1 Hydroxyl carlactone derivatives are predominant strigolactones in *Arabidopsis*

3 Kaori Yoneyama^{1,2#}, Kohki Akiyama³, Philip B. Brewer⁴, Narumi Mori³, Miyuki Kawada¹,

4 Shinsuke Haruta¹, Hisashi Nishiwaki¹, Satoshi Yamauchi¹, Xiaonan Xie⁵, Mikihisa Umehara⁶,

5 Christine A. Beveridge⁷, Koichi Yoneyama^{5,8} and Takahito Nomura⁵

¹Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan; ²PRESTO,

8 Japan Science and Technology, Kawaguchi, Saitama 332-0012, Japan; ³Department of

9 Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka

10 Prefecture University, Sakai, Osaka 599-8531, Japan; ⁴ARC Centre of Excellence in Plant

11 Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Glen

12 Osmond, SA 5064, Australia; ⁵Center for Bioscience Research and Education, Utsunomiya

University, Utsunomiya 321-8505, Japan; ⁶Department of Applied Biosciences, Faculty of

Life Sciences, Toyo University, Gunma 374-0193, Japan; ⁷ARC Centre of Excellence for

15 Plant Success in Nature and Agriculture, School of Biological Sciences, The University of

Queensland, St. Lucia, QLD 4072, Australia; ⁸Women's Future Development Center, Ehime

17 University, Matsuyama 790-8577 Japan

19 **Author for correspondence:

20 Kaori Yoneyama

2

6

13

14

18

23

24

25

21 Tel: +81 89 946 9851

Email: yoneyama.kaori.wx@ehime-u.ac.jp

Author contributions

26

27

- 28 Kaori Yoneyama, K.A., Koichi Yoneyama, and T.N. designed the research; Kaori Yoneyama,
- 29 K.A., N.M., X.X., and P.B. performed research; Kaori Yoneyama, K.A., H.N., S.H., S.Y.,
- 30 M.U., and C.B. analyzed data; and Kaori Yoneyama, K.A, P.B., and Koichi Yoneyama wrote
- 31 the manuscript.

ABSTRACT

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Strigolactones (SLs) regulate important aspects of plant growth and stress responses. Many diverse types of SL occur in plants, but a complete picture of biosynthesis remains unclear. In Arabidopsis thaliana, we have demonstrated that MAX1, a cytochrome P450 monooxygenase, converts carlactone (CL) into carlactonoic acid (CLA), and that LBO, a 2-oxoglutarate-dependent dioxygenase, converts methyl carlactonoate (MeCLA) into a metabolite called [MeCLA+16] Da. In the present study, feeding experiments with deuterated MeCLAs revealed that [MeCLA+16] Da is hydroxymethyl carlactonoate (1'-HO-MeCLA). Importantly, this LBO metabolite was detected in plants. Interestingly, other related compounds, methyl 4-hydroxycarlactonoate (4-HO-MeCLA) and methyl 16-hydroxycarlactonoate (16-HO-MeCLA) were also found to accumulate in *lbo* mutants. 3-HO-, 4-HO- and 16-HO-CL were detected in plants, but their expected corresponding metabolites, HO-CLAs, were absent in max1 mutants. These results suggest that HO-CL derivatives are predominant SLs in Arabidopsis, produced through MAX1 and LBO. Key words: Arabidopsis thaliana, hydroxyl carlactone derivative, lateral branching oxidoreductase.

INTRODUCTION

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

Strigolactones (SLs) were originally identified as germination stimulants for root parasitic plants (Cook et al., 1966) and then as hyphal branching factors for symbiotic arbuscular mycorrhizal (AM) fungi (Akiyama et al., 2005). SLs were thought to function only as rhizosphere signals until the discovery of their role as a plant hormonal signal that inhibits lateral shoot branching (Gomez-Roldan et al., 2008; Umehara et al., 2008). Shoot branching involves the formation of axillary buds in the axil of leaves. The level of dormancy in buds is an essential determinant of plant architecture. Defects in the SL pathway correspond with loss of bud dormancy and excessive shoot branching as displayed by SL mutants that include ramosus (rms) of pea (Pisum sativum), decreased apical dominance (dad) of petunia (Petunia hybrida), dwarf (d) of rice (Oryza sativa) and more axillary growth (max) of Arabidopsis (Arabidopsis thaliana). Natural SLs are carotenoid-derived compounds consisting of a butenolide D ring linked by an enol ether bridge to a less conserved moiety. These SLs can be classified into two structurally distinct groups: canonical and non-canonical SLs. Canonical SLs contain the ABCD ring formation, and non-canonical SLs lack the A, B, or C ring but have the enol ether-D ring moiety (Al-Babili and Bouwmeester, 2015). During biosynthesis, the initial compound that contains the D ring is carlactone (CL), an endogenous precursor for SLs, which is produced by the sequential reactions of 9-cis/all-trans-β-carotene isomerase and two carotenoid cleavage dioxygenases (CCD7, CCD8) (Alder et al., 2012). In Arabidopsis, the isomerase is encoded by DWARF27 (D27), and CCD7 and CCD8 by MAX3 and MAX4, respectively (Fig. 1). We have demonstrated that recombinant MAX1, (a cytochrome P450 monooxygenase) expressed in yeast, converts CL to carlactonoic acid (CLA) by oxidations at C-19 (Abe et al. 2015). This function was also observed in MAX1 homologs of other plant

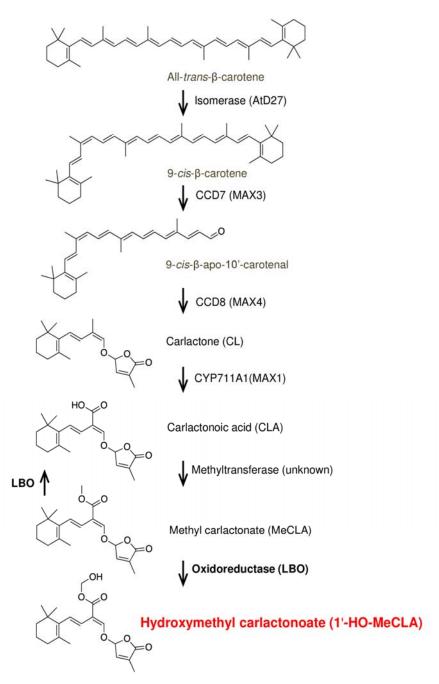


Figure 1. Proposed strigolactone (SL) biosynthesis pathway in *Arabidopsis*. An isomerase (AtD27) and two CCD enzymes (MAX3 and MAX4) convert β-carotene into carlactone (CL), an endogenous common precursor for diverse SLs. CL is then oxidized by cytochrome P450 (MAX1) to carlactonoic acid (CLA), which is converted into MeCLA by unknown methyltransferase. The present study showed that 2-oxoglutarate-dependent dioxygenase LBO converts MeCLA into 1'-HO-MeCLA, which is essential for regulating shoot branching.

- species including rice, maize, tomato, a model tree poplar, and a lycophyte spike moss,
- 78 suggesting this conversion of CL to CLA is highly conserved in the plant kingdom

79 (Yoneyama et al., 2018). It was also shown that CL, CLA, and methyl carlactonoate 80 (MeCLA) are present in Arabidopsis root tissues (Seto at al., 2014; Abe et al., 2014). 81 Furthermore, differential scanning fluorimetry and hydrolysis activity tests showed that, 82 among CL, CLA, and MeCLA, only MeCLA could interact with the SL receptor, AtD14, 83 suggesting MeCLA may be biologically active in the inhibition of shoot branching in 84 Arabidopsis (Abe et al., 2015). Arabidopsis max1 mutants display a highly increased lateral 85 shoot branching phenotype, and yet accumulate CL (Seto et al., 2014), indicating that CL is 86 not active in repressing shoot branching. 87 As a novel SL biosynthetic gene, LATERAL BRANCHING OXIDOREDUCTASE (LBO), 88 encoding a 2-oxoglutarate and Fe (II)-dependent dioxygenase was identified by using a 89 transcriptomic approach, and was shown to function downstream of MAX1 (Brewer et al., 90 2016). Arabidopsis lbo mutant shoot branching is increased compared to WT (Ws-4), but its 91 phenotype is intermediate between WT and max4 mutants. LC-MS/MS analysis of SLs 92 revealed that CL and MeCLA accumulate in root tissues of *lbo* mutants (Brewer et al., 2016). 93 Because the active shoot branching inhibitor MeCLA accumulates in lbo mutants, the intermediate branching phenotype of lbo mutants may be explained by the presence of 94 95 MeCLA. Thus, it was suggested that LBO is necessary for complete suppression of shoot 96 branching in plants by converting the partly bioactive MeCLA to a compound with greater 97 bioactivity for branching. We then showed that the LBO enzyme expressed in E. coli only 98 consumed MeCLA when fed with CL, CLA, or MeCLA, and converted MeCLA into a 99 product of [MeCLA+16] Da. However, complete characterization of this LBO metabolite had 100 not yet been conducted. 101 In the present study, we have determined the structure of the [MeCLA+16] Da compound 102 produced by LBO from MeCLA by feeding experiments using deuterated MeCLAs. In 103 addition, we could identify this LBO metabolite as an endogenous compound from not only

roots, but also basal parts of *Arabidopsis* shoot tissues. Since two additional *lbo* mutant alleles, *lbo-2* and *lbo-3*, exist, and homozygous mutant plants exhibited increased shoot branching (Brewer et al., 2016), recombinant proteins of LBO-2 and LBO-3 were produced and the correlation between their enzymatic activities in the conversion of MeCLA to [MeCLA+16] Da and their shoot branching phenotypes was investigated to further examine the importance of the LBO metabolite for shoot branching. Then, biochemical functions of LBO homologs in other plant species including tomato, maize, and sorghum were examined to clarify if the conversion of MeCLA to [MeCLA+16] Da is conserved among these plant species. Furthermore, endogenous SLs in *Arabidopsis max1* and *lbo* mutants were carefully analyzed in search of other potential substrates for MAX1 and LBO to better understand the SL biosynthetic pathway in *Arabidopsis*.

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

RESULTS LBO catalyzes the conversion of methyl carlactonoate (MeCLA) into hydroxymethyl carlactonoate (1'-HO-MeCLA) To characterize the structure of [MeCLA+16] Da, LBO enzyme reactions were performed repeatedly. Both the substrate MeCLA and the metabolite [MeCLA+16] Da were highly unstable and the yield of the metabolite was extremely low. We tried to optimize enzyme assay conditions but the maximum yield of the LBO metabolite did not exceed 0.1%. Although more than 500 µg of synthetic MeCLA has been used for LBO enzyme assay, the amount of the metabolite after purification by DEA, silica, and HPLC was not enough for NMR spectroscopy measurement. The observed mass of [MeCLA+16] Da (Brewer et al. 2016) suggests that LBO has simply added an oxygen to MeCLA. Therefore, feeding experiments with using deuterated MeCLAs were conducted to identify the site of oxidation of MeCLA (Nomura et al., 2013). When MeCLA was fed to LBO, the metabolite was detected by the transition of m/z 363 to 97 (Fig. 2). When 18- d_3 -MeCLA was fed, the metabolite was detected by the transition of m/z 366 to 97 (Fig. 2), clearly indicating that 18-d3 remained unaffected and thus oxidation did not occur at C-18. By contrast, when 1'- d_3 -MeCLA, in which ester methyl group had been labeled with deuterium was fed, major metabolite was detected by the transition of m/z 365 to 97 (Fig. 2), apparently showing that ester methyl group was oxidized. Consequently, it was demonstrated that LBO converts MeCLA into hydroxymethyl carlactonoate (1'-HO-MeCLA) (Fig. 1). On the other hand, when MeCLA was incubated with LBO, most MeCLA was converted to CLA; the ratio of CLA to 1'-HO-MeCLA was 100: 1 based on the peak areas in the

LC-MS/MS chromatograms of LBO reaction products (Fig. 3), indicating that the LBO

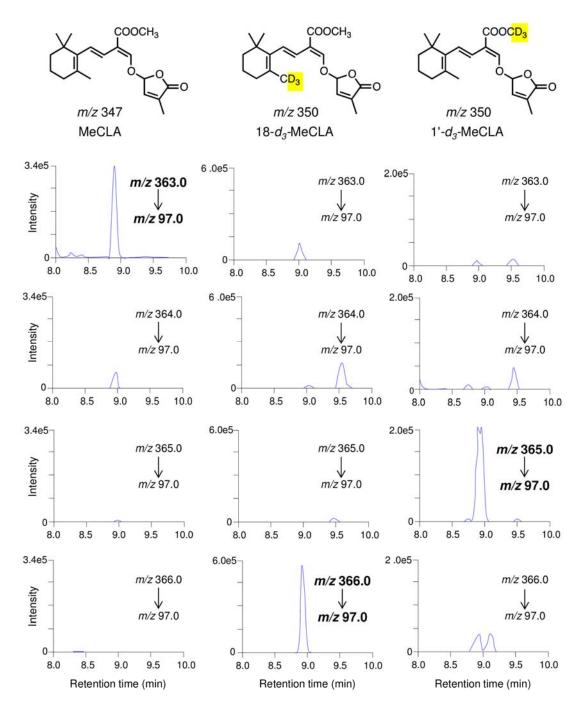
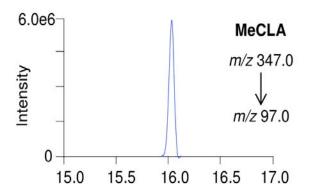
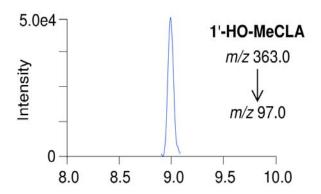




Figure 2. LBO converted [$18-d_3$]-MeCLA to [MeCLA+16+3] and [$1'-d_3$]-MeCLA to [MeCLA+16+2]. To characterize the structure of [MeCLA+16], [$18-d_3$]-MeCLA (*Middle*) and [$1'-d_3$] MeCLA (*Light*) were fed as substrates to recombinant LBO proteins and incubated for 15 min. Products were identified by LC-MS/MS (MRM).

protein assay mainly produces CLA.

142

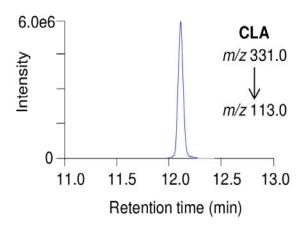


Figure 3. Most MeCLAs were converted to CLA. MeCLA was incubated with recombinant LBO proteins for 15 min. The extracts were analyzed by LC-MS/MS (MRM).

It is important to clarify if 1'-HO-MeCLA is an endogenous compound in plant tissues because there is a possibility that 1'-HO-MeCLA would only be produced in the heterologous expression system. Identification of 1'-HO-MeCLA was conducted using *atd14* mutant plants, because they lack a functional SL receptor and accumulate SLs due to negative feedback on the biosynthesis pathway. As a negative control, *lbo* mutant plants were also used. 1'-HO-MeCLA was detected from the basal part of shoots, and also root tissues of *atd14* mutants (Fig. 4). By contrast, CL and MeCLA, but not 1'-HO-MeCLA, were detected from both tissues of *lbo* mutants (Fig. 4, Brewer et al. 2016). These results clearly indicate that LBO may act to convert MeCLA into 1'-HO-MeCLA in plants.

Production of 1'-HO-MeCLA correlates with shoot branching

We previously described additional alleles of mutation in the *LBO* gene (Brewer et al. 2016). *lbo-2* plants have a point mutation in the predicted catalytic domain and display significant extra branching. *lbo-3* plants have a point mutation elsewhere in the gene and have a branching phenotype that is much weaker than *lbo-2* (Brewer et al., 2016). LBO-2 and LBO-3 proteins were produced in *E. coli* heterologous expression system and enzymatic activities to produce 1'-HO-MeCLA were examined. The very low conversion of MeCLA to 1'-HO-MeCLA by LBO-2 enzyme activity (Fig. 5) relates well to the mutant shoot branching phenotype. However, LBO-3 appears to have normal function in our assay (Fig. 5).

Conversion of MeCLA into 1'-HO-MeCLA is conserved among different plant species

Tomato, maize, and sorghum have one LBO homolog each and their recombinant LBO

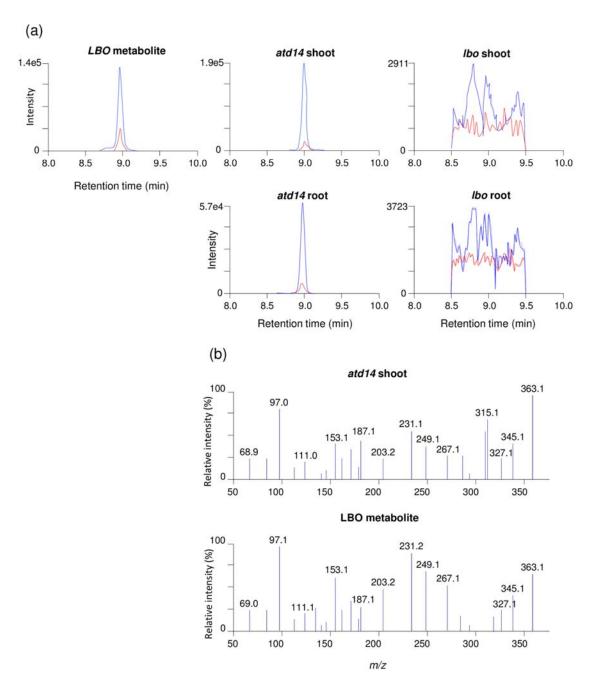


Figure 4. 1'-HO-MeCLA was found from *atd14* shoot. Identification of endogenous 1'-HO-MeCLA in basal parts of shoot and root tissues was conducted. (a) MRM of chromatograms (363.0/97.0; *m/z* in positive mode) of *atd14* mutants (*Middle*) and *Ibo* mutants (*Light*). (b) Product ion spectra derived from endogenous 1'-HO-MeCLA in basal parts of shoot of *atd14* mutants.

proteins were expressed in *E. coli*. Not only *Arabidopsis* LBO but also the other LBO proteins examined converted MeCLA into 1'-HO-MeCLA (Fig. 6), where the major reaction product was CLA (Supplemental Fig. S1).

170

171

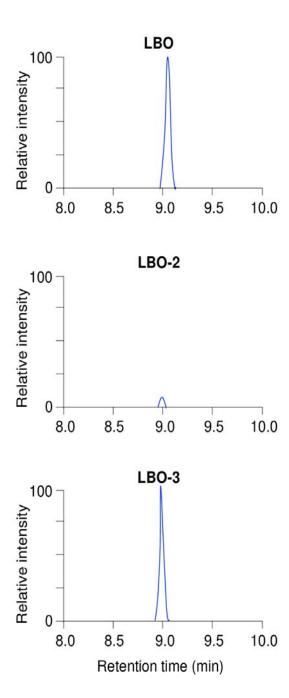


Figure 5. Production of 1'-HO-MeCLA is very low in LBO-2. MeCLA was incubated with each recombinant protein for 15 min and extracts were analyzed by LC-MS/MS. MRM chromatograms of 1'-HO-MeCLA (363.0/97.0; *m/z* in positive mode) are shown.

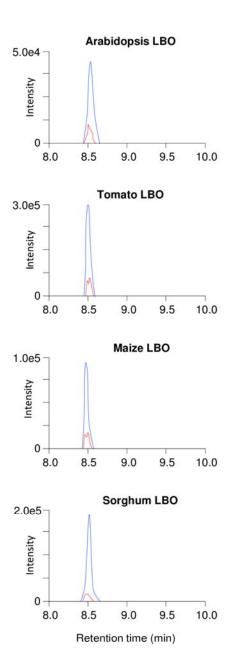


Figure 6. Conversion of MeCLA into 1'-HO-MeCLA is conserved among different plant species. MeCLA was incubated with each recombinant protein for 15 min and extracts were analyzed by LC-MS/MS. MRM chromatograms of 1'-HO-MeCLA (363.0/97.0; *m/z* in positive mode) are shown.

produce canonical SLs such as solanacol and orobanchol. Tomato MAX1 expressed in yeast cannot produce canonical SLs from CL (Yoneyama et al., 2018). Accordingly, there is a possibility that tomato LBO produces canonical SLs including solanacol and orobanchol. However, tomato LBO produced neither solanacol nor orobanchol from MeCLA (Data not

174

175

176

shown). In addition, tomato LBO did not convert 4DO into solanacol or orobanchol, either (data not shown). Similar results were obtained with sorghum or maize LBOs. Sorghum LBO produced neither 5-deoxystrigol (5DS) nor sorgomol, two major canonical SLs of sorghum (cv Hybrid), from MeCLA. Although it was proposed that sorgomol is produced from 5DS (Motonami et al., 2013), LBO did not produce sorgomol from 5DS (data not shown). Maize plants produce zealactone (Charnikhova et al., 2017; Xie et al., 2017) and zeapyranolactone (Charnikhova et al., 2018), non-canonical SLs with unique structures. Maize LBO did not produce these SLs from MeCLA (Data not shown).

Endogenous non-canonical SLs in *Arabidopsis*

178

179

180

181

182

183

184

185

186

187

188

202

189 CYP711A2, one of rice MAX1 homologs, produces 4-deoxyorobanchol (4DO) via 190 18-HO-CLA from CL (Yoneyama et al., 2018). This suggests that not only 1'-HO-MeCLA 191 but also other HO-CL derivatives including HO-CLs, HO-CLAs, and HO-MeCLAs are 192 endogenous compounds in Arabidopsis, and some of them may be substrates for MAX1 and 193 LBO. Therefore, endogenous SLs in atd14, max1 and lbo mutants were investigated in detail. 194 Synthetic standards of 2-, 3-, 4-, 16- and 18-HO-CL (Fig. 7) were prepared and used for 195 LC-MS/MS analyses. HO-CLAs (Fig. 7) were obtained by conversion of the corresponding 196 HO-CLs by MAX1 expressed in yeast. HO-MeCLAs (Fig. 7) were obtained by methylation 197 of the corresponding HO-CLAs with diazomethane. 198 Basal parts of Arabidopsis shoot were harvested when the shoot branching phenotype was 199 clearly observed (Supplemental Fig. S2). From atd14 mutants, 3-, 4-, and 16-HO-CLs, 3-, 4-, 200 and 16-HO-CLAs, and 4- and 16-HO-MeCLAs, in addition to CL, CLA, and MeCLA, were 201 detected (Fig. 8).

3-, 4-, and 16-HO-CLs and CL were detected from basal parts of max1 mutants (Fig. 8).

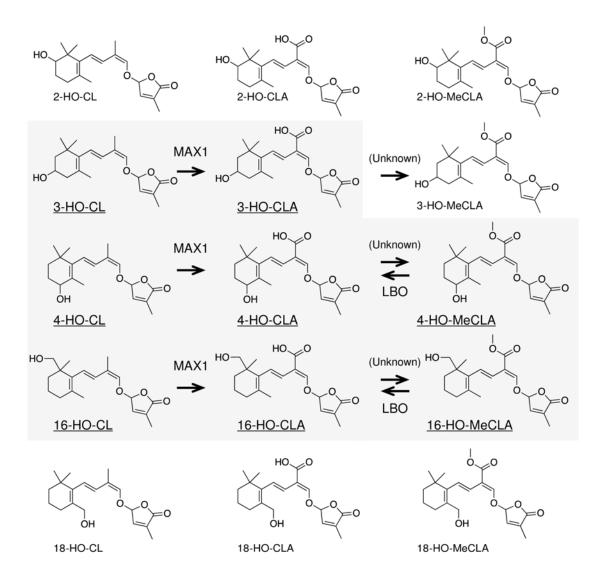


Figure 7. Structures of HO-CLs, HO-CLAs and HO-MeCLAs and a proposed strigolactone biosynthesis pathway in *Arabidopsis*. The present study shows that 3-, 4-, and 16-HO-CL derivatives are predominant and produced through MAX1 and LBO in *Arabidopsis*.

Although 3-, 4-, and 16-HO-CLAs were detected, even from Col-0 plants (Supplemental Fig. S3), these HO-CLAs were not detected in *max1* mutants (Fig. 8). By comparing peak areas of MRM chromatograms between *atd14* and *max1* mutants (Fig. 8), 3-, 4-, and 16-HO-CLs appeared to accumulate in *max1* mutants.

4- and 16-HO-MeCLAs are potential substrates for LBO

203

204

205

206

207

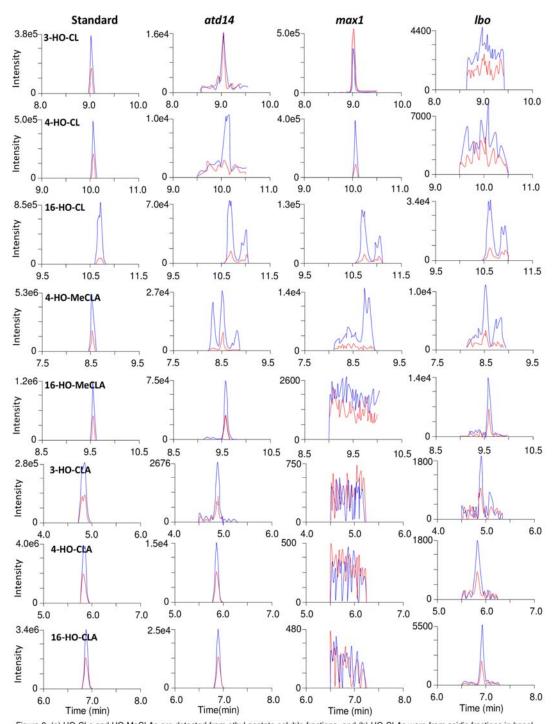


Figure 8. (a) HO-CLs and HO-MeCLAs are detected from ethyl acetate soluble fractions, and (b) HO-CLAs were from acidic fractions in basal parts of shoot tissues of atd14 mutants, max1 mutants, and lbo mutants. 3-, 4-, and 16-HO-CLs appeared to accumulate in max1 mutants and 4-, and 16-HO-MeCLA in lbo mutants. MRM chromatograms of 3-HO-CL (blue, 301.0/97.0; red, 319.0/205.0; m/z in positive mode), 4-HO-CL (blue, 301.0/97.0; red, 301.0/148.0; m/z in positive mode), 16-HO-CL (blue, 301.0/97.0; red, 301.0/189.0; m/z in positive mode), 4-HO-MeCLA (blue, 345.0/97.0; red, 345.0/216.0; m/z in positive mode), 16-HO-MeCLA (blue, 347.0/113.0; red, 347.0/69.0; m/z in negative mode) are shown.

In addition to CL, CLA, and MeCLA, 16-HO-CL, 3-, 4-, 16-HO-CLAs, 4- and

209

16-HO-MeCLAs were found in *lbo* mutants (Fig. 8). MeCLA was found to be a substrate for LBO (Brewer et al., 2016) and therefore these HO-MeCLAs also can be potential substrates for LBO.

Then, these HO-CL derivatives were incubated with recombinant LBO proteins as potential substrates. 4- and 16-HO-MeCLAs, but not other HO-CL derivatives were consumed by LBO. Although we searched for LBO products of 4- and 16-HO-MeCLAs with the D-ring fragment (*m/z* 97) as an indicator by LC-MS/MS, we could not find any candidates for LBO products (Fig. 9). As in the case of MeCLA, the corresponding HO-CLA was detected as a major reaction product.

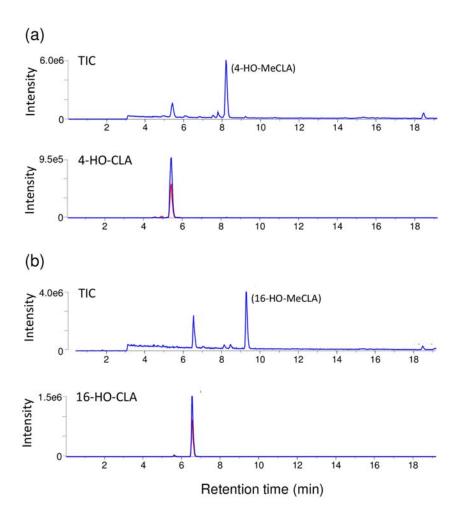


Figure 9. Recombinant LBO proteins convert 4-, and 16-HO-MeCLA mainly into the corresponding HO-CLAs. Each substrate was incubated for 15 min. The extracts were analyzed by LC-MS/MS with the D-ring fragment (*m/z* 97) as an indicator to identify the metabolites from each HO-CLA-fed LBO. Total lon and MRM chromatograms of HO-CLAs (blue, 347.0/113.0; red, 347.0/69.0; *m/z* in negative mode) are shown.

224

225

226

227

228

The present study demonstrated that the structure of [MeCLA+16] Da is 1'-HO-MeCLA and this LBO metabolite is endogenous in *Arabidopsis* tissues. 1'-HO-MeCLA was also produced by MeCLA-fed maize, tomato and sorghum LBO proteins, suggesting that this conversion of MeCLA into 1'-HO-MeCLA is highly conserved among different seed plant species.

Then the question arises whether 1'-HO-MeCLA is a strong shoot branching inhibitor or not.

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

So far, 1'-HO-MeCLA has not been examined for its effect on shoot branching. Unfortunately, at this present time, the synthetic standard for 1'-HO-MeCLA is not available. As mentioned, the yield of 1'-HO-MeCLA by LBO protein reaction is too low to obtain enough for shoot branching assays. Since the substitution of 1'-HO-MeCLA is very unstable and could be readily converted, it is possible that 1'-HO-MeCLA is a precursor for an unknown, downstream shoot branching inhibitor(s) and a subsequent unknown enzyme(s) converts 1'-HO-MeCLA into the true shoot branching inhibitor(s). However, we cannot yet find any candidate compounds that are likely to be derived from 1'-HO-MeCLA from atd14 mutants (data not shown). LBO was uncovered from transcriptomics (Brewer et al. 2016) and similar methods recently led to the discovery that CYP722C from cowpea and tomato converts CLA directly to orobanchol (Wakabayashi et al. 2019), and that a 2-oxoglutarate dependent dioxygenase (2-OGD) from a nearby clade to LBO is involved in SL biosynthesis in Lotus japonicus (Mori et al. 2020). We will continue reverse genetic and mass spectrometric approaches to find related SL biosynthetic genes and shoot branching inhibitors. CLA seems to be a key precursor for canonical SLs. We will test how LBO relates to CLA and canonical SLs by identifying *lbo* mutants from plants that produce canonical SLs. Worthy of attention here is that the LBO protein assay produces much more CLA from MeCLA than 1'-HO-MeCLA. Such O-demethylations have been reported for 2-OGDs, thebaine 6-O-demethylase and codeine O-demethylase, catalyzing O-demethylation in the final steps of morphine biosynthesis (Hagel and Facchini, 2010). Therefore, we cannot exclude the possibility that the main function of LBO is demethylation of MeCLA and that 1'-HO-MeCLA is just an intermediate for demethylation. This is somewhat difficult to reconcile with our previous result that showed that CLA was detected from lbo mutants, but not from its wild type (Brewer et al., 2016), indicating that CLA accumulates in *lbo* mutants. As methyltransferase is proposed to be involved in conversion from CLA into MeCLA and

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

should be functional in *lbo* mutants. Thus, CLA would not be expected to accumulate in *lbo* mutants unless the methyltransferase was somehow downregulated. Identification of the methyltransferase will clarify the meaning of methylation and demethylation in the production of shoot branching inhibitors. lbo-2 mutants with a point mutation in the predicted catalytic domain display extra shoot branching. The present study demonstrated that recombinant LBO-2 protein is very weak at converting MeCLA into 1'-HO-MeCLA (Fig. 5). In contrast, LBO-3 appears to have normal function in our assay (Fig. 5). The shoot branching phenotype of *lbo-3* mutants with a point mutation elsewhere in the gene is much weaker than lbo-2, and only just significantly more than wild type (Brewer et al., 2016). It is possible that the protocol was not sensitive enough to observe subtle defects in reaction efficiency. Alternatively, the LBO-3 mutation may reveal an unknown protein functional or interaction domain at the mutation site, which only affects its bioactivity in planta. It may be useful to test LBO and LBO-3 in combination with other SL biosynthesis enzymes as they become discovered. In addition to 1'-HO-MeCLA, other unstable non-canonical SLs were found in the basal parts of shoot tissues (Fig. 8). So far, identification of SLs has been mainly conducted from root tissues and this is the first report to show that SLs exist in basal parts of shoots of Arabidopsis. There were no apparent differences in SL levels between the two tissues when peak areas were compared (Fig. 4). In contrast, levels of SLs are very low or undetectable from shoot of sorghum (Yoneyama et al., 2007) and rice plants (Umehara et al., 2010). Arabidopsis could be quite particular in containing the same levels of SLs in the basal part of shoot and root tissues. Perhaps this is because Arabidopsis is a non-host of AM fungi. Even though Arabidopsis was reported to produce orobanchol (Goldwasser et al., 2008; Kohen et al., 2011), a canonical SL that is widely distributed in plant kingdom (Yoneyama et al., 2008; Yoneyama et al., 2011), we could detect neither orobanchol nor any other known canonical

SLs from *Arabidopsis* tissues (data not shown). Non-canonical SLs seem to be predominant in *Arabidopsis* and may not be released into the soil because *Arabidopsis* does not need to attract AM fungi to form a relationship with them. However, there are hints that SLs in *Arabidopsis* may promote interaction with other beneficial soil fungi (Carvalhais et al. 2019). So, there is likely much more to learn on that topic.

As summarized in Fig 7, MAX1 oxidizes C-19 methyl group to carboxylic acid not only in CL, but also in HO-CLs in *Arabidopsis* plants. Baz et al. (2018) also detected 3-HO-CL from rice *d14* mutant roots and demonstrated that 9-*cis*-3-HO-β-apo-10'-carotenal-fed to OsCCD8 is converted into 3-HO-CL. These results suggest that HO-CLs are also converted by MAX3 from HO-carotenal. The *Arabidopsis* MAX1 enzyme has the ability to convert 2-HO-CL and 18-HO-CL into respective HO-CLAs. However, these HO-CL derivatives could not be found from *Arabidopsis* plants. It is intriguing why *Arabidopsis* produces such various and particular HO-CL derivatives.

CONCLUSION

Deciphering the whole SL biosynthetic pathway and characterization of yet unidentified biosynthetic intermediates is essential for devising new strategies to regulate the multiple functions of SLs through manipulation of SL production and exudation, both quantitatively and qualitatively. It should be noted that SL production and exudation vary with plant species (even between cultivars or genotypes of the same plant species), growth conditions, and growth stages. In the present study, we have unveiled the enzymatic functions of LBO and MAX1 and their substrates and products downstream of CL in the SL biosynthetic pathway in *Arabidopsis*. As most seed plant species sequenced so far contain a single *LBO* gene, and the *LBO* gene lineage appears to have been derived deep in plant evolutionary history

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

(Walker et al., 2019), the biological function of LBO is likely to be highly conserved in the plant kingdom. **Materials and Methods** Plant material The *lbo-1* and *max1-4* were from our *Arabidopsis* laboratory stocks (Brewer et al., 2016) and the atd14-2 mutant was obtained from a TILLING project in the Columbia-0 (Col-0) ecotype. To extract total RNAs, tomato (cv Ailisa Craig; Nomura et al., 2005), maize (cv B73; Yoneyama et al., 2018) and sorghum (cv Hybrid; Yoneyama et al., 2008) were used. Chemicals 3-, 4-, and 18-HO-CLs were synthesized as described previously (Mori et al. 2016; Baz et al. 2018). 2- and 16-HO-CLs were synthesized using the same strategy as the synthesis of 3-and 18-HO-CLs (Baz et al., 2018; Mori et al., 2016). The detailed synthesis will be published elsewhere. 2-, 3-, 4-, 16- and 18-HO-CLA were obtained by MAX1 microsome assay using the corresponding HO-CLs. For this, MAX1 expressed in yeast (Saccharomyces cerevisiae) was prepared as described previously (Abe et al., 2014, Yoneyama et al., 2018). 2-, 3-, 4-, 16and 18-HO-MeCLA were prepared by methylation of the corresponding HO-CLAs with diazomethane. Synthesis of methyl-d₃ carlactonoate (1'-d₃-MeCLA) (Scheme S1)

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

(E)-4-(2,6,6-Trimethylcyclohex-1-en-1-yl) but-3-enoic acid was synthesized as reported (Abe et al., 2014). To a solution of the C₁₃-carboxylic acid (88.1 mg, 0.42 mmol) in acetone (2 mL), K_2CO_3 (174 mg, 1.26 mmol) and methyl- d_3 iodide (305 mg, 131 μ L, 2.1 mmol) were added. The mixture was stirred at room temperature for 21 h under argon. After being concentrated under nitrogen gas flow, the residue was dissolved with ether and water. The organic phase was washed with water and dried over MgSO₄. Filtration and evaporation of the solvent afforded C₁₃-carboxylic acid methyl-d₃ ester (82.3 mg, 0.37 mmol, 87%), which was pure enough for the next reaction. Ester condensation of the methyl-d₃ ester (82.3 mg, 0.37 mmol) with ethyl formate (98 mg, 106 μL, 1.32 mmol) by the use of sodium hydride (13.3 mg, 0.56 mmol) in N,N-dimethylformamide (1 mL) followed by alkylation with racemic 4-bromo-2-methyl-2-buten-4-olide (99 mg, 55 μL, 0.56 mmol) (Abe et al., 2014) provided 1'-d₃-MeCLA and ethyl carlactonoate (EtCLA, a transesterification product). Purification by silica gel column chromatography (Kieselgel 60, Merck, n-hexane-ethyl acetate stepwise) and semi-preparative HPLC (Inertsil SIL-100A, GL Sciences, 5% ethanol in n-hexane) gave 1'-d₃-MeCLA (2.5 mg, 0.0072mmol, 1.9%). **1'-d₃-MeCLA**: HR-ESI-TOF-MS m/z: 372.1855 $[M+Na]^+$ (calcd. for $C_{20}H_{23}D_3NaO_5^+$, m/z: 372.1861).

Synthesis of methyl 18- d_3 -carlactonoate (18- d_3 -MeCLA) (Scheme S2)

6,6-Dimethyl-2-(methyl-*d*₃)cyclohex-1-en-1-yl trifluoromethanesulfonate was synthesized as reported (Tanaka et al., 2007). A mixture of the triflate (5.30 g, 19.3 mmol), triethylamine (7.80 g, 10.7 mL, 77.2 mmol), methyl 3-butenoate (3.86 g, 4.11 mL, 38.6 mmol), and bis(triphenylphosphine)palladium(II) dichloride (1.35 g, 1.92 mmol) in *N*,*N*-dimethylformamide (50 mL) was stirred at 100°C for 17 h under argon. The reaction mixture was cooled, quenched by pouring into 1 N HCl, and extracted with ether. The

organic phase was washed with brine and water, dried over MgSO4, and concentrated in vacuo. Purification by silica gel column chromatography (Kieselgel 60, Merck, *n*-hexane-ether stepwise) gave crude methyl (E)-4-(6,6-dimethyl-2-(methyl-d₃)cyclohex-1-en-1-yl)but-3-enoate (1.31 g, 5.8 mmol, 30%), which was used for the next reaction without further purification. Ester condensation of the deuterium-labeled ester (108 mg, 0.48 mmol) with methyl formate (86.4 mg, 89 µL, 1.44 mmol) by the use of sodium hydride (11.5 mg, 0.48 mmol) in N,N-dimethylformamide (1 mL) followed by alkylation with racemic 4-bromo-2-methyl-2-buten-4-olide (85 mg, 47 µL, 0.48 mmol) (Abe et al., 2014) provided 18-d3-MeCLA. Purification by silica gel column chromatography (Kieselgel 60, Merck, n-hexane-ethyl acetate stepwise), semi-preparative normal-phase HPLC (Inertsil SIL-100A, GL Sciences, 5% ethanol in n-hexane) and semi-preparative reversed-phase HPLC (InertSustain C18, GL Sciences, 85% acetonitrile in water) gave 18-d₃-MeCLA (1.7 mg, 0.0049 mmol, 1.0%). **18-d₃-MeCLA**: HR-ESI-TOF-MS m/z: 350.2058 [M + H]⁺ (calcd. for C₂₀H₂₄D₃O₅⁺, m/z: 350.2041).

Cloning

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

The primer sequences used are listed in Supporting Information TableS1. Total RNAs were extracted from the shoots and roots of plant materials using an RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and employed to synthesize single-strand cDNAs by a SuperScript III First-Strand Synthesis System (Invitrogen, Waltham, MA, USA). PCR amplification was performed using PrimeSTAR HS DNA polymerase (TAKARA Bio Inc., Kusatsu, Japan) with/without GC buffer for accurate amplification of GC rich targets. The full-length cDNAs were cloned into the pENTR vector and then transferred to pET300 vector by the Gateway system (Invitrogen). Recombinant plasmid DNA was transferred to

Escherichia coli strain Rosetta 2(DE3)pLysS (Novagen). At least four colonies for each experiment were sequenced to check for errors in the PCR. Sequence alignment was performed using MAC VECTOR software (Mac Vector Inc., Apex, NC, USA).

Heterologous expression in E. coli

Heterologous expression of LBO in *E. coli* was carried out as described previously (Brewer et al., 2016). Briefly, transformed colonies were grown in LB media (0.5% yeast extract, 1% Bacto Tryptone, 1% NaCl) with carbenicilin (100 μg/mL) at 37 °C in a shaking incubator (180 rpm) until the cell density reached an OD₆₀₀ of 0.5-0.8. After isopropyl -D-1-thiogalactopyranoside (1 mM) was added, transformed *E. coli* were incubated at 20 °C for 14-16 h. To prepare enzyme fractions, *E. coli* cells were collected by centrifugation of 10,000 x g for 1 min and suspended in 20 mM phosphate buffer (pH 7.4). The suspend cells were mechanically lysed by using a high-pressure homogenizer (Emulsi Flex B15; AVESTIN) and then, centrifuged at 15,000 x g for 5 min at 4°C.

LBO enzyme assays and metabolite extraction

Crude protein fraction (5 mL) was incubated with 4 mM 2-oxoglutarate, 0.5 mM iron ascorbate, 5 mM ascorbic acid, and 12.5 µg of test substrates at 27°C for 20 min, similar to the previous report (Brewer et al., 2016). The reaction mixture was extracted with 5 mL ethyl acetate twice. The ethyl acetate soluble fraction was dried with sodium sulfate and evaporated under nitrogen gas flow at 40°C with care not to completely dry. Crude extract samples were kept at -20°C until LC-MS analysis.

SL identification in A. thaliana

Arabidopsis seeds were sterilized in 1% sodium hypochlorite solution for 10 min and rinsed with sterile water. Seeds were sown on agar (0.5% gellangum with 1/2 Murashige and Skoog medium and 1% sucrose), stratified at 4°C for 2 days, and grown for 10 days under a photoperiod, 14 h: 10 h, light (150 mol m⁻² s⁻¹): dark, at room temperature. Then, healthy and uniform seedlings were transplanted on soils [horticultural soil: vermiculite = 1: 2 (v/v)] and further grown until branching phenotype became clear. Basal parts of shoot tissues were harvested, extracted with ethyl acetate for at least 2 days and crude extracts were purified by DEA and silica Sep-pack cartridge as reported previously (Brewer et al., 2016).

LC-MS/MS analysis

SLs were analyzed by LC-MS/MS as reported previously (Abe et al., 2014). Briefly, LC-MS/MS analysis (MRM, multiple reaction monitoring and PIS, product ion scan) of proton adduct ions was performed with a triple quadruple/linear ion trap instrument (QTRAP5500; AB Sciex, Old Connecticut Path Framingham, MA, USA) with an electrospray source. HPLC separation was performed on a UHPLC (Nexera X2; Shimadzu) equipped with an ODS column (Kinetex C18, 2.1 x 150 mm, 1.7 m; Phenomenex) with a linear gradient of 35% acetonitrile (0 min) to 95% acetonitrile (20 min). The column oven temperature was maintained at 30°C.

Supplemental Data

Supplemental Figure S1. Detection of CLA from recombinant LBO proteins of various

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

plants. **Supplemental Figure S2**. The number of shoot branching in *max1*, *lbo* and *atd14* mutants. Supplemental Figure S3. Identification of HO-CLAs from Col-0. **ACKNOWLEDGEMENTS** We would like to thank Nozomi Nanai for technical assistance. This study was supported by the Japan Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry, the Japan Society for the Promotion of Sciences (KAKENHI 15K07093, 16K07618, 16K18560) and the Japan Science and Technology Agency PRESTO (JPMJPR17QA). FIGURE LEGENDS Figure 1. Proposed strigolactone (SL) biosynthesis pathway in Arabidopsis thaliana. An isomerase (AtD27) and two CCD enzymes (MAX3 and MAX4) convert β-carotene into carlactone (CL), an endogenous common precursor for diverse SLs. CL is then oxidized by cytochrome P450 (MAX1) to carlactonoic acid (CLA), which is converted into MeCLA by unknown methyltransferase. The present study showed that 2-oxoglutarate-dependent dioxygenase LBO converts MeCLA into 1'-HO-MeCLA, which is essential for regulating shoot branching. Figure 2. LBO converted [18-d₃]-MeCLA to [MeCLA+16+3] and [1'-d₃]-MeCLA to [MeCLA+16+2]. To characterize the structure of [MeCLA+16], [18-d₃]-MeCLA (Middle)

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

and [1'-d₃] MeCLA (Light) were fed as substrates to recombinant LBO proteins and incubated for 15 min. Products were identified by LC-MS/MS (MRM). Figure 3. Most MeCLAs were converted to CLA. MeCLA was incubated with recombinant LBO proteins for 15 min. The extracts were analyzed by LC-MS/MS (MRM). Figure 4. 1'-HO-MeCLA was found from atd14 shoot. Identification of endogenous 1'-HO-MeCLA in basal parts of shoot and root tissues was conducted. (a) MRM of chromatograms (363.0/97.0; m/z in positive mode) of atd14 mutants (Middle) and lbo mutants (Light). (b) Product ion spectra derived from endogenous 1'-HO-MeCLA in basal parts of shoot of *atd14* mutants. Figure 5. Production of 1'-HO-MeCLA is very low in LBO-2. MeCLA was incubated with each recombinant protein for 15 min and extracts were analyzed by LC-MS/MS. MRM chromatograms of 1'-HO-MeCLA (363.0/97.0; m/z in positive mode) are shown. Figure 6. Conversion of MeCLA into 1'-HO-MeCLA is conserved among different plant species. MeCLA was incubated with each recombinant protein for 15 min and extracts were analyzed by LC-MS/MS. MRM chromatograms of 1'-HO-MeCLA (363.0/97.0; m/z in positive mode) are shown. Figure 7. Structures of HO-CLs, HO-CLAs and HO-MeCLAs and a proposed strigolactone biosynthesis pathway in Arabidopsis. The present study shows that 3-, 4-, and 16-HO-CL derivatives are predominant and produced through MAX1 and LBO in Arabidopsis.

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

Figure 8. (a) HO-CLs and HO-MeCLAs are detected from ethyl acetate soluble fractions, and (b) HO-CLAs were from acidic fractions in basal parts of shoot tissues of atd14 mutants, max1 mutants, and lbo mutants. 3-, 4-, and 16-HO-CLs appeared to accumulate in max1 mutants and 4-, and 16-HO-MeCLA in *lbo* mutants. MRM chromatograms of 3-HO-CL (blue, 301.0/97.0; red, 319.0/205.0; m/z in positive mode), 4-HO-CL (blue, 301.0/97.0; red, 301.0/148.0; m/z in positive mode), 16-HO-CL (blue, 301.0/97.0; red, 301.0/189.0; m/z in positive mode), 4-HO-MeCLA (blue, 345.0/97.0; red, 345.0/216.0; m/z in positive mode), 16-HO-MeCLA (blue, 345.0/97.0; red, 363.0/97.0; m/z in positive mode), 3-, 4-, and 16-HO-CLA (blue, 347.0/113.0; red, 347.0/69.0; m/z in negative mode) are shown. Figure 9. Recombinant LBO proteins convert 4-, and 16-HO-MeCLA mainly into the corresponding HO-CLAs. Each substrate was incubated for 15 min. The extracts were analyzed by LC-MS/MS with the D-ring fragment (m/z 97) as an indicator to identify the metabolites from each HO-CLA-fed LBO. Total Ion and MRM chromatograms of HO-CLAs (blue, 347.0/113.0; red, 347.0/69.0; *m/z* in negative mode) are shown. LITERATURE CITED

Parsed Citations

Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, et al (2014) Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci USA 111: 18084-18089

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824–827

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA 108: 20242-20247

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Al-Babili S and Bouwmeester H (2015) Strigolactones, a novel carotenoid derived plant hormone. Annual Review of Plant Biology 66: 161-186

Pubmed: Author and Title

Google Scholar: <u>Author Only Title Only Author and Title</u>

Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335: 1348-1351

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Baz L, Mori N, Mi J, Jamil M, Kountche BA, Guo X, Balakrishna A, Jia KP, Vermathen M, Akiyama K, Al-Babili S (2018) 3-Hydroxycarlactone, a novel product of the strigolactone biosynthesis core pathway. Mol. Plant 11: 1312-1314

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Brewer PB, Yoneyama K, Filardo F, Meyers E, Scaffidi A, Frickey T, Akiyama K, Seto Y, Dun EA, Cremer JE et al (2016) LATERAL BRANCHING OXIDOREDUCTASE acts in the final stages of strigolactone biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 113: 6301-6306

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Carvalhais LC, Rincon-Florez VA, Brewer PB, Beveridge CA, Dennis PG, Schenk PM (2019) The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere 9: 18-26

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Charnikhova TV, Gaus K, Lumbroso A, Sanders M, Vincken JP, De Mesmaeker A, Ruyter-Spira CP, Screpanti C, Bouwmeester HJ (2017) Zealactones. Novel natural strigolactones from maize. Phytochemistry 137: 123-131

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Charnikhova TV, Gaus K, Lumbroso A, Sanders M, Vincken J-P, De Mesmaeker A, Ruyter-Spira CP, Screpanti C, Bouwmeester HJ. (2018) Zeapyranolactone – A novel strigolactone from maize. Phytochemistry Letters 24: 172–178

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154: 1189–1190

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Dor E, Joel DM, Kapulnik Y, Koltai H, Hershenhorn J (2011) The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta 234: 419-427

Pubmed: Author and Title

Google Scholar: <u>Author Only Title Only Author and Title</u>

Foo E and Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234: 1073-1081

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Goldwasser Y, Yoneyama K, Xie X, Yoneyama K (2008) Production of strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination. Plant Growth Regulation 55: 21-28

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC et al (2008) Strigolactone; inhibition of shoot branching. Nature 45: 189–194

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M et al (2014) Positive regulatory role of strigolactone in plant response to drought and salt stress. Proc Natl Acad Sci USA 111: 851-856

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Hagel MJ and Facchini JP (2010) Dioxygenases catalyze the O-demetyylation steps of morphine biosynthesis in opium poppy. Nature Chemical Biology 6: 273-275

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Kapulnik Y, Delaux PM, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C et al (2011) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233: 209-216

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C (2011) Strigolactones are transported through xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiology 155: 974-987

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Mori N, Nishiuma K, Sugiyama T, Hayashi H, Akiyama K (2016) Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Phytochemistry 130: 90-98

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Mori N, Nomura T, Akiyama K (2020) Identification of two oxygenase genes involved in the respective biosynthesis pathways of canonical and non-canonical strigolactones in Lotus japonicas. Planta 251: 40

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, Yamaguchi S (2005) The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. The Journal of Biological Chemistry 280: 17873-17879

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Nomura T, Magome H, Hanada A, Takeda-Kamiya N, Mander LN, Kamiya Y, Yamaguchi S (2013) Functional analysis of Arabidopsis CYP714A1 and CYP714A2 reveals that they are distinct gibberellin modification enzymes. Plant Cell physiology 54: 1837-18511

Pubmed: Author and Title

Google Scholar: <u>Author Only</u> <u>Title Only</u> <u>Author and Title</u>

Ruyter-Spira C, Kohlen W, Charnikhova T, Zeijl A, Bezouwen L, Ruijter N, Cardoso C, Lopez-Raez et al (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role ☐ for strigolactones? Plant Physiol 155: 721-734.

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S (2014) Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc Natl Acad Sci USA 111: 1640-1645

Pubmed: Author and Title

Google Scholar: <u>Author Only Title Only Author and Title</u>

Soto MJ, Fernandez-Aparicio M, Castellanos-Morales V, Garcia-Garrido JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactone on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42: 383-385

Pubmed: Author and Title

Google Scholar: <u>Author Only Title Only Author and Title</u>

Tanaka K, Struts VA, Krane S, Fujioka N, Salgado GFJ, Martínez-Mayorga K, Brown MF, Nakanishi K (2007) Synthesis of CD3-Labeled 11-cis-Retinals and Application to Solid-State Deuterium NMR Spectroscopy of Rhodopsin. Bull. Chem. Soc. Jpn. 80: 2177–2184.

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Ueda H, Kusaba M (2015) Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis. Plant Physiol 169: 138-147

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455: 195–200

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Wakabayashi T, Hamana M, Mori A, Akiyama R, Ueno K, Osakabe K, Osakabe Y, Suzuki H, Takikawa H, Mizutani M, Sugimoto Y (2019)
Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Science Advances 5:
eaax9067

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Walker CH, Siu-Ting K, Taylor A, O'Connel MJ, Bennett T (2019) Strigolactone synthesis is ancestral in land plants, but canonical strigolactone signaling is a flowering plant innovation. BMC Biology 17:70

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Xie X, Kisugi T, Yoneyama K, Nomura T, Akiyama K, Uchida K, Yokota T, McErlean CSP, Yoneyama K (2017) Methyl zealactonoate, a novel germination stimulant for root parasitic weeds produced by maize. J Pesticide Science 42: 58-61

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M (2014) Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta 240: 399-408

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179: 484-494

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Yoneyama K, Xie X, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2011) Characterization of strigolactones exuded by Asteraceae plants. Plant Growth Regulation 65: 495-504

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title

Yoneyama K, Mori N, Sato T, Yoda A, Xie X, Okamoto M, Iwanaga M, Ohnishi T, Nishiwaki H et al (2018) Conversion of carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis. New Phytol 218: 1522-1533

Pubmed: Author and Title

Google Scholar: Author Only Title Only Author and Title