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Abstract 
Despite recent discovery in GWAS of genomic variants associated with Alzheimer's disease 
(AD), its underlying biological mechanisms are still elusive. Discovery of novel AD-associated 
genetic variants, particularly in coding regions and from APOE ε4 non-carriers, may provide 
more insights into the understanding of the pathology of AD. In this study, we carried out 
exome-wide association analysis of age-of-onset of AD with ~20,000 subjects, and placed more 
emphasis on APOE ε4 non-carriers. Using Cox mixed-effects models, we find that age-of-onset 
shows a stronger genetic signal than AD case-control status, capturing many known variants 
with stronger significance, and also revealing three new variants. We identified two novel rare 
variants, rs56201815, a synonymous variant in ERN1, from the analysis of APOE ε4 non-
carriers, and a missense variant rs144292455 in TACR3. In addition, we detected rs12373123, 
a common missense variant in SPPL2C in the MAPT region, associated with age-of-onset of AD 
in APOE ε4 non-carriers. In an attempt to unravel their regulatory and biological functions, we 
found that the minor allele of rs56201815 was associated with lower average FDG uptake 
across five brain regions in ADNI. Our eQTL analyses based on 6198 gene expression samples 
from ROSMAP and GTEx revealed that the minor allele of rs56201815 was associated with 
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elevated expression of ERN1, a key gene triggering unfolded protein response (UPR), in 
multiple brain regions, including posterior cingulate cortex and nucleus accumbens. Our cell 
type-specific eQTL analysis of based on ~80,000 single nuclei in prefrontal cortex revealed that 
the protective minor allele of rs12373123 significantly increased expression of GRN in microglia, 
and was associated with MAPT expression in astrocytes. These findings provide novel evidence 
supporting the hypothesis of the potential involvement of the UPR to ER stress in the 
pathological pathway of AD, and also provide more insights into underlying regulatory 
mechanisms behind the pleiotropic effects of rs12373123 in multiple degenerative diseases 
including AD and Parkinson’s disease.     
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Introduction 
Late-onset sporadic Alzheimer's disease (AD) is a progressive neurodegenerative disorder 
accounting for 50–70% of all dementia cases in elder population (Winblad et al., 2016). Amyloid 
β-peptide (Aβ) was the primary component found in the neuritic plaques of AD patient brain, and 
multiple mutations in the APP gene and its related genes (PSEN1 and PSEN2) promoting Aβ 
production have been identified in familial (early onset) AD (Goate et al., 1991; Levy-Lahad et 
al., 1995; Mullan et al., 1992; Rogaev et al., 1995; Sherrington et al., 1995). These observations 
support a causal role of Aβ deposition in the etiology of AD. Familial AD is, however, much rarer 
than sporadic AD, which is highly prevalent after age 65. Recent genome-wide association 
studies (GWAS) have identified a large number of genetic variants associated with the risk of 
late onset AD (Guerreiro et al., 2013; Harold et al., 2009; Hollingworth et al., 2011; Jansen et 
al., 2019; Jonsson et al., 2013; Lambert et al., 2013; Naj et al., 2011), most of which are located 
in genes exclusively expressed in microglia (e.g., TREM2). These insights suggest involvement 
of microglia in the pathology of AD.  
 
Despite recent progress in understanding the biological mechanisms underlying AD, the cellular 
and molecular activities and causation in late onset AD of most common variants discovered in 
GWAS, including those in APOE, remain unclear. Functional links between most of these AD 
related loci and genes are still to be determined although some microglia-related single 
nucleotide polymorphisms (SNPs) in e.g., CD33, and the MS4A gene cluster, are shown to be 
mediated through TREM2 (Deming et al., 2019; Griciuc et al., 2019). The functional 
mechanisms of TREM2 in Aβ uptake by microglia are also complicated, and contradictory 
biological consequences are observed in mouse models (see e.g., (Gratuze et al., 2018) for a 
review on this topic). Moreover, adding up the APOE variant and other nine identified top SNPs 
accounts for a small portion (5%) of variation of age-of-onset (Raghavan and Tosto, 2017), 
suggesting that missing genetic mechanisms contribute to this complex disease. We expect that 
discovery of additional AD associated genetic variants will provide more insights into the 
understanding of the AD pathology.  
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In this study, we performed exome-wide association analysis of age-of-onset of AD, in which 
most genetic variants are rare or low frequency, using an Alzheimer's Disease Sequencing 
Project (ADSP) sample of 10,216 subjects in the discovery phase. Rare coding variants often 
show larger effect size and their biological consequences are more explicable, but its 
association analysis is complicated by insufficient statistical power. Although exome-wide 
association of AD has recently been explored using AD status (Bis et al., 2018; Cruchaga et al., 
2014; Raghavan et al., 2018), our rationale is that more AD-related rare variants can be 
identified using analysis of age-of-onset of AD with a Cox model given emerging evidence from 
a previous study showing its advantage in terms of statistical power (He and Kulminski, 2019). 
We attempted to replicate significant findings in four other studies, with a meta-analysis sample 
size of about 20,000 subjects. To understand the biological consequences of the identified 
SNPs, we explored their influence on regulatory activities and gene expression at tissue and 
single-cell levels. 
 
We further performed a separate exome-wide association analysis of age-of-onset of AD by 
excluding the APOE ε4 carriers. The overarching goal is to identify novel variants contributing to 
AD independently of the APOE ε4 allele, the strongest single genetic risk factor for AD. Despite 
quarter Century research on the function of APOE gene (Belloy et al., 2019), primary biological 
role of this gene in AD pathogenesis remains elusive as the gene and its protein are probably 
involved in many pathways related to Aβ deposition, Aβ clearance, tau pathology, and 
neuroinflammation (Yamazaki et al., 2019). Our analysis is designed to provide more insights 
into the AD-related APOE biology.  

Results  

Description of the study sample in the discovery phase  
In the discovery phase, we carried out exome-wide association analysis of age-of-onset of AD 
using a whole exome sequencing (WES) sample from the ADSP (Crane et al., 2017). We 
included a total of 10,216 non-Hispanic white subjects (54.86% cases, 58.03% women) after 
filtering subjects with missing information about sex, AD status or age-of-onset. The average 
age-of-onset of AD was 75.4 years (Table S1). We interrogated 108,509 biallelic SNPs with a 
missing rate < 2% across the subjects and a minor allele count (MAC) > 10. To identify genetic 
variants associated with the hazards of AD, we conducted three separate analyses. In the first 
and second analyses, we included all subjects and performed ε4 allele (coded by the minor 
allele of rs429358) unconditional (first) and conditional (second) analyses as APOE ε4 is a well-
known strong predictor of AD. That is, we tested two models, differing as to whether the copy of 
the APOE ε4 SNP rs429358 was included as a covariate. In the third analysis, we only included 
7185 APOE ε4 non-carriers. Despite this reduction of the sample size, we expect better 
statistical power by using the age-of-onset analysis. In all analyses, we included sex and a top 
principal component (PC) as covariates (we examined the top five PCs, and found that only 
PC2 was associated with AD). As the ADSP sample contains family members, all age-of-onset 
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analyses were performed using Cox mixed effects models implemented in the coxmeg R 
package (He and Kulminski, 2019). We built a genetic relatedness matrix (GRM) using the 
ADSP WES data to correct for relatedness of the subjects. We found that the genomic inflation 
was well controlled in all three analyses (λ=1.04, 1.09, and 1.06) (Fig. S1).   

Exome-wide analysis of age-of-onset of AD in the discovery 
phase 
In the first analysis (using all subjects without the adjustment for APOE ε4), we detected four 
independent signals passing the exome-wide threshold (p=5e-07) (Fig. 1A, Table S2, Model 1). 
The most significant SNP was the APOE ε4-coding variant rs429358, having a hazard ratio 
(HR) of 4.37 (p=3.729e-508). The p-value is much more significant than that reported in the 
largest meta-analysis so far based on AD status (p=5.79e-276) (Jansen et al., 2019). This 
finding confirms previous findings (Blacker et al., 1997; Naj et al., 2014; Sando et al., 2008) that 
APOE ε4 is not only associated with AD status, but also substantially decreases its age at onset 
(Fig. 2A). The three signals outside the APOE region are rs75932628 (the R47H mutation) in 
TREM2 (HR=2.72, p=2.04e-16), rs7982 in CLU (HR=0.887, p=5.98e-08), and rs2405442 in 
PILRA (HR=0.88, p=7.67e-08) (Fig. 1A, Table S2, Model 1). Beneficial association of the 
missense variant rs7982 in CLU was not reported in the previous study of AD status using the 
same ADSP sample (Bis et al., 2018). We observed that the minor allele carriers of rs7982 had 
lower hazards consistently across a wide age interval (Fig. 2B). Although the R47H mutation in 
TREM2 and rs2405442 in PILRA were identified in the previous analysis (Bis et al., 2018), our 
analysis increased significance for the R47H mutation (p=2.04e-16 vs. 4.8e-12). In addition, we 
observed well-known AD-associated SNPs among the top hits, including rs12453 in MS4A6A 
(p=7.08e-06), rs2296160 in CR1 (p=9.05e-06), and rs592297 in PICALM (p=5.25e-05) (Table 
S2, Model 1). 
 
In the second analysis (using all subjects with the adjustment for APOE ε4), we identified seven 
independent significant SNPs (p<5e-07) (Fig. 1B, Table S2, Model 2) including three 
aforementioned variants in TREM2, CLU and PILRA. Four additional variants include 
rs144292455 in TACR3 on 4q24 (HR=5.53, p=5.39e-07, MAC=17), rs111033333 in USH2A 
1q41 (HR=4.58, p=2.74e-07, MAC=19), rs199533 in NSF on 17q21.31 (HR=0.87, p=3.95e-07, 
minor allele frequency (MAF)=20.2%), and rs61981931 in CDKL1 14q21.3 (HR=0.77, p=4.57e-
07, MAF=4.9%). The SNP rs199533 in NSF was previously reported in (Bis et al., 2018), but did 
not reach the genome-wide significance in a follow-up meta-analysis incorporating replication 
studies (Bis et al., 2018). The other three variants are novel. This analysis also identified three 
variants in CST9 and STAG3 genes at suggestive level of significance p<5e-06 (Table 1). 
 
In the third analysis (using only APOE ε4 non-carriers), we identified four independent 
significant SNPs (p<5e-07) (Fig. 1C, Table S2, Model 3) including the R47H mutation in TREM2 
(HR=2.87, p=7.90e-14), rs144292455 in TACR3 (HR=4.22, p=2.22e-07) and rs111033333 in 
USH2A (HR=4.89, p=4.25e-08) found in the second analysis. One novel SNP was the rare 
variant rs56201815 in ERN1 within 17q23.3 locus (HR=4.22, p=7.21e-08, MAC=29). The HRs 
of the minor allele of these SNPs were substantial and comparable to that of APOE, which is not 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.28.923789doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923789
http://creativecommons.org/licenses/by-nc-nd/4.0/


surprising because rare coding variants tend to show more significant biological effects, and the 
MAF of these SNPs in the ADSP sample is merely ~0.1%, much lower than the R47H mutation 
in TREM2. In addition, nine SNPs attaining p<5e-06 were identified (Table 1).  
 
We found that the p-values of the newly identified SNPs from the Cox models were much more 
significant, particularly for the rare variants, than those from a logistic model using the same 
ADSP sample and covariates (Fig. 1D), explaining why these SNPs were not detected in the 
previous study. To examine whether the Cox model generally can increase power for detecting 
genetic variants associated with AD, we compared the p-values of well-established AD-related 
coding-variants in the ADSP WES data between the two models. We found that the Cox model 
produced more significant p-values for almost all SNPs except for the two SNPs in MS4A6A 
(Fig. 1D).  

Replication analyses confirm SNPs in ERN1, TACR3 and the 
MAPT region  
The variants in TREM2, CLU and PILRA, identified using the full sample in our first analysis, 
were reported by previous larger studies (Jansen et al., 2019; Jonsson et al., 2013; Lambert et 
al., 2013). Accordingly, we focus on replication of the novel findings identified in the analyses 
conditional on APOE ε4, and using the ε4-free sample. We attempted to replicate associations 
of 13 candidate SNPs with a p-value <5e-06 in at least one model in the discovery phase (Table 
1). These SNPs included six common variants (MAF�5%) and six rare variants (MAF<1%). We 
further included rs2732703, an intronic variant of ARL17B in the MAPT region reported to be 
associated with AD in a previous study of APOE ε4 non-carriers (Jun et al., 2016). This SNP is 
in high linkage disequilibrium (LD) with our identified coding variants rs199533 (r2=0.90) in NSF 
and rs12373123 (r2=0.93) in SPPL2C. We examined these SNPs in non-Hispanic white 
populations of LOADFS (3473 subjects, 43.4% cases, imputed genotypes), CHS (3262 
subjects, 6.2% cases, imputed genotypes), GenADA (1588 subjects, 50% cases, imputed 
genotypes), and the Religious Orders Study (ROS) and the Rush Memory and Aging Project 
(MAP) cohort (1195 subjects, 45% cases, whole genome sequencing (WGS) genotypes) (Table 
S1). We removed from the ROSMAP WGS cohort ~400 subjects, who were already included in 
the ADSP sample, resulting in 681 non-Hispanic whites. We did not exclude from LOADFS and 
CHS those subjects overlapping in ADSP as their proportion was small (475 for LOADFS and 
834 for CHS) (Table S6). The coxmeg R package (He and Kulminski, 2019) was used to 
analyze the LOADFS data set with a GRM estimated from a genotype array, and the coxph 
function in the survival R package (Therneau and Lumley, 2015) was used to analyze the CHS, 
GenADA and ROSMAP data sets.  
 
Meta-analysis of the results from the conditional model adjusted for APOE ε4 showed an 
improved p-value of 5.20e-09 for rs144292455 in TACR3 (MAF=0.093% in ADSP) compared to 
the ADSP sample alone (p=5.39e-08). This SNP had a p-value of 6.3e-03 when a logistic model 
instead of Cox model was fitted, which might be a reason for not identifying this SNP by the 
previous case-control study of ADSP (Bis et al., 2018). The other SNPs did not reach the 
exome-wide significance of 5e-07 in the meta-analysis (Table 1). Rs144292455 is a coding 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2020. ; https://doi.org/10.1101/2020.01.28.923789doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.28.923789
http://creativecommons.org/licenses/by-nc-nd/4.0/


variant of TACR3 resulting in a premature stop codon and thus a shortened transcript. The 
minor allele of rs144292455 increased the risk of AD in ADSP (17 carriers, 16 cases), ROSMAP 
(2 carriers, 1 case), LOADFS (9 subjects with a dosage>0.5) and GenADA (1 subject with a 
dosage>0.5), while no imputed carriers were observed in CHS (Table S7). The vast majority of 
the minor allele carriers in ADSP (16 of 17; 3 of 16 carry also APOE ε4 allele) had AD with an 
average age-of-onset of 71.03 (Fig. 2C). This age was substantially younger than the average 
age-of-onset of 75.4 years based on all AD cases. Two carriers in ROSMAP were both APOE 
ε4 non-carriers and the AD case carried APOE ε2/ε4 genotype. 
 
In the analysis using APOE ε4 non-carriers, three SNPs (rs56201815, rs144292455, and 
rs12373123) showed smaller exome-wide significant meta-analysis p-values (p<5e-07) 
compared to those from the ADSP sample alone. Association for rs111033333 remained at the 
exome-wide significance. Replication of rare variant rs111033333 was, however, less reliable as 
no minor allele carriers were observed in ROSMAP, LOADFS, or CHS. The novel AD-
associated SNP rs56201815 (meta-analysis p=4.88e-11) is a synonymous variant in ERN1. 
rs12373123, a missense variant of SPPL2C (Table 1), is located in a large LD block spanning 
the MAPT region and it is in complete LD with multiple synonymous, nonsense or missense 
variants in CRHR1 and MAPT. In APOE ε4 non-carriers, the hazards of AD were consistently 
lower in the carriers of the minor allele of rs12373123 after age 70 (Fig. 2D). It had a more 
significant p-value (meta-analysis p=4.76e-07) than the previously reported SNP rs2732703 
(meta-analysis p=5.17e-06) and rs199533 (meta-analysis p=6.73e-07), suggesting that this 
SNP might be more correlated with the true causal variant for AD in this region. The minor allele 
of rs12373123 was consistently associated with decreased risk of AD in all studies except for 
LOADFS.  

Minor allele of rs56201815 in ERN1 increases the risk of AD 
Among the aforementioned replicated SNPs, rs56201815 in ERN1 yielded the most significant 
meta-analysis p-value, and its minor allele (G) (MAF=0.15% in a non-Finnish European sample 
(Lek et al., 2016)) increased the risk of AD consistently across all studies and independently of 
the APOE ε4 allele. The HRs were nominally significant in LOADFS (p=1.97e-02) and CHS 
(p=6.66e-03). In GenADA, no carriers of the minor allele were observed. We analyzed the minor 
allele carriers in these studies in more detail. Twenty-seven (16 males) rs56201815-G carriers 
in ADSP (a total of 29 carriers in which two were excluded from the analyses because they 
transformed from control to mild cognitive impairment (MCI) during the follow-up in ADSP, and 
their AD status was unknown) were sampled from 11 cohorts including ACT, ADC, CHAP, 
MAYO, MIA, MIR, ROSMAP, VAN, ERF, FHS, and RS (Table 2). The genotypes of these 
rs56201815-G carriers passed the quality control and had high sequencing depth. Of them, 23 
subjects were diagnosed with AD and their average age-of-onset (73.5 years) was lower than 
the average age-of-onset (75.4 years) of all AD cases in ADSP (Fig. 2E). Interestingly, three of 
the four rs56201815-G carriers in the control group carried APOE ε4 allele that explained why 
this SNP was only identified in the analysis of APOE ε4 non-carriers. Indeed, we observed that 
rs56201815-G had a stronger effect on the risk of AD in APOE ε4 non-carriers (Fig. 2F, Table 
S2). In the ROSMAP WGS cohort (after excluding the duplicated subjects examined in the 
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ADSP sample), we observed three rs56201815-G carriers, including one APOE ε4 carrier 
(Table 2). Two of the three carriers were diagnosed with AD, which, albeit from a small sample 
size, is much higher than the incidence of 36.7% in the non-carriers. The genotypes of all 
carriers had high sequencing quality. In the LOADFS cohort, we observed seven subjects with a 
dosage of rs56201815-G higher than 0.5 (Table 2). One individual was followed up until age 59 
which is too young to be a useful subject for study of AD. Four out of the remaining six carriers 
had both AD and dementia, including three family members who were all diagnosed with AD 
(Table 2). This incidence (66.7%) was higher than that in non-carriers (43%). In the CHS cohort, 
we observed three subjects with a dosage of rs56201815-G higher than 0.5 (Table 2), one of 
whom (33.3%) had AD during the follow-up, higher than the incidence (6.16%) in non-carriers.  
 
The ADNI project was not included in the replication analysis because age-of-onset of AD was 
not available. Moreover, the vast majority of the ADNI WGS sample (738 subjects) was MCI or 
control subjects, and AD cases accounted for merely 5.8%. Instead, we investigated the 
association between rs56201815 and average FDG-PET intensity, one of the most accurate 
biomarkers to predict conversion from MCI to AD and to distinguish between control, early MCI 
(EMCI), late MCI (LMCI) and AD subjects (Caminiti et al., 2018; Landau et al., 2010, 2011; 
Nozadi et al., 2018; Shivamurthy et al., 2014), across five brain regions of interest (ROIs) 
(left/right angular gyrus, bilateral posterior cingulate gyrus, and left/right inferior temporal gyrus). 
We observed that the average FDG uptake of the five rs56201815-G carriers (two LMCI 
subjects, one EMCI subject, and two controls) adjusted for within-subject variability, age at 
measurement, sex, and diagnosis groups (control, EMCI, LMCI and AD) was significantly lower 
than that of the homozygous subjects (Fig. 3A), suggesting that the rs56201815-G carriers had 
lower cerebral glucose metabolism and will more likely convert to advanced stages.  

rs56201815 is synonymous variant and brain-specific eQTL of 
ERN1 
As rs56201815 in ERN1 was the most significant SNP identified from the discovery and 
replication phases, we next sought to examine its biological and regulatory functions. 
rs56201815 is a synonymous coding variant, indicating that it unlikely alters amino acid 
sequence of ERN1. However, rs56201815 is located in a CTCF binding site, an open chromatin 
region in multiple cell types and an evolutionarily conserved region (Fig. 3B). Moreover, a recent 
mouse study reports that inhibition of ERN1 expression reduces amyloid precursor protein 
(APP) in cortical and hippocampal areas, and restores the learning and memory capacity of AD 
mice (Duran-Aniotz et al., 2017). We therefore hypothesized that rs56201815 is a cis-eQTL of 
ERN1 in brain, and the detrimental effect of rs56201815 on AD is mediated by upregulating the 
expression of ERN1. To test this hypothesis, we examined the effect of rs56201815 on the 
expression of ERN1 using RNA-seq data in ROSMAP and GTEx, and microarray data in ADNI.  
 
We collected 2213 RNA-seq samples from 838 subjects in the ROSMAP cohort in three brain 
regions including dorsolateral prefrontal cortex (PFC), posterior cingulate cortex (PCC) and 
anterior caudate nucleus, among which four subjects were rs56201815-G carriers. Our 
differential expression (DE) analysis revealed that the minor allele of rs56201815 was 
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significantly associated with increased expression of ERN1 (log(fold-change (FC))=0.204, 
p=0.0285) in PCC (Fig. 3C). We then analyzed a WGS data set of 838 healthy subjects from the 
GTEx project. The WGS data included two rs56201815-G carriers. One of them had RNA-seq 
data in nine brain tissues including amygdala, anterior cingulate cortex (ACC), hypothalamus, 
caudate, nucleus accumbens, putamen, cerebellar hemisphere, cerebellum and spinal cord. 
Despite the small sample size, our DE analyses indicated that rs56201815 was a potential 
eQTL of ERN1 in several regions in cerebrum, particularly nucleus accumbens (log(FC)=1.28, 
p=1e-4), and putamen (log(FC)=0.734, p=0.05) (Fig. 3D). In line with the result from the 
ROSMAP data in PCC, rs56201815-G was correlated, albeit not significant (log(FC)=0.35, 
p=0.437), with the expression in ACC, leading to a significant meta-analysis p-value of 0.0213 
for cingulate cortex. In almost all regions in cerebrum, the rs56201815-G carrier had uniformly 
higher expression of ERN1 than the average (Fig. 3D, Fig. S4A).  
 
We then investigated the effects of rs56201815 on ERN1 expression in other brain regions, and 
in four non-brain tissues including sigmoid colon, lung, spleen and whole blood. The RNA-seq 
data in sigmoid colon had two rs56201815-G carriers, and one rs56201815-G carrier was 
available in the other tissues. The DE results showed no evidence of association between 
rs56201815 and the gene expression in any of these tissues (Fig. S4A). As the number of 
rs56201815-G carriers in the GTEx project is small, we further analyzed a peripheral whole 
blood sample from the ADNI project, comprising 733 subjects having both a WGS dataset and a 
microarray gene expression dataset, three of whom were rs56201815-G carriers with high 
sequencing quality. Our DE analyses of two probes in ERN1 showed that the minor allele 
rs56201815-G was not associated with either probe (Fig. S4B).  
 
These results suggested that rs56201815 was associated with elevated expression of ERN1 in 
cerebral regions (most predominantly in PCC and several regions in basal ganglia), but not 
likely in other tissues. To examine whether its regulatory effects in the brain are mediated by 
change of chromatin activity, we further carried out association analyses of epigenetic markers 
including DNA methylation and histone modifications in PFC. We collected an Illumina 450k 
array DNA methylation data set of 721 subjects (four rs56201815-G carriers) from a ROSMAP 
sample (De Jager et al., 2014, 2018). Among 11 probes located in the region of ERN1, we 
found no evidence of significant association after adjustment for multiple testing (Table S3). The 
most significant probe (chr17:62134117), also the probe closest to rs56201815, was located in 
an enhancer with a p-value of 0.012. For histone modifications, we interrogated histone 3 lysine 
9 acetylation (H3K9ac) peaks using a ChIP-seq data set of 632 subjects (four rs56201815-G 
carriers) from a ROSMAP sample (De Jager et al., 2018; Klein et al., 2019). We conducted 
differential analyses of 26,384 broad peaks adjusted for fraction of reads in peaks (FRiPs), GC 
bias, and 10 remove unwanted variation (RUV) components. No significant association was 
found among nine broad peaks within a ±200kb flanking region of ERN1 after adjustment of 
multiple testing although eight peaks showed slightly increased intensity in the carriers (Table 
S4). The most significant association was in an enhancer at chr17:62,337,374-62,342,372 with 
a p-value of 0.043.             
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Rs12373123 is neural cell type-specific eQTL of MAPT and GRN  
Previous studies show that rs12373123 is a cis-eQTL of multiple nearby genes (e.g., MAPT, 
CRHR1, and LRRC37A) in multiple tissues including brain (Gibbs et al., 2010; GTEx 
Consortium et al., 2017; Jun et al., 2016; Zou et al., 2012), and shows chromatin interactions 
with these genes (Fig. 4A). But it is not clear which cell type and genes mediate its effect on AD. 
We then explored the regulatory effects of rs12373123 at a cell-type level using a single-
nucleus RNA-seq (snRNA-seq) dataset. Cell type-specific analysis can also reduce potential 
confounding effects originated from unobserved heterogeneous cell type proportion across 
subjects in the tissue-level analysis, and therefore produces more accurate and refined 
estimates. We performed cell type-specific eQTL analyses using 44 subjects having both 
genotype data (39 subjects from WGS and 5 subjects from a SNP array) and snRNA-seq data 
from ~80,000 cells in PFC from a ROSMAP sample. We classified cells into excitatory neurons, 
inhibitory neurons, astrocytes, microglia, oligodendrocytes and oligodendrocyte progenitor cells 
(OPCs) based on previous clustering results (Mathys et al., 2019). We then aggregated cells 
within each cell type and each subject.  
 
In each cell type, we interrogated 11 protein coding genes (10 genes within a ±500kb flanking 
region and GRN, a nearby gene linked to frontotemporal lobar degeneration (FTD), a type of 
dementia). The cell type-specific eQTL analyses revealed that one or more copies of 
rs12373123-C were significantly associated with elevated expression of ARL17B in all six brain 
cell types (p<1e-11) (Fig. 4B, Table S5). rs12373123 was also an eQTL of LRRC37A3, 
KANSL1, and CRHR1 in all cell types except for microglia (Fig. S2, Table S5). The protective 
allele rs12373123-C was associated with elevated MAPT expression in astrocytes (p=0.01) 
while a decreasing trend in OPCs (p=0.09) (Fig. 4B, Table S5). We further found that 
rs12373123-C, particularly its homozygous protective genotype, was significantly associated 
with increased expression of GRN in microglia (p=3.65e-06) (Fig. 4B, Table S5), which is a 
protective gene against dementia and is important for lysosome homeostasis in the brain (Arrant 
et al., 2017; Holler et al., 2017). 
 
We also assessed the cell type-specific association between rs56201815 and the expression of 
ERN1. We observed that ERN1 was ubiquitously expressed in all brain cell types, most 
abundantly in microglia, followed by astrocytes and OPCs. As there was only one rs56201815-
G carrier among the 39 WGS subjects, and, unfortunately, its total sequencing depth was much 
lower than that of the other subjects (~10% of the average library size), we investigated three 
major abundant cell types (excitatory neurons, astrocytes, and oligodendrocytes), for which the 
carrier had a library size > 50,000. We observed that rs56201815-G was slightly correlated with 
increased expression of ERN1 in excitatory neurons, but not significant (Fig. S3).   

Gene-set analysis identifies astrocyte, microglia and amyloid beta 
related pathways    
As aggregating signals within a gene can often increase the statistical power, in particular, for 
detecting rare coding variants, we carried out gene-based analyses using the summary 
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statistics of all examined SNPs estimated from the ADSP sample. Our gene-based analyses 
using MAGMA (de Leeuw et al., 2015) showed that TREM2 was the most significant gene 
associated with AD in all individuals (p=1.65e-9) and in APOE ε4 non-carriers (p=2.57e-10) (Fig. 
S5A), consistent with previous results (Bis et al., 2018). Indeed, all six exonic SNPs (rs2234256, 
rs2234255, rs2234253, rs142232675, rs143332484, rs75932628) in TREM2 were at least 
nominally associated with AD (Table S2). Its significance in APOE ε4 non-carriers was higher, 
suggesting that the effects of TREM2 on AD were independent of APOE. In addition, multiple 
genes in the MAPT region including MAPT, KANSL1, NSF, and SPPL2C were significantly 
(p<3.5e-06) associated with the risk of AD in both analyses (Fig. S5B). We also observed that 
CLU, TACR3, NAV2 and FAM186B were among the top associated genes. 
 
Our gene-set analysis using FUMA (Watanabe et al., 2017) based on the summary statistics 
from the exome-wide association analysis conditional on APOE ε4 detected one Gene Ontology 
(GO) gene set (positive regulation of astrocyte activation) associated with AD (Bonferroni 
adjusted p<0.05) (Fig. 5A). Other top enriched gene sets included antigen processing and 
presentation via MHC class II, amyloid beta clearance and formation, response to endoplasmic 
reticulum (ER) stress, and microglia activation (Fig. 5A). Consistently, the gene sets related to 
astrocytes, microglia and amyloid beta were also among the top in the gene-set analysis using 
APOE ε4 non-carriers (Fig. 5B). Our cell type association analysis using FUMA (Watanabe et 
al., 2019) showed that microglia was associated with AD among nine major cell types in the 
brain (p<0.05) in the analysis of APOE ε4 non-carriers (Fig. 5D). No cell type was associated 
with AD based on the summary statistics from the association analysis conditional on APOE ε4 
(Fig. 5C).   

Discussion 
In this study, we interrogated association between 108,509 exome-wide SNPs and age-of-onset 
of late onset AD using Cox models with a sample consisting of ~20,000 AD patients and 
controls. We also attempted to identify SNPs contributing to earlier onset in APOE ε4 non-
carriers alone. Most of these SNPs are rare variants. Our results not only confirm previously 
reported AD-related SNPs with much higher significance, but also reveal novel genetic variants 
associated with age-of-onset of AD, particularly in APOE ε4 non-carriers.    
 
One of our major findings is a synonymous rare variant, rs56201815, in ERN1 (also known as 
IRE1). Our results showed that the minor allele of this SNP was associated with dramatically 
higher risk of AD, particularly in APOE ε4 non-carriers. Its huge effect size, unanimously 
replicated in three other cohorts, is not surprising as its MAF in the population is only ~10% of 
the rare variant rs75932628 in TREM2 according to ExAC (https://gnomad.broadinstitute.org/). 
ERN1 encodes a key protein, containing a serine/threonine-protein kinase domain and a 
ribonuclease (RNase) domain, involved in unfolded protein response (UPR) to ER stress by 
activating its downstream target XBP1 (Calfon et al., 2002; Lee et al., 2002). Interestingly, a 
recent experimental study shows that proportion of activated ERN1 in postmortem brain tissue 
is associated with Braak stage of advanced AD patients (Duran-Aniotz et al., 2017). 
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Deactivation of the RNase domain of ERN1 in neurons reduces all hallmarks of AD including 
amyloid beta load, cognitive impairment, and astrogliosis in 5xFAD mice (Duran-Aniotz et al., 
2017). Moreover, ablation of eIF2α kinase PERK, one of the three major UPR genes, also 
prevents defects in synaptic plasticity and spatial memory in AD mice (Ma et al., 2013). Our 
findings show that the minor allele of rs56201815, increasing mRNA expression of ERN1 in 
multiple brain regions, also significantly increases the risk of AD, which corroborate these 
experimental results, and provide more evidence that responses to ER stress are probably 
involved in the causal pathway of AD.  
 
Aging is the most important risk factor for late onset AD, indicating that certain risk factors 
during aging process might be implicated and required in the pathogenesis of AD. The UPR is 
one of the mechanisms disrupted during aging, resulting in augmented susceptibility to ER 
stress and accumulation of unfolded protein (Naidoo et al., 2008). Previous studies show that 
aging leads to deficits in the systems involved in the defense against unfolded proteins in rat 
hippocampus (Paz Gavilán et al., 2006). Persistent ER stress in the central nervous system 
during aging can initiate apoptosis of neurons, and can trigger innate immune response in 
microglia (Sprenkle et al., 2017; Zhang and Kaufman, 2008). Combined with the fact that many 
AD-related genes identified by GWAS are expressed exclusively in microglia, our findings 
indicate that the interaction between the UPR and innate immune system might play a critical 
role in biological mechanisms underlying AD.  
 
As rs56201815, the variant rs12373123 in the MAPT region was also identified in APOE ε4 non-
carriers. The minor allele of rs12373123 was associated with reduced susceptibility to AD in 
ADSP, ROSMAP, CHS, and GenADA. This SNP is located in an LD block spanning >400kb, 
and is in high LD with a large number of SNPs including multiple missense variants in MAPT, 
SPPL2C, CRHR1 and KANSL1. Previous GWAS show that rs12373123 and two nearby 
missense SNPs (rs12185268 and rs12373124) in complete LD with rs12373123 exhibit 
pleiotropic associations with numerous diseases and traits including intracranial volume (Ikram 
et al., 2012), corticobasal degeneration (Kouri et al., 2015), PD (Do et al., 2011; Hamza et al., 
2010; Lill et al., 2012; Pankratz et al., 2012), primary biliary cirrhosis (Liu et al., 2012), red blood 
cell count (van der Harst et al., 2012), and androgenetic alopecia (Li et al., 2012). On the other 
hand, the major allele, more predisposed to degenerative diseases, is significantly associated 
with increased bone mineral density (Estrada et al., 2012; Morris et al., 2019). Because SNPs 
contributing to age-related degenerative diseases are generally not subject to evolutionary 
selection (Kulminski, 2013; Nesse et al., 2012), its major allele is probably selected by evolution 
due to its beneficial effect on bone mineral density. The results of our age-of-onset analyses 
indicate that this pleiotropic region might also be implicated in late onset AD, especially in APOE 
ε4 non-carriers. Our cell type-specific analyses reveal that rs12373123 is a cis-eQTL in different 
brain cells of multiple critical genes implicated in PD and FTD (e.g., MAPT and GRN), 
elucidating the regulatory mechanisms underlying its pleiotropy. Due to the involvement of tau 
protein in the etiology of AD and PD, the effect of rs12373123 on these diseases might be 
mediated by MAPT. Indeed, rs12373123 is in high LD with multiple missense SNPs (e.g., 
rs62056781 and rs74496580) in MAPT, and we found in the snRNA-seq data that rs12373123 
is also an eQTL of MAPT in astrocytes. Our finding also suggests that the effects of rs12373123 
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can be mediated by increasing the expression of GRN in microglia, which is a key gene 
protective against FTD. 
 
In addition, our results demonstrated strong advantages in statistical power of using a Cox 
model for age-of-onset traits than a logistic model for binary outcomes in the study of AD. The 
power gain in terms of p-values is evident for many well-known AD related SNPs in e.g., 
TREM2 and CLU, which all achieved more significant p-values than a previous study using the 
same cohort (Bis et al., 2018). Despite a smaller sample size, the p-value of APOE ε4 in our 
analysis is much more significant than a recent large-scale meta-analysis of AD status (Jansen 
et al., 2019) and a previous analysis using a linear model of log-transformed age-of-onset (Naj 
et al., 2014). Moreover, our age-of-onset analysis using a Cox model showed promising results 
in terms of statistical power for identifying rare variants compared to a logistic regression. An 
advantage of a Cox model over Poisson regression or logistic regression is that it implicitly 
accounts for age-varying hazards, a characteristic in many age-related diseases, e.g., AD 
(Hebert et al., 1995). Our results in AD suggest that Cox models can have a power advantage 
for exploring rare variant association in other age-related diseases.  
 
Although our identified SNPs were validated in multiple independent cohorts, we acknowledge 
some limitations. The definitions and criteria of diagnosis of AD can vary across these cohorts. 
AD has certain similarity in the clinical and biological manifestation to other common 
neurodegenerative diseases such as FTD, which makes the clinical diagnosis of AD more 
complicated. In addition, two of our findings rs56201815 in ERN1 and rs144292455 in TACR3 
are rare variants (MAF=~0.13% and ~0.09%), which had lower imputation quality compared to a 
common variant, especially for rs144292455. Most of our GWAS replication cohorts had 
moderate imputation quality for rs56201815. Although these SNPs showed solid associations in 
our meta-analyses, as the sample size of our WGS replication cohort is small, more GWAS 
studies using large-scale WGS or WES data are preferable to further validate these identified 
associations. 
 
In conclusion, we identified three novel SNPs in ERN1, TACR3, and SPPL2C/MAPT-AS1 that 
exhibit strong associations with age-of-onset of AD. We also explored their regulatory 
consequences at tissue and single-cell levels in brain. These findings support the hypothesis of 
potential involvement of the UPR to ER stress and tau protein in the pathological pathway of 
AD, contributing to the understanding of the biological mechanisms underlying AD. Our findings 
are useful for guiding follow-up studies, and provide more insight into the molecular 
mechanisms and implication of the relevant genes in AD.     

Methods 
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Phenotypes in age-of-onset GWAS 
A total of 10,913 European-American participants used in the discovery phase of the exome-
wide age-of-onset association analyses of AD were collected from the ADSP project. These 
subjects were sampled from 24 cohorts, among which >3000 subjects were sampled from the 
ADC project (Table S6). The AD status of individuals used in the analyses was defined by 
clinical assessment based on NINCDS-ADRDA criteria of AD. All controls were cognitively 
normal individuals aged 60+. Details about study design and sample selection were described 
in (Beecham et al., 2017). The AD status variable in the ADSP dataset was constructed based 
on information on prevalent and incident AD status from the updated dataset (Version 7 with 
release date on June 09, 2016) if available. Otherwise, information on prevalent and incident AD 
status as given in Version 5 (release data on July 13, 2015) was used. More specifically, a 
subject was treated as AD if either prevalent or incident AD status during the ADSP follow-up 
was observed. The age-of-onset variable was based on the same datasets as the AD status. In 
both versions (Version 5 and 7), all data for age-of-onset, which we received from dbGaP, were 
censored by age 90. 
 
Four cohorts (ROSMAP, LOADFS, CHS, GenADA) were included in the replication phase of the 
age-of-onset GWAS. To be consistent with the AD status in ADSP, AD status in ROSMAP was 
based on the clinical diagnosis of AD at the last visit. For AD cases, the age at first Alzheimer’s 
dementia diagnosis variable was used as age-of-onset, which was also censored by age 90 if it 
was 90+. For controls, age-of-onset was calculated as age at the last visit or age at death if age 
at the last visit was not available. In LOADFS, some subjects had missing information about the 
age-of-onset of AD. For these subjects, we treated them as censored and set its age-of-onset 
as the age at the recruitment. In CHS and GenADA, the AD status and age-of-onset variables in 
phenotype files provided in dbGaP were used. 

Genotyping, Imputation, and Quality Control 
WES genotypes of bi-allelic SNPs mapped to hg19 from 10,913 ADSP participants were called 
using the quality-controlled Atlas-only pipeline at Baylor College of Medicine (We did not use the 
data from the GATK pipeline at the Broad institute due to known quality issues 
(https://www.niagads.org/adsp/data-notices)). More details about the production of the WES 
data in ADSP can be found in (Bis et al., 2018). Variants with missing rate > 2% or MAC < 10 
were excluded from the age-of-onset association analyses. After the filtering, 108,509 and 
110591 variants remained in the analysis using all subjects and APOE ε4 non-carriers, 
respectively. VCF files of recalibrated WGS data from 1196 participants in ROSMAP were 
downloaded from the synapse website (https://www.synapse.org/). A total of 681 subjects were 
included in the replication phase after removing 16 discordant WGS samples, 17 duplicates and 
477 subjects overlapping the ADSP sample. Genotyping of 3043 participants in CHS was 
performed using a HumanOmni1-Quad Illumina array. Genotyping of 3456 non-hispanic 
Caucasian participants in NIA-LOADFS was performed using a Human610-Quad Illumina array 
(~600K SNPs). Genotyping of 1588 non-hispanic Caucasian participants in GenADA was 
performed using two Affymetrix 250K arrays (a total of ~500K SNPs). More information about 
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these cohorts can be found in (Gottdiener et al., 2000; Li et al., 2008; Wijsman et al., 2011). We 
phased and imputed the genotypes in these cohorts using the Michigan imputation server (Das 
et al., 2016) with a reference panel from the Haplotype Reference Consortium (HRC) (Version 
r1.1 2016).  

Exome-wide age-of-onset association analysis 
The association analyses of the age-of-onset of AD in the discovery phase of ADSP was 
conducted using a Cox mixed-effects model implemented in the coxmeg R package (He and 
Kulminski, 2019), which accounted for the family structure in the cohort using a genetic 
relatedness matrix (GRM). A dense GRM was first estimated from the original WES data based 
on the GCTA model (Yang et al., 2011) implemented in the SNPRelate R package (Zheng et al.,
2012). In the discovery phase of ADSP, we built a sparse GRM by setting any entry below 0.03 
to zero. We evaluated five top PCs (PC1 to PC5) calculated from the dense GRM, and included 
the only significant PC2 in the analyses. We first estimated a variance component in the null 
model, which was then used to estimated HRs and p-values for all SNPs. We performed two 
analyses, (a) including all subjects with PC2, sex and the number of copies of APOE ε4 
included as covariates, (b) including only APOE ε4 non-carriers with PC2 and sex included as 
covariates. We found that the estimated variance component was zero in the analysis (b), 
suggesting no evidence of random effects, and therefore we instead used a simple Cox model. 
The threshold to declare significant associations was calculated as 0.05 divided by the total 
number of tested SNPs. For comparison with analysis of AD status, we performed association 
analysis by fitting a logistic regression using the glm R function adjusting for the same 
covariates with the same sample. 
 
We performed age-of-onset association analyses in LOADFS, CHS, ROSMAP, and GenADA for
the top SNPs passing the suggestive threshold (p<5e-06) in the discovery phase. The same 
model and estimation procedures as in ADSP were used in LOADFS, which is also a family-
based cohort. In LOADFS, the GRM was estimated from the genotype array data. The 
association analyses were conducted in the other three cohorts (i.e., CHS, ROSMAP and 
GenADA) using a Cox model implemented in the survival R package (Therneau and Lumley, 
2015) because these cohorts consisted of unrelated subjects. We also included sex and the 
number of copies of APOE ε4 as covariates. Meta-analysis effect sizes and standard errors 
were computed using the summary statistics from all five studies based on the following fixed-

effects model,  and , where  is the weight for the study .  
 
To compare age-of-onset analysis with case-control analysis, we also performed association 
analyses of AD status using logistic regression for the two identified SNPs (rs56201815 and 
rs12373123) in ADSP.  

e 
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d 
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Gene-based association analysis 

The gene-based analysis was performed based on the summary statistics obtained from the 

age-of-onset association analyses. We only included SNPs with MAC≥10 and missing rate<2% 

in the gene-based analyses. Each SNP was first annotated to a gene using its SNP ID 

according to a gene location file obtained in the MAGMA website 

(https://ctg.cncr.nl/software/magma). We only included SNPs within the boundary of a gene 

body. Gene-based p-values were then computed using MAGMA with a SNP-wise mean model 

(de Leeuw et al., 2015). LD between the SNPs was estimated using the raw WES data in 
ADSP. 

Gene-set and cell type association analysis 
The gene-set analysis was performed for curated gene sets and GO terms using the procedure 
SNP2GENE in FUMA (Watanabe et al., 2017) based on the summary statistics obtained from 
the age-of-onset association analyses. The 1000 Genomes Project (phase 3) for the european 
population was used as a reference panel in the analysis. The cell type association analysis 
was also performed using FUMA (Watanabe et al., 2019) following the SNP2GENE procedure. 
We selected a human brain single-cell RNA-seq data set provided in (Darmanis et al., 2015) as 
a reference for cell type-specific gene expression.   

Analysis of FDG-PET data 
The longitudinal FDG-PET average intensity scores across five regions of interest (ROIs) 
(left/right angular gyrus, bilateral posterior cingulate gyrus, and left/right inferior temporal gyrus) 
for 738 subjects in ADNI having the WGS data were downloaded from the ADNI website 
(https://ida.loni.usc.edu). Details about sample preparation and data generation were described 
in (Landau et al., 2010, 2011). The association analysis between average FDG-ROI and the 
genotype of rs56201815 was performed by fitting a linear mixed-effects model using lme4 R 
package (Bates et al., 2014) including a random effect accounting for within-subject variability 
and three covariates (age, sex, and diagnosis group).  

Analysis of tissue-specific RNA-seq and microarray data 
BAM files of aligned reads from a total of 2213 RNA-seq samples in three brain regions 
(dorsolateral PFC, PCC and anterior caudate nucleus) in the ROSMAP project were 
downloaded from the synapse website (https://www.synapse.org/). Raw counts of 57,905 
coding and non-coding genes were called using featureCounts (Liao et al., 2014) according to 
the GENCODE annotations GRCh37(r87). Samples with RIN<5 were excluded before the 
analysis. We first removed low-expressed genes (those genes for which fewer than three 
individuals had counts-per-million>1) before normalization. We then normalized the RNA-seq 
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raw counts using the trimmed mean of M-values (TMM) normalization method (Robinson and 

Oshlack, 2010). In the analysis of PFC, 761 non-hispanic Caucasian subjects (including four 

rs56201815-G carriers) having both gene expression and genotype of rs56201815 from the 

WGS data with RIN≥4.5 were included. Differential eQTL analysis was performed using 

DESeq2 (Love et al., 2014) adjusted for RIN, age at death, sex, AD status, and RNA extraction 

methods (polyA selection or rRNA depletion). In the analysis of PCC and anterior caudate 

nucleus, 371 (including three rs56201815-G carriers) and 585 (including four rs56201815-G 

carriers) non-hispanic Caucasian subjects having both genotypes and gene expression with 

RIN≥4.5 and rRNA depletion were included, respectively. To minimize technical noise resulted 

from sample preparation, we did not include polyA selection samples (accounting for merely 

10% and 15% of all samples) because different RNA extraction methods have large impact on 

measured expression in postmortem samples (Sigurgeirsson et al., 2014), and the samples of 

all rs56201815-G carriers were generated using rRNA depletion. Differential eQTL analysis was 
performed using DESeq2 adjusted for RIN, age at death, sex, AD status.  
 
The raw count data of 3252 RNA-seq samples in nine brain tissues (i.e., amygdala, ACC, 
hypothalamus, caudate (basal ganglia), nucleus accumbens (basal ganglia), putamen (basal 
ganglia), cerebellar hemisphere, cerebellum and spinal cord (cervical c1)) and four non-brain 
tissues (i.e., sigmoid colon, lung, spleen and whole blood) from the GTEx project (version 8) 
were downloaded from the GTEx portal (https://gtexportal.org/home/datasets). Gene-level 
quantification was conducted by RSEM (Li and Dewey, 2011). All GTEx raw count data were 
normalized using the same pipeline as in the analysis of ROSMAP. Differential eQTL analysis 
was then performed using DESeq2 with age, sex, and RIN as adjusted covariates.  
 
The gene expression microarray data in peripheral blood from 742 ADNI subjects were profiled 
using the Affymetrix Human Genome U219 Array. Raw expression values were pre-processed 
using the robust multiarray average normalization method. More details about sample collection 
and data pre-processing can be found in (Saykin et al., 2015). Differential gene expression 
analyses were performed using linear regression adjusted for RIN and plate number.  

Analysis of DNA methylation data  
The DNA methylation data in PFC were collected from 740 individuals in ROSMAP using the 
Illumina HumanMethylation450 BeadChip. Eighteen samples lying beyond ±3 standard 
deviations for the top 3 PCs were removed as outliers. We converted methylation beta-value to 
M-value using a logistic transformation. Differential methylation analysis was carried out using a 
linear regression adjusted for the top 10 PCs.  
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Analysis of H3K9ac ChIP-seq data 
H3K9ac ChIP-seq raw count data were downloaded from the synapse website 
(https://www.synapse.org/). This dataset is previously described in detail in (Klein et al., 2019). 
Briefly, the sample comprising 26,384 H3K9ac peaks (nine peaks in the ERN1 region) across 
the genome was collected from dorsolateral PFC of 669 subjects from the ROSMAP project, 
among which 625 subjects had also the WGS genotype data of rs56201815. The raw count 
data was normalized using the TMM method (Robinson and Oshlack, 2010). Estimation of 
tagwise overdispersion and the analysis of differential peaks for rs56201815 were carried out 
using DESeq2 (Love et al., 2014) adjusted for FRiPs and GC bias. A sensitivity analysis was 
performed by further adjusting for 10 RUV components estimated using RUVSeq (Risso et al., 
2014). 

Analysis of single-nucleus RNA-seq data  
We collected snRNA-seq raw count data generated by (Mathys et al., 2019) using the 10X 
Genomics Cell ranger pipeline in human PFC from 48 subjects (50% AD cases) including 
17,926 genes profiled in 75,060 nuclei. We assigned cell identity and divided all cells into six 
subtypes (excitatory neurons, inhibitory neurons, astrocytes, oligodendrocytes, microglia and 
OPCs) according to the previous clustering results (Mathys et al., 2019) using the scanpy 
package (Wolf et al., 2018). The clustering of the cells is described in more detail in (Mathys et 
al., 2019). We excluded endothelial cells or pericytes because of lack of abundant cell counts in 
these two cell types.  
 
To perform cell type-specific eQTL analysis, we first merged cells in each cell type and in each 
subject to obtain a raw count matrix of 17,926 genes and 39 subjects (Six subjects were 
excluded due to lack of WGS data). We then followed the preprocessing and normalization 
procedures in the previous eQTL analysis of the bulk RNA-seq data. Differential eQTL analyses 
were then performed using DESeq2 (Love et al., 2014) with age, sex, and AD status as 
covariates. RIN was not available for most of the subjects.  

Functional annotation 
The epigenetic and regulatory annotation of the identified SNPs and its nearby SNPs in high LD 
(r2>0.8) was performed using Haploreg v4 (Ward and Kellis, 2016), in which its tissue-specific 
epigenetic markers (H3K27ac), regulatory regions (enhancers and promoters), motif changes 
and eQTL information were annotated based on the ENCODE (Harrow et al., 2012), Roadmap 
(Roadmap Epigenomics Consortium et al., 2015) and GTEx (GTEx Consortium et al., 2017) 
projects. GWAS catalog (Buniello et al., 2019) and GRASP (Eicher et al., 2015) were used to 
annotate whether a SNP is an existing QTL.  
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SNP CH

R 

POS GENE MAF 

ADSP 

 ADSP ROSMAP CHS LOADFS GENADA META-ANALYSIS 

     log(HR) P log(HR) P log(HR) P log(HR) P log(HR) P log(HR) P 

ANALYSIS USING ALL SUBJECTS ADJUSTED FOR APOE E4              

rs1442924

55 

4 1.05E+0

8 

TACR3 8.34E-04 1.71E+0

0 

5.39E-

08 

1.28E+0

0 

2.03E-

01 

NA NA 6.39E-01 8.65E-

02 

2.19E+0

0 

3.06E-

02 

6.89E-

02 

5.20E-

09 

rs1110333

33 

1 2.16E+0

8 

USH2A 9.30E-04 1.52E+0

0 

2.74E-

07 

NA NA NA NA 4.55E-01 3.79E-

01 

2.40E-01 6.33E-

01 

5.23E-

02 

4.67E-

06 

rs199533 17 4482893

1 

NSF 2.02E-01 -1.40E-

01 

3.95E-

07 

-4.43E-

01 

1.82E-

03 

-1.60E-

01 

2.08E-

01 

5.96E-02 2.38E-

01 

-7.06E-

02 

2.78E-

01 

4.85E-

04 

3.98E-

06 

rs6198193

1 

14 5085688

2 

CDKL1 4.91E-02 -2.64E-

01 

4.57E-

07 

1.49E-

01 

5.05E-

01 

2.16E-

04 

9.99E-

01 

-1.43E-

01 

1.26E-

01 

1.04E-01 3.56E-

01 

1.68E-

03 

3.13E-

05 

rs2983640 20 2358636

0 

CST9 3.88E-01 -1.07E-

01 

1.42E-

06 

-1.27E-

01 

2.45E-

01 

1.54E-

01 

1.24E-

01 

-2.83E-

02 

4.97E-

01 

-2.69E-

04 

9.96E-

01 

3.16E-

04 

4.58E-

05 

rs1043915 7 9979984

5 

STAG3 2.52E-01 -1.18E-

01 

3.32E-

06 

-2.32E-

02 

8.34E-

01 

-1.23E-

01 

3.03E-

01 

-4.58E-

02 

3.33E-

01 

-1.12E-

02 

8.45E-

01 

4.05E-

04 

1.13E-

05 

                 

ANALYSIS USING APOE Ε4 NON-CARRIERS              

rs1110333

33 

1 2.16E+0

8 

USH2A 9.30E-04 1.59E+0

0 

4.25E-

08 

NA NA NA NA NA NA 4.30E-01 6.68E-

01 

7.74E-

02 

7.28E-

08 

rs5620181

5 

17 6214141

6 

ERN1 1.32E-03 1.44E+0

0 

7.21E-

08 

1.82E+0

0 

7.40E-

02 

2.76E+0

0 

6.66E-

03 

1.85E+0

0 

1.97E-

02 

NA NA 5.74E-

02 

4.88E-

11 

rs1442924

55 

4 1.05E+0

8 

TACR3 8.34E-04 1.44E+0

0 

2.22E-

07 

1.26E+0

0 

2.16E-

01 

NA NA 1.13E+0

0 

1.77E-

01 

NA NA 6.52E-

02 

4.23E-

08 

rs1495242

09 

9 1.39E+0

8 

CAMSAP1 7.39E-04 1.53E+0

0 

1.46E-

06 

NA NA NA NA NA NA NA NA 1.00E-

01 

1.46E-

06 

rs1426952

78 

9 1.06E+0

8 

CYLC2 9.31E-04 1.45E+0

0 

1.51E-

06 

NA NA NA NA -

7.22E+0

0 

7.96E-

01 

-

1.09E+0

1 

9.92E-

01 

9.14E-

02 

1.53E-

06 

rs1134586 1 4098055

9 

EXO5 1.79E-01 1.47E-

01 

3.08E-

06 

1.88E-

01 

3.78E-

01 

NA NA NA NA NA NA 9.67E-

04 

2.09E-

06 

rs199533 17 4482893

1 

NSF 2.02E-01 -1.50E-

01 

3.25E-

06 

-3.65E-

01 

1.08E-

01 

-5.73E-

01 

4.97E-

03 

8.18E-02 4.02E-

01 

-1.79E-

01 

9.97E-

02 

8.33E-

04 

6.73E-

07 

rs7978204

8 

9 1.39E+0

8 

NOTCH1 9.80E-04 1.38E+0

0 

4.71E-

06 

NA NA NA NA NA NA NA NA 9.14E-

02 

4.71E-

06 

rs1237312

3 

17 4392407

3 

MAPT-AS1 2.16E-01 -1.42E-

01 

5.33E-

06 

-3.76E-

01 

7.95E-

02 

-4.56E-

01 

1.71E-

02 

5.17E-02 5.77E-

01 

-2.30E-

01 

3.45E-

02 

7.82E-

04 

4.76E-

07 

rs2732703 17 4435322

2 

ARL17B 

(intron) 

2.03E-01 -1.38E-

01 

1.94E-

05 

-3.88E-

01 

1.30E-

01 

-5.22E-

01 

1.08E-

02 

8.78E-02 3.63E-

01 

-1.98E-

01 

7.82E-

02 

-1.32E-

01 

5.17E-

06 

Table 1. Summary statistics of candidate SNPs associated with age-of-onset of AD identified from ADSP in the analysis using all 
subjects adjusted for APOE ε4 and the analysis using APOE ε4 non-carriers. POS: coordinate of the SNP in build 37. log(HR): log of 
hazard ratio. 
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PROJECT AGE 

AT 

ONSET

/CENS

ORING 

TOTAL 

SUBJECTS 

AD NON-

AD 

MAL

E 

(%) 

APOE E4 

CARRIER 

SEQ 

QUALITY 

/ MEAN 

DOSAGE 

COMMENTS COHORT 

ADSP 60-70 6 6 0 50 4 PASS  ADC, MIR, VAN 

 70-80 13 13 0 53.8

5 

5 PASS  ADC, MAYO, MIA, MIR, 

ROS, VAN, ERF, FHS, RS 

 >80 8 4 4 75 3 PASS  ACT, ADC, CHAP, ROS, 

RS 

 NA 2 NA NA 50 0 PASS Not included in the analysis due to 

unknown AD status. Control converted 

to MCI 

ADC 

ROSMAP

*  

80-90 3 2 1 0 1 99   

LOADFS <60 2 1 1 100 0 0.84 The control subject was censored at age 59. 

 60-82 5 3 2 80 1 0.856 One of the cases was not included in the analysis due to unknown 

exact age-at-onset (age-at-onset<82). This subject also had 

dementia at age 73. 

CHS 70-80 3 1 2 100 0 0.93   

          

* Not include the three subjects 

overlapping in ADSP 

       

 
Table 2. Detailed information about rs56201815-G carriers in ADSP, ROSMAP, LOADFS and CHS. Age at onset/censoring: age-of-
onset if the subject had AD or age at the end of follow-up if the subject was a control. AD/Non-AD: number of AD/control subjects. 
Male: percentage of males. APOE e4 carrier: number of APOE ε4 carriers. Seq Quality / dosage: sequencing quality for ADSP WES 
and ROSMAP WGS or imputed dosage for LOADFS and CHS. Comments: additional information about the subject. Cohort: the 
original cohort in ADSP. 
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Figure 1. Results of exome-wide association analyses of age-of-onset of AD in the ADSP 
sample using (A) Model 1: a model with all subjects adjusted for a PC and sex; (B) Model 2: a 
model with all subjects adjusted for copy of APOE ε4, PC2 and sex; (C) Model 3: a model with 
APOE ε4 non-carriers adjusted for PC2 and sex. Three top SNPs identified in the APOE region 
using Model 1 were highlighted in the regional plot due to their extremely significant p-values. 
The red horizontal line is a threshold based on the Bonferroni correction (0.05/100,000=5e-07). 
(D) Comparison of p-values between a Cox model and a logistic model for well-known AD-
related SNPs and newly identified SNPs in this study in Model 1 (left), Model 2 (middle), and 
Model 3 (right). The same ADSP data and covariates were used to fit the Cox and logistic 
models. 
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Figure 2. Probability of remaining free of AD (Survival probability) and risk tables in the ADSP 
sample for genotype groups of (A) APOE ε4; (B) rs7982; (C) rs144292455; (D) rs12373123; (E) 
rs56201815 in all subjects; (F) rs56201815 in APOE ε4 non-carriers.  
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Figure 3. (A) Normalized longitudinal FDG-PET measurements between rs56201815-G carriers 
and non-carriers in ADNI. The p-value was calculated using a linear mixed-effects model in 
which individual-level random effects and three covariates (age at the measurement, sex and 
diagnosis) were adjusted. (B) Annotation of histone modifications, transcriptional factor binding, 
and evolutionary conservation in the genomic region of rs56201815. (C) Normalized expression 
of ERN1 between rs56201815-G carriers and non-carriers in three brain tissues in cerebrum 
(dorsolateral PFC, PCC and anterior caudate nucleus) from a ROSMAP RNA-seq sample. (D) 
Normalized expression of ERN1 between rs56201815-G carriers and non-carriers in anterior 
cingulate cortex, nucleus accumbens, and putamen from GTEx RNA-seq samples. 
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Figure 4. (A) Chromatin interaction (orange links) and tissue-specific eQTLs (green links) for 
rs56201815 and rs12373123 on chromosome 17 identified from the exome-wide association 
analysis of age-of-onset of AD in APOE ε4 non-carriers in ADSP. A gene that is in chromatin 
interaction or an eGene with these SNPs is highlighted in orange or green, respective. A gene 
highlighted in red indicates both features. (B) Normalized expression of three genes (MAPT, 
ARL17B, and GRN) near rs12373123 of 44 subjects (including 13 rs12373123-T/C carriers and 
2 rs12373123-C/C carriers) in six major brain cell types (astrocytes, excitatory neurons, 
inhibitory neurons, microglia, OPCs and oligodendrocytes). All cells in each cell type from each 
subject were first pooled, and the gene expression were aggregated by subjects. The gene 
expression was then adjusted for age, sex, and AD status.  
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Figure 5. Top 10 gene sets enriched based on the exome-wide association analyses of age-of-
onset of AD using (A) Model 2: a model with all subjects adjusted for copy of APOE ε4, PC2 and
sex; (B) Model 3: a model with APOE ε4 non-carriers adjusted for PC2 and sex. Brain cell-type 
enrichment analysis based on the exome-wide association analyses of age-of-onset of AD using
(C) Model 2 and (D) Model 3.  
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Supplementary Text 
Text S1. Additional acknowledgements for ADSP, ADNI, GTEx, and CHS. 

Supplementary Tables 
Table S1. Basic characteristics of the five study samples (ADSP, LOADFS, ROSMAP, CHS, 
GenADA, and ADNI) included in the discovery and replication phases of the age-of-onset 
association analyses of AD.  
 
Table S2. Summary statistics of the three age-of-onset association analyses of AD using the 
ADSP sample. Model 1: a model with all subjects adjusted for a PC and sex; Model 2: a model 
with all subjects adjusted for copy of APOE ε4, PC2 and sex; Model 3: a model with APOE ε4 
non-carriers adjusted for PC2 and sex. 
  
Table S3. Summary statistics of the differential DNA methylation analyses of 11 probes in the 
ERN1 region using a ROSMAP sample for rs56201815. Beta: the effect size in M-value with 
respect to a copy of rs56201815-G. 
 
Table S4. Summary statistics of the differential analyses of nine H3K9ac peaks in the ERN1 
region (±200k flanking region of rs56201815) using a ROSMAP sample for rs56201815. logFC: 
log(fold-change) with respect to a copy of rs56201815-G. logCPM: log(count per million) of the 
peak. LR: likelihood ratio test statistics. Classification: functional annotation of the peak. Median 
Count: median count of the reads in the peak across the subjects.  
 
Table S5. Results of cell type-specific eQTL analyses of rs12373123 in six major brain cell 
types (excitatory neurons, inhibitory neurons, astrocytes, microglia, oligodendrocytes and 
OPCs) using the ROSMAP snRNA-seq data. logFC: log(fold-change) with respect to a copy of 
rs12373123-C. logCPM: log(count per million) of the peak. LR: likelihood ratio test statistics. 
Length: length of the gene body calculated by the distance between the start and end positions 
based on the Ensembl database “hsapiens_gene_ensembl”.   
 
Table S6. Frequency across 24 cohorts among 10,913 subjects included in the ADSP sample.  
 
Table S7. Detailed information about rs144292455-T carriers in ADSP, ROSMAP, LOADFS and 
GenADA. Age at onset/censoring: age-of-onset if the subject had AD or age at the end of follow-
up if the subject was a control. AD/Non-AD: number of AD/control subjects. Male: percentage of 
males. APOE e4 carrier: number of APOE ε4 carriers. Seq Quality / dosage: sequencing quality 
for ADSP WES and ROSMAP WGS or imputed dosage for LOADFS and GenADA. Comments: 
additional information about the subject. Cohort: the original cohort in ADSP. 

Supplementary Figures 
 
Figure S1. Q-Q plots of the p-values from the exome-wide age-of-onset association analyses of 
AD using A) a model with all subjects adjusted for a PC and sex; B) a model with all subjects 
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adjusted for copy of APOE ε4, PC2 and sex; C) a model with APOE ε4 non-carriers adjusted for 
PC2 and sex. λ: genomic inflation factor. 
 
Figure S2. Normalized expression of nine genes (ARL17A, KANSL1, LRRC37A3, CRHR1, 
SPPL2C, LRRC37A, LRRC37A2, PLEKHM1, ARHGAP27) near rs12373123 of 44 subjects in 
six major brain cell types (astrocytes, excitatory neurons, inhibitory neurons, microglia, OPCs 
and oligodendrocytes). All cells in each cell type from each subject were first pooled, and the 
gene expression were aggregated. The gene expression was then adjusted for age, sex, and 
AD status. Expression of SPPL2C was observed only in neuronal cells. 
 
Figure S3. Normalized expression of ERN1 of 39 WGS subjects (including one rs56201815-G 
carrier) in astrocytes, excitatory neurons and oligodendrocytes. All cells in each cell type from 
each subject were first pooled, and the gene expression were aggregated. The gene expression 
was then adjusted for age, sex, and AD status.  
 
Figure S4. Normalized expression of ERN1 between rs56201815-G carriers and non-carriers in 
A) ten tissues from GTEx RNA-seq samples; B) peripheral blood from an ADNI microarray 
sample. In the GTEx samples, there is one rs56201815-G carrier in all tissues except for colon, 
in which there are two carriers. 
 
Figure S5. Results of gene-based association analyses of age-of-onset of AD in the ADSP 
sample using summary statistics from (A) Model 2: a model with all subjects adjusted for copy of 
APOE ε4, PC2 and sex; (B) Model 3: a model with APOE ε4 non-carriers adjusted for PC2 and 
sex. Top genes with a p-value <1e-04 were highlighted. The red horizontal line is a threshold 
based on the Bonferroni correction (0.05/17,000=3e-06). 
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