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Abstract 

 
Rhythms of the brain are generated by neural oscillations across multiple frequencies. 

Following the natural log linear law of frequency distribution, these oscillations can be 

decomposed into distinct frequency intervals associated with specific physiological 

processes. This perspective on neural oscillations has been increasingly applied to study 

human brain function and related behaviors. In practice, relevant signals are commonly 

measured as a discrete time series, and thus the sampling period and number of samples 

determine the number and ranges of decodable frequency intervals. However, these 

limits have been often ignored by researchers who instead decode measured oscillations 

into multiple frequency intervals using a fixed sample period and numbers of samples. 

One reason for such misuse is the lack of an easy-to-use toolbox to implement 

automatic decomposition of frequency intervals. We report on a toolbox with a 

graphical user interface for achieving local and remote decoding rhythms of the brain 

system (DREAM) which is accessible to the public via GITHUB. We provide worked 

examples of DREAM used to investigate frequency-specific performance of both 

neural (spontaneous brain activity) and neurobehavioral (in-scanner head motion) 

oscillations. Using the imaging data from the Human Connectome Project, DREAM 

mapped the amplitude of these neural oscillations into multiple frequency bands as well 

as their test-retest reliability. DREAM analyzed the head motion oscillation and found 

that younger children moved their heads more than older ones across all five frequency 

intervals, particularly in the higher frequency intervals. In the age interval from 7 to 9 

years, boys moved more than girls across all frequency intervals. Such sex-related 

motion effects were not detectable for other ages. These findings demonstrate the 

applicability of DREAM for frequency-specific human brain mapping. 

 

Keywords: neural oscillations, frequency intervals, reliability, amplitude, head motion 

 

1 Introduction 
 

Rhythms of the brain are generated by neural oscillations occurring across multiple 

frequencies. The natural logarithm linear law (N3L) offers a template for parcellating 

these neural oscillations into multiple frequency intervals linked with distinct 

physiological roles (Penttonen & Buzsáki, 2003). Remarkably, when graphed on the 

natural logarithm scale, the centers of each frequency interval fall on adjacent integer 

points. Thus, distances between adjacent center points are isometric on the natural 

logarithm scale, resulting in a full parcellation of the whole frequency domain where 

each parcel of the frequencies is fixed in theory, namely frequency intervals. These 

frequency intervals have been repeatedly observed experimentally (Buzsaki & Draguhn, 

2004). This characteristic suggests that distinct physiological mechanisms may 

contribute to distinct intervals. Functional magnetic resonance imaging (fMRI), a non-

invasive and safe technique with an acceptable tradeoff between spatial and temporal 

resolution, has the potential to contribute to the study of certain neural oscillations in 

the human brain in vivo. In early fMRI studies of the human brain, researchers tended 

to treat oscillations across different frequencies without differentiation. Low-frequency 

oscillations measured by resting-state fMRI (rfMRI) have been assessed primarily in 

the frequency range of 0.01 to 0.1 Hz, a range in which spontaneous brain activity has 

high signal amplitude (Biswal et al., 1995; Lowe et al., 1998). While such efforts have 

been somewhat informative, treating this broad frequency range in a unitary manner 

may conceal information carried by different frequency intervals. To address this issue, 
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an early study decomposed the rfMRI signals into multiple frequency intervals using 

the N3L theory (slow-5: 0.01 - 0.027 Hz, slow-4: 0.027 - 0.073 Hz, slow-3: 0.073 - 

0.198 Hz, slow-2: 0.198 - 0.25 Hz) (Zuo et al., 2010). This exploration demonstrated 

the feasibility of mapping distributional characteristics of oscillations’ amplitude in 

both space and time across multiple frequency intervals in the brain. 

 

Since then, an increasing number of rfMRI studies have employed such methods by 

directly applying these frequency intervals, and have detected frequency-dependent 

differences in brain oscillations in patients. Specifically, these differences were mostly 

evident between slow-4 and slow-5 amplitudes (Han et al., 2011; Jing et al., 2012; Zhao 

et al., 2015; Mascali et al., 2015; Ren et al., 2016; Li et al., 2017). Such frequency-

dependent phenomena have also been explored using other rfMRI metrics including 

regional homogeneity (Wang et al., 2016) detected in the slow-3 and slow-5 frequency 

ranges. While the lower and upper bounds of the frequency intervals are fixed in theory, 

their highest and lowest detectable frequencies and frequency resolution are determined 

by the sampling parameters (e.g., rate and duration) in computational practice. However, 

the above-mentioned studies applied the frequency intervals from earlier studies (Di 

Martino et al., 2008; Zuo et al., 2010) rather than to use those matching their actual 

sampling settings. To address this situation, we developed an easy to use toolbox to 

decode the frequency intervals by applying the N3L theory. This toolbox, named 

DREAM, is based on MATLAB with a graphical user interface (GUI). Here, we 

introduce the N3L algorithm and its DREAM implementation. Neural oscillations 

reflected by the human brain spontaneous activity measured with resting-state 

functional MRI and head motion data during mock MRI scans were employed as two 

worked examples to demonstrate the use of DREAM to perform frequency analyses. 

 

2 Methods and Algorithms 
 

Neuronal brain signals are temporally continuous but they are almost always measured 

as discrete data for practical reasons. The characteristics of the sampled data should 

meet the criterion of the sampling theorem proposed by American electrical engineers 

Harry Nyquist and Claude Shannon. The core algorithm to determine the frequency 

boundaries of measured neuronal signals in DREAM is based on the Nyquist-Shannon 

sampling theorem. Specifically, per the theorem, sampling frequency and sampling 

time determine the highest and lowest frequencies that can be detected and 

reconstructed. Sampling data retains most of the information contained in the original 

signals if the sampling frequency is at least twice the maximum frequency of the 

continuous signals. As for neuronal signals, the highest frequency that could be detected 

and reconstructed is determined by the sampling frequency, or by the sampling interval 

which is equal to the reciprocal of the sampling frequency, as shown in formula (1):  

 

𝑓𝑚𝑎𝑥 =
1

2𝑇𝑅
     (1) 

 

where 𝑓𝑚𝑎𝑥  represents the highest frequency that could be detected in the neuronal 

signal and TR represents the sampling interval. 

 

The lowest frequency in neuronal signals that could be detected depends on the 

sampling time. As shown in formula (2), in order to distinguish the lowest frequency in 
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neuronal signals, the sampling time should be equal to or larger than the reciprocal of 

two times the lowest frequency: 

 

T ≥  
1

2𝑓𝑚𝑖𝑛
    (2) 

 

where T represents the sampling time, and 𝑓𝑚𝑖𝑛  represents the lowest frequency in 

neuronal signals that could be distinguished. 

 

Since the sampling time is equal to the number of samples multiplied by the sampling 

interval, the lowest frequency can be calculated by formula (3): 

 

𝑓𝑚𝑖𝑛 =  
1

2𝑁𝑇𝑅
    (3) 

 

where N represents the number of samples. 

 

According to the N3L theory, neural oscillations in mammalian brain formed a linear 

hierarchical organization of multiple frequency bands when regressed on a natural 

logarithmic scale. The center of each band would fall on each integer of the natural 

logarithmic scale (Fig. 1-1). Thus, adjacent bands have constant intervals that equals to 

one, which correspond to the approximately constant ratios of adjacent bands on the 

linear scale (Fig. 1-2). With the highest and lowest frequencies reconstructed, N3L can 

derive the number of decoded frequencies and the boundaries of each frequency interval 

(Fig. 1-3). Accordingly, when graphed on the natural log scale, the center of each 

decoded frequency is an integer. Thus, adjacent center points on the natural log scale 

are equidistant, which corresponds to the same proportion of adjacent center points’ 

values on the linear scale. Based upon this theorem, after performing a linear regression 

analysis for the highest and lowest frequencies acquired previously, we can determine 

the central frequencies, as well as the number frequency intervals that can be decoded. 

 

Finally, the decoding process integrated in DREAM performs band-pass filtering with 

the frequency intervals provided by DREAM in the previous steps (Fig. 1-4). This is 

implemented by the MATLAB built-in function fft and ifft to perform direct and inverse 

time-frequency transformation on the signals for individual decoded frequency 

intervals, respectively. All the above steps are illustrated as the flowchart in Figure 1. 

 

3 DREAM Interface and Usage 
 

3.1 Program Interface  

 

DREAM is currently being shared at GITHUB1 as part of the Connectome Computation 

System (Xu et al., 2015). After downloading the package, users will need to add the 

directory where the package is stored into the MATLAB path. The package can then 

be launched by entering “DREAM” in the MATLAB command line. DREAM has a 

GUI on its welcome screen (Fig. 2) and main interface (Fig. 3). On the left side of the 

main interface, users can set up the required parameters. On the right side, a large view 

frame previews the plots of time series from the data selected. Data should be entered 

in the structure shown in Figure 4 before processing. The work directory is where the 

 
1https://github.com/zuoxinian/CCS/tree/master/H3/DREAM 
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subject directories are stored (full path). Data should be stored in each subject directory 

or a sub-folder inside (data directory).  

 

3.2 GUI Usage 

 

We introduce how to use the graphical interface step by step. The circled numbers in 

Figure 3 correspond to the analyzing steps in this section.  

 

1) Step 1 - select the data type: Click the drop-down box to choose the data type to be 

analyzed.  

2) Step 2 - set up the work directory: Click the path selection button to set the work 

directory in the dialog box that pops up.  

3) Step 3 - batch process: Select the subject list file in the popped-up dialog box by 

clicking the file selection button.  

4) Step 4 - set up sampling rate: Enter the sampling interval in seconds (TR) in the input 

box (in some cases, this can be automatically extracted from the header information).  

5) Step 5 (optional) - data directory: If the data are stored in a sub-folder inside the 

subject directory, type the name of the data directory in the input box.  

 

After all the above parameters are set up, data meeting the requirement will appear in 

the list-box (Fig. 3-6), from where the user can remove unwanted data by selecting the 

file name and clicking the Remove button. Finally, by clicking the Divide button, a user 

can start the decoding program. The outputs contain a set of decoded files and a csv file 

that records the boundary frequencies of each decoded band. The outcomes can be 

directly used for subsequent analyses. To demonstrate the DREAM use, we employed 

it for a multi-band frequency analysis assessing head motion during mock scanning. 

 

4 DREAM Demo1: Head motion in youth during mock scanning 
 

In-scanner head motion has been treated as a confound in fMRI studies, especially in 

studies of children and patients with psychiatric disorders. Many studies have shown 

the effects of motion on fMRI results such as increases of short-distance correlations 

and decreases of long-distance correlations in rfMRI (Power et al., 2012; Yan et al., 

2013). Researchers have proposed various methods to correct motion effects in fMRI 

studies. In contrast, studying head motion as a neurobehavioral trait has long been 

overlooked (see an exception in Zeng et al., 2014), especially in children. Here, we use 

DREAM to quantify head motion data acquired from children in a mock scanner using 

a novel multi-frequency perspective. We hypothesized that: 1) head motion is a trait 

associated with age; 2) there are sex differences in head motion in children; and 3) there 

may be frequency-dependent motion effects. 

 

4.1 Participants and data acquisition 

 

We recruited 94 participants (47 females) between 3 to 16 years of age as part of the 

Chinese Color Nest Project (Yang et a., 2017; Zuo et al., 2017), a long-term (2013-

2022) large-scale program2 from the Research Center for Lifespan Development of 

Mind and Brain (CLIMB)3 . All participants were from groups visiting during the 

 
2http://zuolab.psych.ac.cn/colornest.html 
3https://climbgroup.org 
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Science Open Day of the Chinese Academy of Sciences, with the approval of at least 

one legal guardian. The experiment was performed in a mock MRI scanner at the site 

of the MRI Research Center of the CAS Institute of Psychology (Fig. 5). The mock 

scanner was built by PST (Psychology Software Tools, Inc.) using a 1:1 model of the 

GE MR750 3T MRI scanner in use at the institute. It is used for training young children 

to lie still in a scanner before participating the actual MRI scanning session. It is 

decorated with cartoon stickers to provide a children-friendly atmosphere. Head motion 

data were acquired with the MoTrack Head Motion Tracking System (PST-100722). 

The system consists of three components: a MoTrack console, a transmitter and a sensor. 

The sensor is worn on the participant’s head and provides the position of the head 

relative to the transmitter. For each participant, head motion is displayed on the 

computer screen in real-time. The original sampling rate of the system is 103 Hz. The 

averaging buffering size is 11 samples, which results in a recording sampling rate of 

9.285 Hz. The participants were instructed to rest quietly on the bed of the mock scanner 

for around three and half minutes without moving their heads or bodies. They were 

watching a cartoon film inside the scanner during the “scanning” to simulate movie-

watching scanning. The data acquisition period was designed to resemble the real MRI 

scanning environment, with a recording of scanning noises of the real MRI machine 

played as the background noise.  

 

4.2 Data analysis  

 

Head motion data are recorded in text files consisting of six parameters for each time 

point, three translation (millimeters) and three rotation (degrees) measures. The first 

three parameters are displacements in the superior, left and posterior directions, 

respectively. The last three parameters are rotation degrees in the three cardinal 

rotational directions. We converted the original data into frame-wise displacement (FD), 

a single parameter scalar quantity representing head motion proposed by Power et al. 

(2012). To correct for spikes caused by sudden movements (data without this 

preprocessing was also analyzed), which may bias mean FD values, we applied the 

AFNI 3dDespike command (version: AFNI_17.3.06, https://afni.nimh.nih.gov) to the 

FD time series. Then time-windows were determined and applied before feeding the 

data into DREAM. We retained 1672 sampling points from the zeroed time point (time 

point when the original six parameters were set to zero), which equaled a duration of 

three minutes. After preprocessing, we used DREAM to decode the data. Of note, the 

original FD values were all positive. After decoding, the time series of decoded bands 

were demeaned, which means the average values of all decoded time series were very 

near to zero. Thus, we took the absolute value of decoded frequency intervals to 

calculate mean FD values, which were used in subsequent statistical analyses. To assess 

the relationship between mean FD values and age, we fit data in each frequency interval 

with age and sex as covariates of interest, into the multivariable linear regression model 

in formula (4):  

 

y =  𝛽0 +  𝛽1𝑥1 +  𝛽2𝑥2 + 𝛽3𝑥1𝑥2    (4) 

 

where y, 𝑥1 and 𝑥2 represent mean FD values, age and sex (as covariates) respectively, 

and 𝛽0, 𝛽1, 𝛽2 and 𝛽3 are regression coefficients. Of note, the age-sex interaction is 

modeled into the above equation as 𝑥1𝑥2. An analysis of variance (ANOVA) model 

with repeated measures and age and sex as variables of interests was also implemented. 
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We performed the Pearson’s correlational analysis between the standard deviation of 

FD time series and age for each frequency band to see if the stability of head motion 

varies with age. To detect sex differences, we compared mean FD values of each 

decoded frequency intervals between males and females using two-sample t-tests. 

 

4.3 Results  

 

Six participants were excluded from further data analysis due to sampling periods under 

three minutes. Another four participants were excluded because their mean FD values 

were three standard deviations higher than the mean value of the whole group (outliers). 

In the end, 84 participants (42 females) were included in analyses. The demographic 

information of the final included participants is listed in Table 1. No significant 

differences in age were found between males and females. All the findings derived with 

the head motion data without despike preprocessing are highly similar to those of using 

despike, which are reported as following. Meanwhile, all the results derived from the 

multiple regression model are replicated by the ANOVA model. 

 

Table 1 Demographic information of participants involved in analysis 
Number Sex Mean Age STD 

42 Female 8.4 3.1 

42 Male 8.7 3.0 

 

 

4.3.1 Frequency decomposition 

 

Since all the head motion data have the same sampling frequency and sampling period, 

DREAM decoded all the FD time series into the same five frequency intervals (F1: 

0.033 to 0.083 Hz, F2: 0.083 to 0.22 Hz, F3: 0.222 to 0.605 Hz, F4: 0.605 to 1.650 Hz, 

F5: 1.650 to 4.482 Hz). Plots of the full band and the decoded frequency intervals from 

a participant are shown as an example in Figure 6 and Figure 7, respectively.  

 

4.3.2 Relationship between age and head motion measures across frequencies 

 

Results from linear regression analysis yielded significant negative correlations 

between age and mean FD values across all five bands (dof = 80, p < 0.05, FDR 

corrected p values: F1 0.025, F2 0.025, F3 0.022, F4 0.022, F5 0.018; adjusted R2: F1 

0.122, F2 0.159, F3 0.209, F4 0.202, F5 0.255). The relationship between age and mean 

FD values are plotted in Figure 8a. No sex effects were detectable for these correlations. 

This means younger children tend to move more than older ones, and this trait 

correlation held in both sexes. More details about predicted model coefficients are 

provided in Table 2, which provides raw p values without correction for multiple 

comparisons. In addition, we also performed a correlational analysis between the 

standard deviations of decoded FD values and age, and found similarly that the standard 

deviations were significantly negatively correlated with age (dof = 82, F1: r = -0.319, 

p = 0.003, R2 = 0.102; F2: r = -0.337, p = 0.002, R2 = 0.114; F3: r = -0.417, p < 0.001, 

R2 = 0.174; F4: r = -0.446, p < 0.001, R2 = 0.199; F5: r = -0.488, p < 0.001, R2 = 0.238). 

This could indicate that there is less head motion variability with age.   
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Table 2 Regression models of mean FD values for the five frequency bands 
  Estimate T value P 

F1 

𝛽0 0.089616 3.859 0.00023 

𝛽1 -0.006019 -2.305 0.02377* 

𝛽2 0.027346 0.806 0.42248 

𝛽3 -0.000647 -0.172 0.86377 

F2 

𝛽0 0.093527 4.073 0.000108 

𝛽1 -0.005900 -2.285 0.024949* 

𝛽2 0.044632 1.331 0.186960 

𝛽3 -0.002474 -0.666 0.507531 

F3 

𝛽0 0.080541 5.106 2.18e-06 

𝛽1 -0.004486 -2.529 0.0134* 

𝛽2 0.038527 1.673 0.0983 

𝛽3 -0.002686 -1.052 0.2958 

F4 

𝛽0 0.076823 6.192 2.41e-08 

𝛽1 -0.003564 -2.555 0.0125* 

𝛽2 0.027984 1.545 0.1264 

𝛽3 -0.002126 -1.059 0.2929 

F5 

𝛽0 0.088324 8.623 4.85e-13 

𝛽1 -0.003450 -2.995 0.00365* 

𝛽2 0.025042 1.674 0.09803 

𝛽3 -0.001922 -1.160 0.24966 

 

4.3.3 Sex differences by age range 

 

We first compared the mean FD values of each frequency interval between males and 

females. Females showed lower mean FD values than males across all the frequency 

intervals although the differences were not statistically significant. We divided 

participants into three age groups (3 to 6 years old, 7 to 9 years old and 10 to 16 years 

old) and compared mean FD values between males and females in each age group. Age 

characteristics and the number of participants of each age group were taken into account 

when determining the groups (Table 3). We observed significant sex differences across 

F1 to F4 in the age group of 7 to 9 years (p < 0.05, two tails, dof = 27, FDR corrected) 

with boys moving more than girls (Fig. 8b) while the difference was not significant for 

F5. The raw t-values and p-values of these comparisons are: F1, t = -2.300, p = 0.029, 

r2 = 0.164, Cohen’s d = 0.098; F2, t = -2.240, p = 0.033, r2 = 0.157, Cohen’s d = 0.069; 

F3, t = -2.324, p = 0.027, r2 = 0.167, Cohen’s d =0.059; F4, t = -2.323, p = 0.028, r2 = 

0.167, Cohen’s d = 0.050; F5, t = -1.939, p = 0.063, r2 = 0.122, Cohen’s d = 0.032. No 

such sex-related effects on head motion were detectable for the other age groups. As 

Fig. 7b also shows, boys were substantially more variable than girls across all five 

frequency intervals. The variation values of both boys and girls in this age range are 

shown in Table 4.  

 

 

Table 3 Age groups 
Age group Number of males Number of females Total number 

3 to 6 years old 

7 to 9 years old 

10 to 16 years old 

14 

14 

14 

18 

15 

9 

32 

29 

23 
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Table 4 Descriptive statistics of mean FD values of children between 7 to 9 years old 

Sex Frequency Mean Standard deviation Number 

Female 

F1 0.0260941667 0.02298396159 15 

F2 0.0309419333 0.02252424263 15 

F3 0.0328717333 0.01212196762 15 

F4 0.0394202000 0.00943084342 15 

F5 0.0573435333 0.01262457056 15 

Male 

F1 0.0723681643 0.07429027709 14 

F2 0.0782372857 0.07845646646 14 

F3 0.0673085000 0.05560847182 14 

F4 0.0675354286 0.04590004007 14 

F5 0.0758437857 0.03460116143 14 

 

5 DREAM Demo2: Spatial ranks of ALFF across frequencies 

 

The amplitude of low frequency fluctuation (ALFF) is a common measure used in fMRI 

studies that reflects regional amplitude of the signal intensity’s fluctuations in a 

frequency range (Zang et al., 2007). Previous studies revealed variations of ALFF in 

both spatial and frequency domains in the resting-state brain. From the perspective of 

spatial distribution, in the typical resting-state frequency range (e.g., 0.01-0.1 Hz), the 

neural oscillations showed higher ALFF in grey matter than white matter (Turner et al., 

1993; Biswal et al., 1995). ALFF reaches its peaks in visual areas (Kiviniemi et al., 

2003), posterior structures along brain midline (Zang et al., 2007; Zou et al., 2009) and 

in cingulate and medial prefrontal cortices (Ghosh rt sl., 2008). In frequency domain, 

BOLD oscillations distributed to grey matter were mainly in slow-4 and slow-5, while 

its white matter oscillations were dominated by slow-3 and slow-2 (Zuo et al., 2010). 

Specifically, higher ALFF in slow-4 was detected in the bilateral thalamus and basal 

ganglia whereas the slow-5 oscillators exhibited higher ALFF in the ventromedial 

prefrontal cortex, precuneus and cuneus (see a replication study from Xue et al., 2014). 

These findings revealed the frequency-specific characteristics of resting-state ALFF. 

Limited by the sampling precision (TR = 2000ms), studies on the ALFF distribution 

across more accurate bands and their reliabilities are still lacking. For examples, the 

slow-2 frequency band derived in Zuo et al. (2010) has quite small overlap with its 

theoretical range and thus may limit both reliability and validity of its findings. Here, 

we use DREAM to decompose the fast (TR = 720ms) rfMRI data from the Human 

Connectome Project (HCP) (Van Essen et al., 2013) test-retest dataset, to 1) map the 

ranks of ALFF values through slow-1, slow-2, show-3, slow-4 and slow-5 bands and 2) 

evaluate the test-retest reliability of the ALFF values in these different frequency bands. 

 

5.1 Participants and data acquisition 

 

The test-retest dataset from HCP consisting of 45 subjects were used for this analysis. 

All subjects were scanned with an HCP-customized Siemens 3T scanner at Washington 

University, using a standard 32-channel receive head coil. Three participants were 

excluded from the substantial analyses because their resting-state scan durations were 

shorter than others. Forty-two subjects (aged 30.3 ± 3.4 years, 29 males) were included 

in the present study. Each subject was scanned two times and each scan contained 

structural images (T1w and T2w), two rfMRI, seven runs of task fMRI and high angular 
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resolution diffusion imaging (see details of the imaging protocols from HCP website4). 

Of note, in the present work, we only used the rfMRI data, which consisted of 1200 

volumes (TR = 720 ms; TE = 33.1 ms; flip angle = 52°, 72 slices, matrix = 104×90; 

FOV = 208x180 mm; acquisition voxel size = 2×2×2 mm). The data were preprocessed 

according to the HCP MR preprocessing pipeline (Glasser et al., 2013), resulting in the 

preprocessed surface time series data fed to the following DREAM analysis.  

 

5.2 ALFF analysis 

 

For each rfMRI scan, we first extracted the representative time series for each of the 

400 parcels (Schaefer et al., 2018) by averaging all the preprocessed time series within 

a single parcel. DREAM decomposed the time series into its components across the 

potential frequency bands. We performed ALFF analysis for all the bands of each run 

and each subject according to (Zuo et al., 2010) implemented by CCS (Xu et al., 2015). 

Subject-level parcel-wise ALFF maps for each frequency band were standardized into 

subject-level Z-score maps (i.e., by subtracting the mean parcel-wise ALFF of the entire 

cortical surface, and dividing by the standard deviation). The two standardized ALFF 

maps in the same session were then averaged, resulting in two (test versus retest) 

standardized ALFF maps per frequency band for each subject. To investigate the test-

retest reliability of ALFF across the five frequency bands, we calculated the parcel-

wise intraclass correlation (ICC) based upon the two ALFF maps (Zuo et al., 2013; 

Xing & Zuo, 2018). We averaged the two standardized ALFF maps of all the subjects 

to obtain the group-level standardized ALFF maps. In order to evaluate the spatial 

distribution of the ALFF values for each parcel, we assigned its rank of ALFF values 

to the parcel (from 1 to 400). All the above analyses were done for each of the five 

frequency bands, leading to an ALFF ranking map for each frequency band.  

 

5.3 Results 

 

DREAM decomposed the rfMRI timeseries into five frequency bands (slow-5: 0.012-

0.030 Hz; slow-4: 0.030-0.082 Hz; slow-3: 0.082-0.223 Hz; slow-2: 0.223-0.607 Hz; 

slow-1: 0.607-0.694 Hz). Figure 9 mapped ALFF regarding its ranking and reliability 

for all the frequency bands. It is clear that ALFF ranked from high in ventral-temporal 

areas to low in ventral-occipital areas when the frequency band increased from low to 

high, while those in part of parietal and ventral frontal regions were reversed. In terms 

of the ICC maps, it is generally true that the higher frequency bands, the more reliable 

ALFF measurements. The slow-2 (0.223-0.607 Hz) demonstrated the highest test-retest 

reliability of ALFF across the five frequency bands. 

 

6 Discussion 
 

DREAM is free and publicly available software that can decode oscillation data into 

multiple frequency bands. The simple interface was designed to allow all users to easily 

perform multi-band frequency analyses. The computational methods employed in 

DREAM to calculate the numbers and ranges of decoded frequency bands apply the 

Nyquist-Shannon sampling theorem. This toolbox is applicable for multiple forms of 

discrete sampling data, as long as the data are entered in the supported format. Currently, 

 
4 http://protocols.humanconnectome.org/HCP/3T/imaging-protocols.html 
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DREAM can process both NIFTI formatted neuro imaging data and text file formatted 

behavioral data. Additional supported formats will be forthcoming.  

 

As a demonstration of its utility, the results derived with DREAM for pure behavioral 

recordings suggest that head motion may be a behavioral feature reflecting both state 

and trait of individuals. As hypothesized, young children moved more than older 

children. This observation was more evident in the higher frequency bands than in the 

lower frequency bands, which reflects more sudden and sharp movements in younger 

children. The stability of head motion during the experiment also varied with age, with 

head motion becoming less variable in older children. A specific age range (7 - 9 years) 

was associated with sex effects on head motion, with boys tending to move more than 

girls across F1 to F4 bands. The sex-related differences in head motion was greater in 

lower frequency intervals than in higher frequency intervals. This might be an 

indication that this age range is a key period for developing the ability to apply effective 

cognitive control. Our findings are consistent with recent reports that head motion 

during fMRI scanning can be an important confounding factor (Power et al., 2015) 

while it also has neurobiological components related to individual motion traits (Zeng 

et al., 2014; Zhou et al., 2016), which are likely driven by brain systems operating 

within a multi-band frequency landscape. Our results demonstrate the necessity to study 

the characteristics of head motion especially in special cohorts like children, the elderly 

and patients with neurologic or psychiatric conditions, since differences of distance-

related functional connectivity that may be influenced by head motion have been 

observed between such special cohorts and healthy young adults (Andrews-Hanna et 

al., 2007; Fair et al., 2007; Satterthwaite et al., 2012; Fair et al., 2013).  

 

Differences in head motion across ages or between cohorts may reflect differences of 

certain traits, which may co-vary with detected brain signals and behavioral 

observations. The different properties of head motion in different frequency bands show 

that there may be different mechanisms associated with different frequencies. Head 

motion at higher frequencies varies more with age, and this may reflect that cognitive 

control associated with higher frequencies develops better with age. Of note, 

interpolation analyses indicated that this observation is not related to an issue of better 

signal-to-noise ratio at higher frequencies because there are more events per unit time. 

Within the narrow age range of 7 to 9 years old, boys moved more than girls in most 

frequency bands, although sex differences were larger at lower frequencies. This may 

indicate that the development of controlling system associated with lower frequencies 

may have larger sex-related differences for this age range. The above results lead us to 

speculate that there may be two control systems that are associated with different 

frequency bands of head motion which develop differently with age and between boys 

and girls. More detailed experimental studies are needed to test this postulation in future. 

The strategies of dealing with head motion issue in human brain mapping may also 

need updates regarding its measurement reliability and validity in terms of the possible 

neurobiological correlates (Xing & Zuo., 2018; Zuo et al., 2019a; Zuo et al., 2019b). 

 

We detected the pattern of ALFF ranking gradually from low to high frequency bands, 

indicating a trend along the two orthogonal axes. Along the dorsal-ventral axis, higher 

ALFF ranks were moving from the ventral occipital and the ventral temporal lobe up 

to regions in the parietal lobe as the frequency increasing. Along the anterior-posterior 

axis, from lower to higher bands, higher ALFF ranks were walking from the posterior 

to the anterior regions in the ventral part. Such a frequency-dependent ALFF pattern is 
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similar to the findings of previous studies on the association between brain structure 

and gene expression, which also reported orthogonal gradations of brain organization 

and the associated genetic gradients (Chen et al., 2013; Kremen et al., 2013). The 

underlying physiological mechanism and functional significance of the frequency-

dependent ALFF patterns deserve further investigations. It is interesting that the 

frequency-dependent pattern of ICC is quite uniform across the brain and as the 

frequency increased, its reliability increased alongside. This observation illustrated that 

compared with the low frequency bands, higher frequency bands might be more 

suitable for detecting individual differences in ALFF. Most of the previous studies have 

adopted ALFF of the lower frequency bands (i.e., slow-5 and slow-4 or around 0.01 to 

0.1 Hz) where their ICCs rarely met the reliability requirement (>= 0.8) of clinical 

applications. In contrast, our findings suggest that both slow-2 and slow-1 ALFF could 

be the usable and reliable marker of the brain oscillations for these applications. It is 

noticed that the reliability of slow-1 ALFF is slightly lower than those of slow-2 ALFF, 

and this may be an indication on the limited slow-1 band here compared to its 

theoretical range, i.e., around 0.6065-1.6487 Hz. While studies of the very fast sampled 

fMRI signals such as HCP are sparse, it is quite promising for future studies with 

multiple neuroimaging modalities (e.g., Balduzzi et al., 2008; He et al., 2008) including 

fMRI5, EEG6, MEG and ECoG using DREAM as an integrative tool across frequencies. 

An open toolbox such as DREAM is essential for large-scale projects inspired by the 

increasing practice of open sciences coming with more and more fMRI and EEG 

datasets openly shared. 

 

7 Information sharing statement 

 
The DREAM toolbox (https://github.com/zuoxinian/CCS/tree/master/H3/DREAM) 
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Figures 
 

 
Fig. 1 The flowchart on the DREAM algorithm. (1) N3L theory defines an oscillator 

with a length-one frequency band centered at n, i.e., OSC(n), in the natural log space. 

(2) In original frequency space, it expands the frequency band en+0.5-en-0.5 Hz. (3) This 

frequency band can be discretized with a sampling procedure with N points and TR 

rate in terms of the classical signal theory. (4) This computational frequency band is 

for a band-pass filtering process to extract the OSC(n) from the raw time series. 

 

 

 

 
Fig. 2 The DREAM welcome screen 
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Fig. 3 The main interface of DREAM. Circled numbers correspond to the usage steps 

introduced in the 3.2 GUI Usage section 

 

 

 

 
Fig. 4 Data structure for processing by DREAM 
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Fig. 5 The mock MRI scanner at CLIMB 

 

 
Fig. 6 A preview of the original FD time series from a participant 

 

 
Fig. 7 DREAM decodes FD time series from the participant into five bands. 
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Fig. 8 (a) Negative correlations between age and mean FD values of all five 

frequency bands. (b) Boys moved more than girls across F1 to F4 bands in the age 

range of 7-9 years. 

 

 
Fig 9. Mapping ALFF and its reliability across slow frequency bands. 
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