large multi-site neuroimaging datasets to boost the clin-

ical applicability and statistical power of results. However, the classification

performance is hindered by the heterogeneous nature of agglomerative datasets.

In this paper, we propose new methods for multi-site autism classification using

the Autism Brain Imaging Data Exchange (ABIDE) dataset. We firstly propose

a new second-order measure of functional connectivity (FC) named as Tangent

Pearson embedding to extract better features for classification. Then we assess

the statistical dependence between acquisition sites and FC features, and apply

a domain adaptation approach to minimise the site dependence of FC features

to improve classification. Our analysis shows that 1) statistical dependence be-

tween site and FC features is statistically significant at the 5% level, and 2)

extracting second-order features from neuroimaging data and minimising their

site dependence can improve over state-of-the-art classification results on the

ABIDE dataset, achieving a classification accuracy of 73%.
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1. Introduction

Autism spectrum disorder (ASD) refers to a lifelong neurodevelopmental

disorder characterised by a wide range of symptoms, skills and levels of disabil-

ity, such as deficits in social communication, interaction and the presentation

of repetitive patterns of behaviour or restricted interests (Baio, 2014). Until5

now, there is no known objective method for autism diagnosis with progress

mainly challenged by the significant behavioural heterogeneity and wide array

of neuroanatomical abnormalities that can be exhibited between patients with

autism (Zielinski et al., 2014; Zwaigenbaum & Penner, 2018).

Non-invasive brain imaging techniques such as magnetic resonance imaging10

(MRI) have been used to discover structural or functional differences between

ASD and typical control (TC) subjects. In particular, resting-state functional

MRI (rs-fMRI) has achieved promising results when utilised with machine learn-

ing (ML) models for classifying ASD and TC subjects (Du et al., 2018). How-

ever, the clinical generalisability of most studies using rs-fMRI data for autism15

classification is debatable since the sample sizes used are small, unlikely to cover

a wide spectrum of autism and its heterogeneity. These small sample sizes are

due to the time and cost constraint imposed upon single-site studies acquiring

rs-fMRI using a single fMRI scanner and subject acquisition protocol.

To improve the statistical power and generalisability of neuroimaging studies,20

the Autism Brain Imaging Data Exchange (ABIDE) initiative has aggregated

data from multiple sites across the world, creating datasets much larger than

those used in single-site studies (Di Martino et al., 2014). The ABIDE dataset is

composed of rs-fMRI and phenotypic data from 20 different international sites,

leading to a heterogeneous sample with size of over 1000 ASD and TC subjects.25

While it presents a great potential for the extraction of functional biomarkers

for autism classification, its multi-site and multi-protocol aspects bring along
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significant patient heterogeneity, statistical noise and experimental differences in

the rs-fMRI data, making the classification task much more challenging (Abra-

ham et al. (2017). Recent works have employed different ML methods, such as30

recurrent neural networks (RNN), graph convolutional neural networks (GCN)

and denoising autoencoders (Dvornek et al., 2018; Heinsfeld et al., 2018; Ktena

et al., 2018; Parisot et al., 2018). However, despite the complexity in patterns

that these methods can generally capture, the difference in their top classifi-

cation results on ABIDE fall less than 1%, with the highest achieved accuracy35

being 70.4% by the GCN model developed by Parisot et al. (2018).

This paper investigates two research questions that can potentially improve

multi-site autism classification.

• Between-site heterogeneity: how can we effectively account for the

experimental differences in the ABIDE rs-fMRI data? Previous studies on40

ABIDE have reported that between-site heterogeneity arising from the use

of different fMRI scanner types and experimental settings has an impact on

the image properties of rs-fMRI data, and that this consequently impacts

any rs-fMRI analysis (Nielsen et al., 2013; Castrillon et al., 2014).

• Discriminative features: can we design new rs-fMRI features for better45

autism classification? As pointed out above, powerful and complex ML

methods such as RNN, GCN, and denoising autoencoders give similar top

classification performance of less than 1% difference, while they all employ

conventional brain functional connectivity (FC) features.

1.1. Domain adaptation50

Domain adaptation methods operate on datasets from different sources with

mismatched distributions to find a new latent space where the data is homoge-

neous, or source invariant (Pan & Yang, 2009; Weiss et al., 2016). In the context

of this study, this corresponds to aligning the rs-fMRI data so that there is inde-

pendence between the data and acquisition sites. Recently, Moradi et al. (2017)55

proposed a domain adaptation approach to correct site heterogeneity for the
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estimation of symptom severity in autism using data from four ABIDE sites.

They first used partial least squares regression to identify a feature space where

cortical thickness data extracted from structural MRI was independent from

the four sites. Then they applied regression methods onto the site-adapted data60

to predict autism severity scores for each subject. Their severity score predic-

tions were markedly better than those from models without domain adaptation.

However, their study was limited to a small sample of 156 subjects from four

of the 20 ABIDE sites and they did not tackle the classification problem. In

contrast, our study focuses on the technical challenge of assessing and targeting65

the site heterogeneity in all 20 ABIDE sites to improve autism classification.

1.2. Functional connectivity

FC measures are important features in ASD classification. Two FC measures

are widely used: 1) the Pearson correlation measures the coupling between

pairs of regions of interest (ROIs), and 2) the more recent tangent embedding70

parameterisation of the covariance matrix proposed by Varoquaux et al. (2010)

captures the FC differences between a single subject and a group. In this paper,

we explore a new perspective: for any two ROIs, are they functionally connected

to other brain regions in the same way? This inspires us to propose a new

second-order FC measure that jointly considers the FC of individual ROIs.75

1.3. Contributions

In this study, we analysed the rs-fMRI data of 1035 subjects from all 20

ABIDE sites to improve multi-site autism classification. We placed a specific

focus on constructing new second-order FC measure and evaluating the impact

of minimising their dependence on the acquisition sites for autism classification.80

The main contributions can be summarised as follows:

1. We proposed a new second-order FC measure, Tangent Pearson (TP)

embedding to extract more discriminative features for multi-site autism

classification. The proposed TP FC measure outperformed two commonly

used FC measures on the whole. We also reported the neural patterns85
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that are most informative for autism classification using this measure, for

further biomarker analysis by neuroimaging researchers.

2. We assessed the statistical significance of the dependence between FC fea-

tures and ABIDE acquisition sites, showing that across different feature

representations, the dependence is significant at the 5% level. This pro-90

vides a strong basis for designing models that correct for the between-site

heterogeneity in the ABIDE dataset.

3. We applied a domain adaptation approach to minimise the dependence

between ABIDE acquisition sites and FC features. Results demonstrated

that minimising between-site heterogeneity leads to improvements in autism95

classification when combined with the TP measure and phenotypic infor-

mation, yielding state of the art results.

The code for reproducing the experimental results of this study is publicly avail-

able at https://github.com/Mwizakunda/fMRI-site-adaptation.

2. Material and methods100

Figure 1 gives an overview of the pipeline for studying domain adaptation

on FC features. It shows the steps involved in specifying various models. Step

3 is the proposed domain adaptation step optional in the pipeline and it is used

to extract site-invariant features from the FC data of step 2 in an unsupervised

way. The impact of using such features can then be compared with models that105

do not use step 3. Likewise, the including of phenotypic information is optional.

2.1. ABIDE database: rs-fMRI and phenotypic data

This study focuses on the ABIDE database, which is composed of MRI and

phenotypic data collected from 20 sites around the world. We included rs-fMRI

and phenotypic data from 505 ASD and 530 TC individuals, yielding a sample110

of 1035 subjects. This sample of subjects is the same as that used in (Heinsfeld

et al., 2018), which differs from the 871 subjects used in (Parisot et al., 2018;

Abraham et al., 2017) due to their use of image quality control measures upon
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Subject brain fMRI data

1. CC200 (core)
2. CC400
3. HO

Brain atlas features

FC features
1. Pearson correlation
2. Tangent
3. Tangent Pearson

Classification

1. Ridge classifier
2. Logistic regression 
3. SVM

1

2

3

Phenotypic information

1. Sex
2. Handedness category
3. Age at scan
4. Functional IQ
5. Eye status at scan

4

1. Maximum independence
domain adaptation (MIDA)

Domain adaptation

5

Figure 1: Overview of the pipeline for domain adaptation on functional connectivity (FC)

features. An illustration of all possible models studied in this paper. Steps 1, 2 and 5 are

compulsory, whilst 3 and 4 are optional. Step 3 applies maximum independence domain

adaptation (MIDA) (Yan et al., 2017) to FC features and step 4 supplements subject feature

vectors with phenotypic information. Phenotypes 1–5 are added for all phenotype-including

models not involving MIDA. Phenotypes 1–4 are added for all phenotype-including models

involving MIDA because the phenotype ‘eye status at scan’ is a site specific protocol. ‘⊕’

denotes concatenation.

the full database. We opted for such a large sample to increase the likelihood of

detecting site effects from individual sites, even though a larger sample presents115

the challenge of a greater level of heterogeneity expressed in subjects.

The ABIDE dataset provides a range of phenotypic information, including

factors such as sex, age, full IQ (FIQ) test scores and handedness (left, right

or ambidextrous). Table 1 gives a summary of each site with respect to key
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Table 1: Phenotypic and experimental variation across ABIDE sites. For quantitative vari-

ables, the standalone values represent the observed means, SD represents the standard devi-

ation. M: male, F: female, R: right hand dominance.

Site ID SCANNER DOMINANT

HAND

EYE

STATUS

SEX AGE (SD) FIQ (SD) SCAN

TIME (SD)

CALTECH SIEMENS Trio R Closed M 27.72 (10.45) 111.16 (11.53) 146.0 (0.0)

CMU SIEMENS Verio R Closed M 26.59 (5.69) 114.56 (10.54) 273.26 (42.46)

KKI Philips Achieva R Open M 10.01 (1.27) 106.17 (15.0) 148.5 (9.36)

LEUVEN 1 Philips INTERA R Open M 22.59 (3.55) 112.21 (13.03) 246.0 (0.0)

LEUVEN 2 Philips INTERA R Closed M 14.09 (1.38) 100.0 (0.0) 246.0 (0.0)

MAX MUN SIEMENS Verio R Closed M 25.31 (11.88) 110.52 (11.73) 140.62 (37.28)

NYU SIEMENS Allegra R Open M 15.26 (6.57) 110.51 (14.99) 176.0 (0.0)

OHSU SIEMENS Trio R Open M 10.71 (1.79) 110.6 (16.81) 78.0 (0.0)

OLIN SIEMENS Allegra R Open M 16.59 (3.47) 112.41 (17.01) 206.0 (0.0)

PITT SIEMENS Allegra R Closed M 18.94 (6.93) 110.18 (12.24) 196.0 (0.0)

SBL Philips Intera R Closed M 34.37 (8.6) 101.53 (6.15) 196.0 (0.0)

SDSU GE MR750 R Open M 14.41 (1.84) 109.36 (13.77) 176.0 (0.0)

STANFORD GE Signa R Closed M 9.98 (1.59) 111.41 (15.56) 209.77 (30.02)

TRINITY Philips Achieva R Closed M 16.96 (3.47) 109.96 (13.75) 146.0 (0.0)

UCLA 1 SIEMENS Trio R Open M 13.19 (2.4) 103.46 (12.02) 116.0 (0.0)

UCLA 2 SIEMENS Trio R Open M 12.49 (1.53) 102.04 (14.92) 116.0 (0.0)

UM 1 GE Signa R Open M 13.4 (2.88) 104.96 (14.11) 296.0 (0.0)

UM 2 GE Signa R Open M 16.01 (3.36) 112.26 (10.85) 296.0 (0.0)

USM SIEMENS Trio R Open M 22.69 (8.34) 105.23 (17.65) 235.94 (0.47)

YALE SIEMENS Trio R Open M 12.71 (2.88) 99.77 (20.12) 196.0 (0.0)

experimental protocols and phenotypic information. It shows that the type of120

fMRI scanner and length of individual fMRI scans varied across sites, giving

rise to the apparent heterogeneity.

To compare against the state-of-the-art (SOTA) methods (Parisot et al.,

2018; Heinsfeld et al., 2018; Abraham et al., 2017), we used the same fMRI

dataset from ABIDE1, which was processed by the Configurable Pipeline for125

the Analysis of Connectomes (CPAC) (Craddock et al., 2013).

1http://preprocessed-connectomes-project.org/abide/
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2.2. Step 1: Brain atlas features

It is common for studies on rs-fMRI data to define brain regions of interest

(ROIs) rather than operating on individual voxels. These ROIs represent the

aggregation (e.g. averaging) of the rs-fMRI time series data of individual voxels,130

so that the number of ROIs is significantly less than the number of voxels.

We chose the Craddock 200 (CC200) brain atlas (Craddock et al., 2012)

due to its robust performance in previous studies that used large subsets of

the ABIDE dataset (>1000 subjects) (Dvornek et al., 2018; Heinsfeld et al.,

2018; Parisot et al., 2018). CC200 has 200 ROIs derived from the clustering135

of spatially close voxels. We also considered two additional atlases to assess

the impact of using a different brain parcellation: 1) Harvard Oxford (HO), a

structural atlas with 110 ROIs based on anatomical landmarks from 40 sMRI

scans (Makris et al., 2006), and 2) Craddock 400 (CC400), an atlas with 392

ROIs computed in a similar way to the CC200 atlas. For these three atlases,140

the representative time series of an ROI was derived by averaging the rs-fMRI

time series of voxels associated with the ROI.

2.3. Step 2: Functional connectivity features

Instead of operating on the raw time series data of ROIs, FC features are

usually extracted between pairs of ROIs based on the time series data. They145

estimate the fluctuating coupling of brain regions with respect to time, so that

we can train predictive models to classify ASD and TC subjects based on dif-

ferences in brain region coupling.

We first consider two SOTA FC measures as baselines: 1) the Fisher trans-

formed Pearson’s correlation coefficient used in (Parisot et al., 2018), which150

gives a measure of coupling between pairs of ROIs by computing the correlation

between their time series, and 2) the tangent embedding parameterisation of

the covariance matrix proposed in (Varoquaux et al., 2010), which captures the

deviation of each subject covariance matrix from the group mean covariance

matrix and outperforms many other FC measures in the study by Abraham155
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et al. (2017). These two FC measures have achieved SOTA autism classification

performance on the ABIDE dataset.

Proposed second-order FC measure. As reviewed in Sec. 1, various ML

methods including RNN and GCN have been applied on the above FC features

for multi-site autism classification. However, the resulting top classification ac-160

curacies differ by less than 1%. This makes us question whether such simple FC

measures can capture well the complexity of brain networks. Thus, it motivates

us to go a step further than the two standard FC measures and construct a new

second-order FC measure in the following.

The Pearson correlation coefficient gives a measure of the coupling between165

pairs of ROIs irrespective of any other ROIs. We explore a new direction to also

quantify the relationship that two ROIs have with respect to all other ROIs.

That is, we want to examine the following question: for any two ROIs, are they

functionally connected to other brain regions in the same way?

Given a set of R ROIs and a corresponding FC matrix, M (R × R), each170

row of M, Mi, i ∈ {1, . . . , R}, gives the measure of FC between region i and

all other regions. So given any two regions i and j, the second-order measure

of interest can therefore be computed by measuring the similarity between Mi

and Mj . We propose to capture this second-order measure by firstly computing

the Pearson correlation coefficient between pairs of ROI time series, and then175

computing the covariance of the resulting connectivity profiles from all regions

(e.g. Mi and Mj). The Pearson correlation coefficient is used at the first step

because it is powerful in capturing first-order FC measures, while the covariance

is used as the second-order similarity measure so that we can leverage the tangent

embedding connectivity for a group-based comparison of each subject FC.180

We name this proposed measure as the Tangent Pearson embedding FC mea-

sure, or simply Tangent Pearson (TP) because it can be seen as combination

of the Pearson and tangent embedding FC measures with a simple implementa-

tion: replacing the covariance matrices used in the original tangent embedding

method with the proposed correlation-based second-order FC matrices so that185

the deviation of each subject from the group is computed from the group mean
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second-order FC matrix.

The resulting FC matrices computed for each subject using these three FC

measures are symmetric. Therefore, it is sufficient to keep only the upper/lower

triangular parts. We chose to keep the upper triangular parts and also discarded190

the main diagonal FC values since they represented the self connectivity of an

ROI with itself, which is redundant information. The remaining upper triangu-

lar values were flattened into a one-dimensional vector and used as FC features

for each subject in all subsequent analyses.

2.4. Statistical test of independence195

Despite the aggregation of voxels’ rs-fMRI time series and the estimation of

FC features, acquisition site effects have been observed in the results of stud-

ies using these FC features. For example, Plitt et al. (2015) identified large

univariate differences in FC strength between three of the sites they investi-

gated (NYU, UCLA 1 and USM), showing the persistence of site effects into200

FC features. Parisot et al. (2018) and Nielsen et al. (2013) highlighted that

significantly higher accuracies can be obtained on single-site studies in compar-

ison to multi-site studies, however, this is also due to the reduced heterogeneity

of both ASD and TC subjects in single-site studies. Before dealing with the

dependence between ABIDE acquisition sites and FC features, we aim to first205

assess the statistical significance of this dependence. This assessment would

provide a measure of the influence of site effects on FC features, and whether

the effect is large enough to merit being accounted for during the modelling of

ASD classifiers on the ABIDE dataset.

To conduct this statistical test, we employed the Hilbert-Schmidt indepen-210

dence criterion (HSIC), an empirical kernel-based statistical independence mea-

sure. It is superior to other kernel-based independence measures due to being

simpler, converging faster and having a low sample bias with respect to the

sample size (Gretton et al., 2005, 2008). We firstly used the HSIC to mea-

sure the statistical dependence between ABIDE sites and FC features. We then215

evaluated the statistical significance of such dependence using a hypothesis test
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derived for the HSIC by Gretton et al. (2008).

2.4.1. Hilbert-Schmidt independence criterion

Given two multivariate random variables X and Y with associated proba-

bility distributions PX,Y, PX and PY, the HSIC provides a non-parametric way220

of measuring their statistical dependence. The HSIC gives a measure of zero

if they are independent, and a value greater than zero otherwise. The larger

the value of the HSIC, the stronger the dependence between them. Empirically,

given n realisations for the random variables X = {xi} and Y = {yi}, the HSIC

between X and Y, denoted by ρh(X,Y), is given by Gretton et al. (2005)225

ρh(X,Y) =
1

n2
tr(KHLH), (1)

where K,H,L ∈ Rn×n,Ki,j = kx (xi,xj) and Li,j = ky (yi,yj). kx(·) and ky(·)

are two kernel functions, e.g. linear, polynomial, or radial basis function (RBF).

H = I− 1
n11

> is a centering matrix and tr(·) is the trace function.

For our problem, we define X to be the random variable corresponding to FC

features so that xi is a single subject FC features. We define Y to be the random230

variable corresponding to the acquisition site, with yi ∈ R20 a one-hot encoding

of each site (more detail in Sec. 2.5). For the kernel functions, a linear kernel

was used for ky(·) due to the theoretical results in Zhou et al. (2020), where

a correlation between HSIC and distribution divergence measure is guaranteed

by linear kernel. RBF kernel was used for kx(·) in order to model non-linear235

dependence between FC features and sites. We set the width parameter of the

RBF kernel, σ, with the median distance between FC features.

2.4.2. Measure of significance

Gretton et al. (2008) proposed to measure the statistical significance of an

HSIC estimate based on a hypothesis test of independence for two random240

variables X and Y using the HSIC estimate ρh(X,Y) as a test statistic. The

test considers a null hypothesis of independence H0 : PX,Y = PXPY against an

alternative hypothesis HA : PX,Y 6= PXPY. Evidence for the acceptance of the
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null hypothesis is obtained by comparing the test statistic ρh(X,Y) against a

threshold T such that if ρh(X,Y) ≤ T , the null hypothesis can be accepted.245

In other words, w.r.t. T , the HSIC estimate is sufficiently close to zero for

independence between X and Y to be accepted. In (Gretton et al., 2008), this

threshold is set to be the 1−λ (λ ∈ [0, 1]) quantile of the null distribution for the

test statistic, which is approximated by a two-parameter Gamma distribution.

2.5. Step 3: Domain adaptation250

To target the inter-site heterogeneity, we applied a recently proposed multi-

source domain adaptation approach, maximum independence domain adapta-

tion (MIDA) (Yan et al., 2017). Since we hypothesise that there exists inter-site

difference in the FC features of subjects from different sites, the aim is to ex-

tract new features from FC data that are no longer site dependent, and are255

consequently more performant for classification.

MIDA obtains these site-invariant features in an unsupervised manner, util-

ising the empirical HSIC introduced in Sec. 2.4.1 as a measure of dependence.

Given a multivariate random variable S for the acquisition site, a projection

map parameterised by W, φW(·), and a random variable X for the subject FC260

features, MIDA aims to learn W such that the empirical HSIC between the

random variables φW(X) and S is close to zero. In other words, in the space

φW(X), the data are independent of their respective acquisition sites. More

specifically, let xi ∈ Rk be the FC features of subject i where i = 1, . . . , 1035

and k is the dimensionality of FC features. MIDA learns a low-dimensional265

feature zi ∈ Rh, where h ≤ n.

To apply MIDA, we need to construct a site feature vector di ∈ Rv for

each subject to encode information about their respective acquisition site. The

simplest is the site label information (e.g. CALTECH, CMU, KKI), which can

be encoded with a one-hot scheme:270

dip =

 1 if subject i is from site p

0 otherwise,

(2)
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where dip is the pth entry of di and the number of sites v = 20. We concate-

nated site and FC feature vectors to encode each subject’s FC features with site

information: xi = [xi,di]. Then we learned a mapping W ∈ Rn×h to project

the augmented features to a new subspace where the new feature representations

for all subjects are minimally dependent on the site:275

Z = W>K, (3)

where K ∈ Rn×n, Ki,j = kx (xi,xj) and each column of Z ∈ Rh×n, zi, is the

new feature representation of the augmented features. Next, we formulated the

objective function by maximising the preserved data variance while minimising

the statistical dependence on the site, i.e.

max
W
− tr

(
WTKHLHKW

)
+ µ tr

(
WTKHKW

)
, (4)

where µ > 0 is a hyperparameter governing the emphasis of variance preserva-280

tion against the level of independence achieved between the projected features

Z and the site features. The solution can be found by forming W from the

eigenvectors of the matrix K (−HLH + µH)K corresponding to the h largest

eigenvalues (Yan et al., 2017).

The hyperparameters are µ, h and the kernel functions kx(·), kd(·). We used285

a linear kernel for kd(·) and the RBF kernel for kx(·) with the width parameter

set to the median distance between FC features as in Sec. 2.4.1 and optimised

µ and h via a grid-search scheme detailed in Sec. 2.8.

2.6. Step 4: Incorporating phenotypic information

The phenotypic information included in the ABIDE dataset for each subject290

is extensive. Including these features when training a classifier for ASD has

been shown to be beneficial (Parikh et al., 2019). Several studies on autism

have observed sex and age-related differences between ASD and TC subjects.

Werling & Geschwind (2013) identified sex-differential genetic and hormonal

factors that supported the observation that females are typically less frequently295

affected by ASD than males. In (Kana et al., 2015), age matched ASD and TC
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children were found to have differences in FC. In fact, between ASD patients,

FC differences have also been observed with respect to age (Uddin et al., 2013;

Supekar et al., 2013). However, these findings are not yet conclusive (Müller

et al., 2011).300

Recent studies (Dvornek et al., 2018; Parisot et al., 2018) on the ABIDE

dataset improved ASD classification accuracy by leveraging phenotypical infor-

mation. We proceeded in a similar way and assessed the impact of including

phenotypes in ASD classifiers. We considered only sex, age, full IQ (FIQ), hand-

edness and eye status at scan since the majority of subjects had such information305

present. For each of the categorical variables (handedness, sex and eye status

at scan), a one-hot encoding scheme was used to construct phenotype features

for each subject and concatenated with other features before feeding into the

classifier. For subjects with missing values for FIQ and handedness, we used

the same imputation method used in (Dvornek et al., 2018): 1) Handedness –310

right hand dominance was assigned since most people are right-handed; 2) FIQ

– a score of 100 was assigned which is considered the average IQ score.

2.7. Step 5: Classification

The impact of removing site effects can be assessed by comparing using the

“raw” FC features (Sec. 2.3) against site-invariant features derived from MIDA315

as inputs to a classifier. Here we prefer linear models (over deep learning models)

to make isolating the impact of domain adaptation less complex and allow for a

greater degree of interpretability (Bishop, 2006), e.g. by visualising the model

coefficients to identify any functional differences between ASD and TC subjects.

We chose three standard linear classifiers: ridge classifier (ridge regression320

with binary target values), logistic regression (LR), and support vector machines

(SVM) from the Scikit-learn library (Pedregosa et al., 2011). For all models,

the hyperparameter values were selected via a grid-search scheme detailed in

Sec. 2.8.

2.8. Experimental setup325

We designed the experiments with three objectives:
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Table 2: Hyperparameter setting for the ML models. h: the number of eigenvectors in MIDA;

µ: the weighting of variance maximisation in MIDA; C: the l2 regularisation coefficient for

the three classifiers ( 1
C

for logistic regression and SVM).

ML Method Hyperparameter 1 Hyperparameter 2

MIDA h = 50, 150, 300 µ = 0.5, 0.75, 1.0

Ridge classifier C = 0.25, 0.5, 0.75 NA

Logistic regression C = 1, 5, 10 NA

SVM C = 1, 5, 10 NA

• To test the statistical dependence between acquisition sites and FC fea-

tures.

• To assess the impact of the proposed second-order FC measure and site-

dependence minimisation on autism classification.330

• To extract biomarkers from the trained ML models to distinguish between

ASD and TC.

Algorithm setting. We tested various models that can be constructed from

the pipeline in Fig. 1, including both existing and proposed ones. We used the

popular CC200 as the default atlas. Table 2 shows the hyperparameters for grid335

search. We evaluated all possible combinations of three values for each on the

training data via five-fold cross validation (CV) to find the best setting.

Statistical test of independence. We assessed the independence between sites

and FC features using the statistical test in Sec. 2.4.We set the significance level

λ := 0.05 so that the probability of rejecting the null hypothesis when it is true340

is 0.01. In particular, given an observed HSIC estimate from the data, ρh(X,Y),

the null hypothesis was set to be rejected at the 5% level if ρh(X,Y) > t1−λ

with t1−λ being the 95% quantile of the estimated Gamma distribution. The

kernel functions ky(·) and kx(·) were defined according to the empirical HSIC

estimate detailed in Sec. 2.4.1.345

We followed the terminology in (Abraham et al., 2017) to consider the intra-

site and inter-site prediction.
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Intra-site prediction. This is the most commonly used setting (Parisot

et al., 2018; Abraham et al., 2017; Heinsfeld et al., 2018), where the data from

all 20 sites are mixed to form training/test sets with the same proportion of350

ASD/TC for stratified 10-fold CV. We compare MIDA-based models with those

without using MIDA as baseline raw models to assess the impact of MIDA. We

report the average accuracy and Area Under the Receiver Operating Character-

istics (AUROC) over the 10 folds for each model. We also studied the impact

of adding phenotypic features as in the studies by Parisot et al. (2018) and355

Dvornek et al. (2018). For the MIDA-based models, ‘eye status at scan’ was

not included as a phenotypic measure since it represents a site-specific proto-

col. Additionally, we evaluated impact of brain atlas by validating MIDA-based

models on the CC200, CC400, and Harvard-Oxford (HO) atlases.

Inter-site prediction. This setting uses data from one individual site as360

testing data while training on the data from all 19 remaining sites to study the

generalisation performance to sites unseen in training. This is more challenging

than the intra-site setting. The average accuracy/AUROC over the 20 sites will

be reported. However, since each site has a different sample size, we computed

the average by weighting the contribution of each site by sample size. Specifi-365

cally, we measured the average accuracy by simply counting the total number of

correct predictions across all sites from 20 runs and dividing by the total sample

size. For AUROC, we similarly computed an overall measure across all sites.

We also assessed the influence of phenotypic information as above.

Comparison with other studies. We compared our proposed models370

with those in recent studies (Parisot et al., 2018; Heinsfeld et al., 2018; Abra-

ham et al., 2017) in both intra-site and inter-site settings. For inter-site setting,

Abraham et al. (2017) and Heinsfeld et al. (2018) computed the average ac-

curacy without weighting by sample size so we will report both the weighted

and unweighted average accuracies for fair comparison. Moreover, we studied375

two sample sizes, 871 and 1035, which have been studied in previous studies.

For completeness, we also applied the SOTA method by Parisot et al. (2018)
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to the larger sample size of 1035 using their implementation2. To account for

different stratifications in 10-fold CV between our study and (Parisot et al.,

2018), we used the same stratification as in (Parisot et al., 2018) but also evalu-380

ated both methods using five different stratifications to reduce the influence of

the stratification. In addition, we conducted two-sample Welch t-tests to assess

the statistical significance of performance improvements in intra-site evaluation

and will report the corresponding p-values. For the inter-site setting, since we

compute summary metrics without averaging and thus only have single repre-385

sentative values, we did not conduct t-tests to assess significance.

Biomarker extraction. Linear classifiers evaluate w>x to make a decision,

where the model weight w is the learned decision hyperplane and x is the feature

vector. In our context, the coefficients of x in w indicate the informativeness of

each feature in x in classifying a subject as ASD or TC. If x is the (flattened)390

FC features, the values of the parameters in w will indicate which pairs of ROIs

are important to distinguish ASD and TC. Positive and negative elements of

w indicate ROI-ROI connections that are informative for ASD and TC, respec-

tively. The larger the absolute value of the coefficient of a given ROI-ROI FC,

the more informative this FC. We analysed all the ten ws from the 10-fold CV in395

the intra-site setting to extract ROI-ROI connections that are consistently the

most informative for classification. Specifically, we identified the top 50 largest

weights in absolute value for each fold individually and then ranked ROI-ROI

FC connections for consistent occurrence in the top 50 features across all 10

folds, so that the most informative connections would be present in the top 50400

features across all 10 folds. Where two ROIs had the same number of occurrence

across folds (e.g. 7 times), we sorted the ranking by the absolute value of their

respective coefficient averaged across folds.

2Available at https://github.com/parisots/population-gcn
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Table 3: The statistical test of independence. The threshold value gives the 95% quantile of

the estimated Gamma distribution. The sample estimate gives the sample HSIC estimate,

with the corresponding p-value computed. The difference in the threshold values arises from

the different Gamma distribution approximations for different FC measures.

FC measure Threshold Sample estimate p-value

Pearson correlation 0.66 2.10 < 10−5

Tangent 0.59 1.31 < 10−5

Tangent Pearson (proposed) 0.59 1.21 < 10−5

3. Results

3.1. Statistical test of independence405

Table 3 shows the statistical test of independence between FC features and

sites. From the table, irrespective of the FC, the null hypothesis of independence

between FC features and sites can be rejected with 95% confidence because the

sample HSIC estimate exceeds the threshold. Also, the p-values are extremely

small (< 10−5), giving greater evidence for rejecting the null hypothesis.410

Next, we show the effect of domain-independent adapation by visualising

features in a 2-D space. We applied Principal Component Analysis (PCA) to

reduce the dimensionality of FC features to 50, and then employed t-distributed

Stochastic Neighbour Embedding (t-SNE) (Maaten & Hinton, 2008) to project

them to a 2-D space for visualisation. Figure 2 shows the t-SNE projections415

of the proposed tangent Pearson FC features w.r.t. acquisition sites for both

with/without site adaptation. In subplot (a) without adaptation, site-specific

clusters can be identified (SDSU, SBL, TRINITY, etc.) while in subplot (b)

with adaptation, there is a reduction of association between FC features and

acquisition site. This further illustrates the site specificity of the ABIDE data.420

3.2. Intra-site prediction

Figure 3 shows the intra-site prediction results. We analyse the results with

focus on the impact of (a) FC features, (b) MIDA, and then (c) phenotypic

features, on the classification performance.
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(b) With MIDA

Figure 2: The effect of domain-independent adaptation. A 2-D t-SNE projection of CC200-

generated tangent Pearson FC features with (a) no site adaptation, (b) site adaptation by

MIDA, using the scikit-learn t-SNE implementation with perplexity 30 and learning rate 10.

In (a), key identifiable clusters are labelled while the other site labels (OHSU, MAX MUN,

and PITT) are omitted since their clusters are not well defined. In (b), site labels are omitted

because MIDA removed the association between features and sites.

(a) Impact of FC measures. For the baseline models (raw, without MIDA425

and phenotypes), the performance of the three FC measures is very stable across

classifiers and CV splitting settings. For each classifier, the highest accuracy was

consistently obtained by the proposed second-order FC measure, TP embedding.

In contrast, the Pearson correlation gave the lowest accuracy for all classifiers.

(b) Impact of MIDA. The effectiveness of MIDA seems to be sensitive to430

FC measure. Applying MIDA to Pearson features led to improvement in both

accuracy and AUROC. In contrast, applying MIDA to tangent features led to
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Figure 3: Intra-site prediction with 5×10-fold CV. A comparison of the effect of site adapta-

tion (raw baseline vs MIDA), classifier (ridge, logistic, SVM), FC measure (Pearson, tangent

embedding, proposed tangent Pearson), and the inclusion of phenotypic information, on the

average accuracy and AUROC.

worse results. Applying MIDA to TP embedding led to better accuracy but

worse AUROC across different classifiers. A possible explanation for the per-

formance drop is that there could be some loss of ASD/TC-specific information435

when learning site-invariant features using the tangent FC with MIDA, so that

some subjects are not properly represented for classification. In Sec. 4, we will

discuss further studies that can potentially reduce such unwanted effects.

(c) Impact of phenotypic features. In most cases, adding the phenotypic fea-

tures has improved the classification performance. The best accuracy is 72.7%,440

which is obtained using TP+MIDA with phenotypes. The positive impact of

phenotypic information on autism classification observed here is consistent with

the findings in previous studies (Parisot et al., 2018; Dvornek et al., 2018).

3.3. Impact of brain atlas

Table 4 compares the intra-site results of MIDA with tangent Pearson FC445

and phenotypic features (TP MIDA) on three different brain atlases: CC200,
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Table 4: Impact of brain atlas. MIDA with Tangent Pearson (TP) FC and phenotypic fea-

tures using three different brain atlases in intra-site prediction. The 5×10-fold CV standard

deviations (SD) over five different random seeds are in parentheses. ACC: accuracy.

Ridge classifier Logistic regression SVM

Atlas ACC (SD) AUROC (SD) ACC (SD) AUROC (SD) ACC (SD) AUROC (SD)

CC200 72.7 (0.3) 77.9 (0.4) 71.9 (0.6) 77.6 (0.5) 71.0 (1.0) 76.8 (0.8)

CC400 72.2 (0.3) 78.3 (0.5) 71.4 (0.4) 78.0 (0.6) 71.1 (0.9) 76.9 (1.3)

HO 71.5 (1.0) 77.0 (0.6) 71.6 (1.0) 77.1 (0.4) 71.0 (0.5) 77.5 (0.5)
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Figure 4: Inter-site prediction (20 runs). A comparison of the effect of site adaptation (raw

baseline vs MIDA), classifier (ridge, logistic, SVM), FC measure (Pearson, tangent embedding,

proposed tangent Pearson), and the inclusion of phenotypic information, on the weighted

leave-one-site-out CV accuracy and AUROC.

CC400, and HO. On the whole, there is no significant difference between dif-

ferent atlases, despite using HO atlas leads to a relative lower accuracy and

AUROC for Ridge classifier. Thus, CC200 is a good choice for our MIDA-based

models, as in other methods in the literature.450
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3.4. Inter-site prediction

Similarly, Figure 4 shows the inter-site results and we perform similar anal-

yses as in the intra-site setting below.

(a) Impact of FC features. As with the intra-site setting, the tangent-based

models achieve a dominant performance over the Pearson correlation-based ones.455

For the ridge and logistic regression classification models, the tangent Pearson

measure achieves the highest accuracies of 69.9% (AUROC: 76.6%) and 70.1%

(AUROC: 77.4%), respectively. The tangent measure achieves the highest accu-

racy of 69.6% (AUROC: 76.4%) with logistic regression. The Pearson correlation

measure achieves its highest accuracy of 68.1% (AUROC: 73.1%) with SVM.460

(b) Impact of MIDA. MIDA has an overall positive influence in this setting,

with a reduced performance only for the tangent FC. For Pearson correlation

and tangent Pearson measures, the use of MIDA has increased the accuracy

by 0.63% (AUROC: 0.90%) over baseline equivalents, averaged across the three

classifiers. The tangent Pearson measure achieves the highest accuracy of 70.6%465

(AUROC: 76.4%) with MIDA and logistic regression, while its non-MIDA equiv-

alent achieves an accuracy of 70.1% (AUROC: 76.4%). Applying MIDA to tan-

gent FC features leads to no significant difference in accuracy/AUROC w.r.t.

baseline models across all classifiers.

(c) Impact of phenotypic features. Adding phenotypic features in inter-site470

prediction also helped improving the accuracy/AUROC of the baseline and

MIDA models in most cases, e.g. an increases in accuracy by 1.05% (AU-

ROC: 0.54%) on average over the three classifiers w.r.t. no phenotypic features.

Overall, the highest inter-site accuracy of 71.4% (AUROC: 77.4%) is obtained

with the phenotypic features, the application of MIDA to the tangent Pearson475

FC, and the ridge classifier. Its non-phenotype equivalent has a lower accuracy

of 70.2% (AUROC: 77.0%).

(d) Factors for site accuracy variation. From the inter-site results above,

MIDA-based models obtained better performance. However, the individual clas-

sification performance on each site varies a lot. Here, we investigate the following480

two potential factors that may affect the performance on an individual site:
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(b) Accuracy with respect to sample size

Figure 5: Potential factors for site accuracy variation. The sites are visualised w.r.t. the

accuracy obtained by the tangent Pearson MIDA ridge classifier without phenotypic features.

1. Mean length of rs-fMRI scan time at each site. Intuitively, we expect

that having a longer experimental scan time increases the ability to detect

differences between ASD and TC subjects.

2. Number of samples collected from site. Sites with low sample sizes may485

be under-represented in the ABIDE database and may be significantly

different in distribution from the other sites.

Figure 5 studies the correlations between site accuracy and site scan time or

sample size from the results obtained by the model with tangent Pearson, MIDA,

and ridge classifier but without phenotypic features. For scan time, a slight490

positive correlation between the mean scan time and the site accuracy can be

identified (the left panel of Fig. 5). An interesting finding is that the lowest

scoring site (OHSU) has the lowest mean scan time (78 seconds) in comparison

to the other sites (all exceeding 116 seconds). Thus, it may be difficult to

capture the difference between ASD and TC effectively in such a short period of495

time. Longer scan time has the potential of removing noise from rs-fMRI data

and helping better capture signals differentiating autism or neurotypical effects.

For site sample size, no conclusive relationship can be found with the observed
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Table 5: Intra-site comparison to other studies. ‘-’ indicates that the metric was not provided

in the original study and we did not implement ourselves. The sample size is 871 if quality

control (QC) was performed, and 1035 otherwise. We firstly report the results obtained using

the same split setting of 10-fold CV in (Parisot et al., 2018). Then we show the results obtained

under 5×10-fold CV with four more CV splittings generated by using different random seeds.

Standard deviations for 10-fold CV were computed over 10 different partitions and those for

5×10-fold CV were computed over five different random seeds. Results of (Heinsfeld et al.,

2018; Abraham et al., 2017) are cited from the original paper.

10-fold CV 5×10-fold CV

Model QC ACC (SD) AUROC (SD) ACC (SD) AUROC (SD)

TP MIDA 7 73.0 (3.9) 78.0 (4.7) 72.7 (0.3) 77.9 (0.4)

TP raw 7 71.6 (2.7) 78.2 (3.6) 70.9 (0.6) 78.0 (0.7)

Parisot et al. (2018) 7 68.2 (3.7) 75.2 (3.8) 68.6 (0.3) 75.2 (0.5)

Heinsfeld et al. (2018) 7 70.0 (-) - (-) - (-) - (-)

TP MIDA X 70.0 (7.6) 75.5 (7.3) 69.7 (0.5) 75.9 (0.5)

TP raw X 69.2 (7.5) 75.1 (7.1) 70.1 (0.8) 76.5 (0.9)

Parisot et al. (2018) X 70.4 (3.9) 75.0 (4.6) 67.9 (1.3) 73.3 (0.9)

Abraham et al. (2017) X 66.9 (2.7) - (-) - (-) - (-)

site accuracy (the right panel of Fig. 5).

3.5. Comparison with other studies500

We evaluated our top performing models against three SOTA methods for

both the intra-site and inter-site settings below.

Intra-site comparison. Table 5 reports the intra-site results. In 10-fold CV,

our TP MIDA ridge (with phenotypic features) on a sample size of 1035 outper-

forms the SOTA methods in both accuracy and AUROC with scores of 73.0%505

and 78.0%, respectively. With respect to the accuracy of the SOTA (Parisot

et al., 2018) on 871 and 1035 subjects, this is an increase of 2.6% (p = 0.09)

and 4.8% (p < 10−2), respectively. In 5×10-fold CV, TP MIDA ridge achieves

an increase of 4.8% (p < 10−2) and 4.1% (p < 10−2) in accuracy over (Parisot

et al., 2018) on 871 and 1035 subjects, respectively.510
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When more training examples were included (using all 1035 samples without

QC), there is a relative significant improvement obtained by TP MIDA while

the change is small for non-adaptation models, i.e. TP raw and Parisot et al.

(2018). The inter-site results in Table 6 has similar observations. We will discuss

the relationship between those “poor quality” samples and domain adaptation515

effectiveness in Sec. 4.

In the 10-fold CV, our TP raw ridge (with phenotypic features, without

domain adaptation) on a sample size of 1035 subjects achieves 71.6% in accuracy

and 78.2% in AUROC, outperforming neural network based models (Parisot

et al., 2018; Heinsfeld et al., 2018) by at least 1.2% in accuracy and 3.2% in520

AUROC. It obtained statistically significant increases in accuracy (3.4%, p =

0.02) and AUROC (3%, p = 0.05) at the 10% level w.r.t. to (Parisot et al., 2018)

on 1035 subjects. In the 5×10-fold CV, we obtained p-values less than 1% when

comparing the accuracy/AUROC of TP raw ridge on 1035 subjects with both

871/1035-subject variants of (Parisot et al., 2018). On 871 subjects, our TP raw525

LR achieves 70.1% in accuracy and 76.5% in AUROC, ourperforming (Parisot

et al., 2018) and even TP MIDA LR, showing the effectiveness of the proposed

tangent Pearson FC measure.

Inter-site comparison. Table 6 shows the inter-site performance comparison.

We firstly observe that the weighted site accuracy and AUROC scores are gen-530

erally higher than the unweighted results. This is expected because from the

right panel of Fig. 5, sites with lower accuracy tends to have a smaller sample

size. Secondly, our TP MIDA ridge (with phenotypic features) on 1035 sam-

ples achieves the highest (weighted) accuracy of 71.4%, improving the model by

Parisot et al. (2018) on 871 and 1035 subjects by 2.9% and 2.8% in accuracy,535

respectively. Without domain adaptation, our TP raw ridge (with phenotypic

features) also achieves a higher (weighted) accuracy (and AUROC) than (Parisot

et al., 2018) when the sample size is 1035, an increase in accuracy by 1.5% and

1.4% w.r.t. (Parisot et al., 2018) on 871 and 1035 subject, respectively.

Across both sample sizes (871/1035), our proposed domain adaption and540

baseline models improve upon the models in Abraham et al. (2017) and Heinsfeld
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Table 6: Inter-site comparison, i.e. leave one site out CV (LOSOCV). The notations in this

table are the same as in Table 5.

Unweighted Weighted

Model QC ACC (SD) AUROC (SD) ACC AUROC

TP MIDA 7 70.5 (7.6) 76.7 (8.8) 71.4 77.4

TP raw 7 68.5 (9.6) 76.3 (8.4) 70.0 77.1

Parisot et al. (2018) 7 68.3 (5.6) 75.3 (7.3) 68.6 75.7

Heinsfeld et al. (2018) 7 65.0 (1.4) - (-) - -

TP MIDA X 68.4 (8.3) 75.6 (9.2) 69.3 75.3

TP raw X 68.1 (8.9) 75.9 (9.1) 70.3 75.7

Parisot et al. (2018) X 68.4 (6.3) 73.7 (7.0) 68.5 73.7

Abraham et al. (2017) X 66.8 (5.4) - (-) - -

et al. (2018) in (unweighted) accuracy. On 1035 subjects, our TP MIDA ridge

model has the highest accuracy of 70.5%, improving upon (Heinsfeld et al.,

2018) by 5.5% and (Abraham et al., 2017) by 3.7%, and our baseline model TP

raw ridge, improves over (Heinsfeld et al., 2018) and (Abraham et al., 2017) by545

3.5% and 1.7%, respectively.

3.6. Extracting biomarkers

For the proposed FC measure, tangent Pearson, we study the respective ROI-

ROI connections that have the most significant influence on the classification

performance. These influential ROI-ROI connectivities can act as neurological550

biomarkers for researchers to investigate and further understand the difference

in brain connectivity between ASD and TC.

To extract these biomarkers, we used the CC200 atlas to firstly define ROIs

and the weights from the TP raw LR model (without phenotypic features) to

indicate which ROI-ROI connections are most important for ASD/TC classifi-555

cation. The logistic regression classifier was used because it achieved the high-

est accuracy and AUROC for the tangent Pearson FC in the intra-site setting
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Figure 6: Biomarker visualisation. Extracted biomarkers using Python package Nilearn

(Abraham et al., 2014). From left to right: the frontal, axial and lateral views of the brain

are visualised. ‘L’ and ‘R’ correspond to the left and right hemisphere respectively.

without phenotypic features. Phenotypic features were omitted because only

ROI-ROI connections were of interest. The top five most positive and negative

weights, for ASD and TC respectively, were extracted as described in Sec. 2.8.560

The CC200 atlas is derived from the clustering of individual voxel BOLD

time courses so the resulting atlas has no well-defined labels for the ROIs. To

generate labels, we used the centre of mass for each ROI to locate the closest

matching ROIs from other labelled brain atlases. In particular, we used the

Harvard-Oxford brain atlas as a point of reference. Where no label could be565

found for a given CC200 ROI, we set its label to “None”.

Figure 6 shows the top 10 most important ROI-ROI connections for classify-

ing subjects as ASD or TC, for illustration and further analysis in future studies.

Red and blue connections give the top five most important ROI-ROI connec-

tions for classifying subjects as ASD and TC, respectively. The importance of570

each displayed connection is indicated by the hue of blue or red. Note that we

omitted 180 of 200 ROIs from the figure to clearly show these connections.
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4. Discussion

In this work, we proposed a second-order FC measure, tangent Pearson em-

bedding, and investigated the minimisation of the dependence between ABIDE575

acquisition sites and FC features for improving autism classification. To firstly

establish the significance of this study, we assessed the statistical dependence

between acquisition sites and FC features, and then proceeded to assess the

impact of removing site effects on the autism classification performance in the

intra-site and inter-site experimental settings.580

In comparison to a related study by Moradi et al. (2017) that targeted a

problem of predicting autism severity scores with site-invariant cortical thick-

ness data from four ABIDE sites, we targeted all possible 20 ABIDE sites with

a sample of 1035 subjects. To assess the statistical dependence between subject

FC features and acquisition sites, we used a kernel-based measure of statistical585

independence based on the empirical HSIC, which we found to be statistically

insignificant at the 5% level with respect to a selection of three FC measures.

In Figure 2, we further visualised the proposed second-order FC features with

respect to acquisition sites, and the resulting plots revealed noticeable site spe-

cific representations of FC features, providing additional evidence of the site590

specificity of the rs-fMRI data in the ABIDE dataset highlighted in previous

studies (Moradi et al., 2017; Parisot et al., 2018; Nielsen et al., 2013). This

site specificity originates from variation in scanner type and experimental set-

tings across sites, and has been hypothesised to be one of the limiting factors in

training performant ASD classifiers on the ABIDE dataset (Parisot et al., 2018;595

Nielsen et al., 2013).

Evaluation. For intra-site setting, k-fold CV is widely used in many stud-

ies. However, different random partitions can lead to significant variation of

results, as seen by comparing the 10-fold CV and 5×10-fold CV results. Here

we recommend n × k-fold CV, where the effect of random split settings is re-600

duced, and the model evaluation is more stable. For inter-site setting, due to

the differences in samples size across different sites, we recommend the weighted
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average accuracy, which represents total correct predictions
total samples but unweighted average

accuracy does not. In the rest of this section, our discussion will be based on the

5×10-CV and weighted leave-one-site-out CV results for intra-site and inter-site605

settings, respectively.

To study the impact of minimising unwanted dependence between acquisi-

tion site and subject FC features, we applied a domain adaptation approach,

MIDA (Yan et al., 2017), in both intra-site and inter-site settings. In most cases,

removing the dependence between site and FC features led to an improved per-610

formance in both settings (see Figures 3 and 4). MIDA-based models using the

proposed tangent Pearson FC outperformed recent SOTA approaches (Parisot

et al., 2018; Heinsfeld et al., 2018), achieving new SOTA performance of 72.7%

in intra-site accuracy (AUROC: 77.9%), and 71.4% in inter-site accuracy (AU-

ROC: 77.4%), corresponding to increases of 4.8% and 2.9% (AUROC: 4.6% and615

3.7%) w.r.t. (Parisot et al., 2018), respectively. The results reported in this pa-

per highlight the value of minimising the dependence between FC features and

acquisition sites for improving autism classification. By removing acquisition

site effects in FC features via a site-invariant subspace projection, classifiers

trained on site-invariant features can extract more discriminative features for620

improving autism classification.

However, there are two limitations that are apparent when using MIDA to

minimise site dependence. 1) Firstly, in a few cases, particularly with the tan-

gent FC, when MIDA is applied, there is a degradation in intra/inter-site accu-

racy and AUROC scores relative to baseline models. A potential cause for such625

performance degradation is the difficulty in preserving relationships between

projected subject FC features and target labels (ASD or TC). Though the vari-

ance in the original FC features can be preserved with MIDA, the alignment

between projected features and target labels may not be (fully) preserved. This

is especially important for FC features derived from rs-fMRI data for autism630

classification since the underlying signal defining autism is not well marked, due

to the heterogeneity of ASD. Therefore, applying a technique that uses the train-

ing data labels to align subject FC features without overfitting may help unlock
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more potential from the ABIDE dataset in multi-site autism classification. 2)

Secondly, since MIDA is a transductive learning method, adding new subjects635

to the experimental dataset would require a new domain invariant subspace to

be computed that accounts for the new data before predictions can be made.

Another research focus is therefore applying or developing an inductive domain

adaptation approach that alleviate this problem.

‘Low-quality’ samples in domain adaptation. For both intra-site and inter-640

site settings, we observed accuracy improvement obtained by domain adaptation

(MIDA) when including more ‘low-quality’ samples in training. In contrast to

such positive effect for MIDA-based models, including them has much less effect

on the classification accuracy of other models. On one hand, these samples may

be helpful in estimating the site data distribution so that MIDA can extract645

better domain-invariant features. On the other hand, their phenotypic features

are not necessarily low quality and can also contribute to the autism prediction.

The proposed tangent Pearson embedding FC measure has a simple im-

plementation built on existing FC measures, Pearson correlation and tangent

embedding. It has been shown to be a powerful alternative. Without the ap-650

plication of MIDA, we observed that this new second-order FC measure can

outperform previous SOTA methods when supplemented with phenotypic fea-

tures and a linear classifier. In particular, we achieved the highest accuracy

score of 70.9% (AUROC: 78.0%) in the intra-site experiment, and an accuracy

of 70.0% (AUROC: 77.1%) in the inter-site setting, improving upon (Parisot655

et al., 2018) by 3.0% and 1.6% in accuracy (4.7% and 3.4% in AUROC), respec-

tively. This makes our proposed FC measure particularly attractive, considering

the results from those SOTA methods employing complex neural networks that

take a long time to train (e.g. 32 hours for (Heinsfeld et al., 2018)). The linear

classifiers investigated in this study are capable of achieving improved results660

with only several minutes of training when leveraging the proposed second-order

FC features and phenotypic information.

Lastly, the proposed second-order FC measure and adopted MIDA approach

affect only the feature representation of each subject to improve multi-site
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autism classification. The obtained performance is mostly similar across three665

different classifiers (see Figures 3 and 4). Therefore, we hypothesise that to im-

prove multi-site autism classification, it is important to 1) design more powerful

FC measures or other measures from raw fMRI data, and 2) directly target and

remove site agglomerative effects.

5. Conclusions670

This paper aims to improve multi-site autism classification. We proposed a

new second-order functional connectivity (FC) measure called tangent Pearson

embedding for more discriminative FC features, and applied a site-dependence-

minimisation domain adaptation approach to tackle the heterogeneity in the

multi-site ABIDE database. We confirmed the significance of this study via675

a statistical independence assessment between acquisition sites and FC fea-

tures. The intra- and inter-site classification results show that models with the

proposed FC measure and site-dependence minimisation in combination with

pheonotypic features have outperformed the state-of-the-art methods, with de-

tailed ablation studies and biomarker visualisation.680
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