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ABSTRACT 12 

An emergent area of cancer genomics has been the identification of driver genes. Driver 13 

genes confer a selective growth advantage to the cell and push it towards tumorigenesis. 14 

Functionally, driver genes can be divided into two categories, tumour suppressor genes 15 

(TSGs) and oncogenes (OGs), which have distinct mutation type profiles. While several 16 

driver genes have been discovered, many remain undiscovered, especially those that are 17 

mutated at a low frequency across samples. The current methods are not sufficient to 18 

predict all driver genes because the underlying characteristics of these genes are not yet 19 

well understood. Thus, to predict novel genes, we need to define new features and models 20 

that are not biased and identify genes that might otherwise be overshadowed by mutation 21 

profiles of recurrent driver genes. In this study, we define new features and build a model to 22 

identify novel driver genes. We overcome overfitting and show that certain mutation types 23 
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such as nonsense mutations are more important for classification. Some known cancer 24 

driver genes, which are predicted by the model as TSGs with high probability are ARID1A, 25 

TP53, and RB1. In addition to these known genes, potential driver genes predicted are CD36, 26 

ZNF750 and ARHGAP35 as TSGs and TAB3 as an oncogene. Overall, our approach surmounts 27 

the issue of low recall and bias towards genes with high mutation rates and predicts 28 

potential novel driver genes for further experimental screening. 29 

Keywords: Driver genes, random forest, cancer genomics, tumour suppressor genes, 30 

oncogenes, machine learning 31 

BACKGROUND 32 

Cancer is one of the leading causes of morbidity globally, with more than 18.1 million cases 33 

reported in the year 2018 [1]. A major focus of cancer research has been the understanding 34 

of molecular mechanisms that govern tumorigenesis and the targets that can be used for 35 

treatment. Cancer cells are distinct because of their genomes, which give these cells the 36 

ability to divide and metastasize to other tissues in the body. It has been observed that 37 

mutations in some genes [2, 3] confer the ability of oncogenesis to these cells. The term 38 

“driver” was coined to refer to mutations in the genome that pushed the cell to oncogenesis 39 

[4]. Of all the mutations present in a cancer cell, not all are involved in giving a cellular 40 

advantage to the cell to divide uncontrollably. Driver mutations [4, 5] are those that were 41 

advantageous for tumour development and metastasis during the clonal evolution [6, 7]. On 42 

the other hand, passenger mutations [4, 5] are mutations that are accumulated during 43 

normal cell division or due to high mutational rates in cancer cells, but their presence or 44 

absence does not affect the progression and establishment of tumours.  45 
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Driver genes are effectively those genes that harbour mutations that provide them with a 46 

selective advantage to divide and grow unchecked. These driver genes not only help the 47 

cells bypass the cell cycle checkpoints to divide in an uncontrolled fashion but also give 48 

added functionality, such as bypassing the immune system [8, 9] and angiogenesis [10, 11], 49 

which lead to their persistence in the body. While certain cancers with well-understood 50 

mechanisms show that the presence of driver mutations is recurrent in most samples of a 51 

cancer type [2], others seem to have mutations that occur at a lower frequency. Driver 52 

genes that contain  lower frequency of mutations are difficult to identify [12] because most 53 

likely these genes work in combination with other genes to confer a selective advantage to 54 

the cell.  55 

Driver genes can be of two kinds depending on the role of the gene in a normal cell type. A 56 

tumour suppressor genes (TSG), as the name suggests, is the cell’s defence mechanism from 57 

becoming a cancer cell. When such a gene loses its function due to say, frameshift 58 

mutations or nonsense mutations, a selective growth advantage is conferred to the cell. 59 

Proto-oncogenes undergo gain of function mutations to become into an oncogene (OG). 60 

Mutations in both TSGs and OGs tip the balance of a normal cell into becoming a cancer cell. 61 

While many TSGs and OGs have been discovered for different cancer types, most of them 62 

are highly potent and recurring in different patients. A pan-cancer model will help in 63 

identifying patterns which might be lost while studying a cohort or specific cancer type, 64 

owing to low sample sizes or mutation frequencies. A key aim of this study is to find low-65 

frequency driver genes by classifying them into TSGs and OGs.  66 

There are broadly two classes of methods for identifying driver genes based on mutational 67 

data. The first class of methods [13–15] rely on the rate of mutations in genes for a set of 68 
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patients,  to identify driver genes. In these studies, the background mutation rate is 69 

estimated, and genes that show statistically different mutation rates are identified as driver 70 

genes. The rate of different types of mutations is used to calculate the background mutation 71 

rate [14, 15]. The methods of identification differ in the statistical method used [14]. The 72 

rate of cell division and length of the gene needs to be taken into account as the mutation 73 

rate may change depending on cell type and length and position of the genes [15].  74 

Among the different methods that exist for identifying driver genes, when validated using 75 

the Cancer Gene Census (CGC) [16], it was observed that while the precision of identifying 76 

these genes was high, they had a very low recall [12]. Furthermore, genes identified through 77 

these approaches have a high recurrence of being mutated across different tumour 78 

samples. We now know that the rate of mutation is not sufficient for the identification of 79 

driver genes; instead, genes with low mutation rate can be driver genes if a mutation occurs 80 

at functionally important positions. 81 

The second class of methods use a ratio-metric approach, where not only the repeated 82 

occurrence of mutations is taken into consideration, but also the functional impact of the 83 

mutations. Ratio-metric algorithms [17–19] capture the proportion at which the different 84 

mutation types occur. The type of mutations and their ratios vary and are distinct for TSGs 85 

and OGs. For instance, TSGs are more likely to have indels (insertions and deletions), more 86 

specifically frameshift mutations, that lead to loss of function of the protein. On the other 87 

hand, OGs tend to accumulate missense mutations that confer the protein with a “gain of 88 

function” [5, 20]. These features are then used for differentiating between these two types 89 

of driver genes. 90 
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While these methods do capture some mutation patterns observed across samples, low 91 

recall shows that our understanding of the characteristics that define TSGs and OGs is far 92 

from complete. In this study, we define new features that calculate entropy and frequency 93 

of different mutation types along with other ratio-metric features.  Our aim is to identify 94 

important features for TSGs and OGs that can help classify a given gene as a TSG or an OG. 95 

Since the ratio-metric approach is based on the type of mutations and these differ for TSGs 96 

and OGs, genes were classified into two classes. Further, classification problems are prone 97 

to overfitting resulting in high classification scores in the training set, but the model can turn 98 

out to be unreliable for predictions using new data. We outline a method for estimating 99 

parameters for the given classification algorithm and avoid overfitting. We use the final 100 

model to predict novel driver genes by classifying a list of unlabelled genes; we validated 101 

our predictions by illustrating the presence of known TSGs and OGs among our predictions 102 

and through functional analysis of the predicted novel genes. We calculated the mutation 103 

rates and compared our results with the widely used tool MutSigCV and show that our 104 

method is able to pick out many driver genes that have very low mutation rates. Further, we 105 

used a pan-cancer model to predict driver genes that were tissue-specific.  106 

RESULTS 107 

We define novel features and a method to estimate parameters and build a classifier using 108 

pan-cancer data to predict TSGs and OGs. The classifier is further used to predict labels for 109 

unlabelled genes, at pan-cancer and tissue-specific levels, which are analysed for functional 110 

enrichment.  111 
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Novel features used for classification of TSGs and OGs 112 

We trained multiple random forest models using a subset (80%) of 136 TSGs and 76 OGs for 113 

each fold of the cross-validation. We performed a five-fold cross-validation while estimating 114 

hyper-parameters for the model followed by multiple random iterations to estimate stable 115 

hyper-parameters and avoid overfitting (as defined in Methods). It is important to carefully 116 

consider overfitting as the initial training set is not very large. The accuracy for the test set 117 

reduces compared to the training set, but this difference is not substantial. We note that 118 

TSGs can be predicted with higher accuracy than OGs; it is probable that the features are 119 

biased at capturing information regarding TSGs better than OGs. Across the multiple 120 

models, an average accuracy of 0.76 ± 0.03 was achieved. These models were further used 121 

for the identification of novel genes as well as tissue-specific analyses. Our model presents a 122 

significant improvement in recall for TSGs. For OGs, the recall is similar to those observed in 123 

other tools. Nevertheless, an average recall of driver genes (comprising both classes) shows 124 

an improvement over the tools reported earlier [12].  125 

To identify features important for the classification of TSGs and OGs, we calculated the 126 

average rank of each feature, across all models. We observe that the top-ranking features 127 

contain LOF and missense mutations (Supplementary Table S1). The new features that 128 

replace old features in the top 18 ranks are Nonsense entropy, High missense frequency, 129 

Compound/benign, High Frameshift Frequency, Damaging/kb, Compound/kB, 130 

Damaging/LoFI and HiFI/benign.  Further, we used the training set genes to compare the 131 

distribution of feature values in TSG and OGs, and observed that our top-ranking features 132 

show the highest differences between the two distributions (Fig 1). While it is common 133 
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knowledge that LOF mutations accumulate in TSG and recurrent missense mutations in OGs, 134 

we formally show that the feature distribution is different for these two functional classes. 135 

Iterative hyper-parameter estimation avoids overfitting 136 

Initial analysis for a large number of n_estimator for random forest and using 137 

BalancedBagging to manage class imbalance gave higher accuracy score for training sets 138 

comparable to Davoli et al., (2013). However, these showed very low accuracy for the test 139 

set (Table 2), indicating overfitting. Additionally, we observed that changing the random 140 

seed showed substantial variation in results. This variation is unexpected and could perhaps 141 

stem from non-optimum parameters used for classification or the small size of the data. To 142 

avoid this variation, we re-estimated the random forest parameters, n_estimator, 143 

max_features, max_depth and criterion. Changing the n_estimator had a major effect on 144 

classification, and grid search with cross-validation did not help in removing overfitting. 145 

We overcame this by multiple iterations of hyper-parameter estimation by changing the 146 

random seed, which helps us identify more stable hyper-parameters. This gave lower 147 

accuracy for training sets but improved the accuracy of the test set considerably.  When 148 

varying sets of random seeds (10, 20, 40, 80, 160, 320) were used, the results were 149 

consistent across all cross-validation folds (test set accuracy 0.76 and standard deviation 150 

0.03) implying the increasing number of random seed iterations do not decrease or improve 151 

accuracy. We observe that for a given data fold, the hyper-parameters selected are more 152 

stable for varying sets of random seeds. While different parameter sets dominate as the 153 

data is changed, the overall results on the test set do not vary. 154 
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Model identified novel TSGs and OGs along with known driver genes 155 

All genes that were not used for training the models were classified into TSGs and OGs. This 156 

list also contained genes that are known driver genes present in CGC but not used for 157 

training. The labels were predicted for the unlabelled genes, of which 126 genes or 158 

transcripts showed consensus across all models. CGC known driver genes contributed to 159 

40.5% of these predictions which included genes such as ARID1A, ATRX, NF1, TP53, RB1, and 160 

STAG1 and their transcripts. Some novel genes predicted consistently are SIN3A, ZNF750, 161 

IWS1, CD36, ARHGAP35, MGA, and RASA1 as TSGs. The model tends to be biased towards 162 

TSGs with 699 genes with consistent predictions for 3 or more models out of which only 9 163 

are predicted as OGs. The top OGs predicted are U2AF1, BCL2L10, KRAS, MAP1LC3B, 164 

C11orf68, TAB3, MED12, MAX, and BRAF. Further, we show not all transcripts of a gene 165 

behave like a driver gene, for e.g. ATRX transcript ENST00000373344 is labelled as TSG but 166 

not ENST00000400866, ENST00000373341. The presence of known driver genes among top 167 

TSG and OG shows the validity of the model and those other genes in the list are potential 168 

driver genes. 169 

Enrichment analysis of genes for various KEGG and BIOCARTA pathways revealed genes 170 

involved in different cancer pathways such as myeloid leukaemia, and pancreatic cancer. 171 

Genes are also enriched for various signalling pathways associated with cell growth, such as 172 

EGF and PDGF signalling pathways. Further, to validate, a similar analysis was conducted 173 

using genes used for training the model. We find GO terms related to cell cycle, regulation 174 

of transcription, signalling and cell cycle arrest to be common for both results. These 175 

keywords were further clustered with top clusters associated with genes involved in zinc-176 
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finger proteins, helicases, ATP-binding, ARID binding and cancer pathways. The analysis 177 

shows known driver genes and predicted driver genes enrich for similar pathways. 178 

Our approach identifies genes with low mutation frequency 179 

We analysed the mutation frequencies of the predicted genes. Mutation rates were 180 

calculated using MutSigCV, a well-known driver gene predictor, which calculates mutation 181 

rates to identify driver genes. MutSigCV ranks all genes of which a total of 602 driver genes 182 

were identified above the threshold (p <=0.005, q <= 0.01). Training data labels were used 183 

to compare the two methods. MutSigCV identified 40% for our training gene set with 85 184 

genes predicted as driver, while our model did better by predicting 85% of genes. The 185 

mutation rates of the genes predicted by the two models were compared. Since MutSigCV 186 

ranks all genes, we picked top genes equal in size to our model predictions (>=5 model 187 

consensus) and calculated KS statistic against training set and plotted the fraction of genes 188 

below mutation rate of each gene. We observe that distribution of mutation rates is similar 189 

to training set for our predicted genes, while MutSigCV tends to be biased towards genes 190 

with higher mutation rates (Fig 2). The minimum mutation rate predicted for our model was 191 

0.35 while for MutSigCV was 0.90. The KS (Kolmogorov-Smirnov) statistic for both models 192 

when compared to training set shows the difference is far lesser for our model when 193 

compared to MutSigCV (Table 4), which shows that the distribution of mutation rates is 194 

similar to what is expected.  195 

Driver genes are tissue-specific 196 

Cohort studies tend to be specific to a cancer type. The usefulness of a pan-cancer model is 197 

further elucidated when it can be used to identify tissue-specific driver genes. The objective 198 

of predicting genes using a subset of data specific to tumour primary tissue source was to 199 
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identify genes specific to a cancer type. This helped in identifying genes which might 200 

otherwise be lost in biological noise (Table 5). We observe TP53 predicted as TSG across the 201 

different tissues. Other known driver genes that weren’t identified by the pan-cancer 202 

analysis were identified such as CBFB, CDH1, PTEN in breast cancer and APOB in liver. Genes 203 

such FAM182A, SOX9, AHNAK2, ENSG00000121031, FLT3LG, PMEPA1, ZFP36L2 in the large 204 

intestine, ALB, KRTAP19-1, APOB, CD200, CRYGD, KRTAP24-1, OR6N2 in the liver are novel 205 

predictions, and their functions in these cancers can further be studied. We used the pan-206 

cancer models to predict tissue-specific driver genes and identified new genes not reported 207 

by the pan-cancer analysis. 208 

Genes identified for breast cancer was validated by supporting literature. CBFB [21] and 209 

PTEN [22, 23] is a known TSG in breast cancer. PTEN is found to be under-expressed in 210 

breast cancer [24, 25]. While CDH1 mutations are found mostly in stomach cancer, they are 211 

also shown to be frequently occurring in lobular breast cancer [26, 27]. Pathway analysis of 212 

breast cancer genes shows enrichment of pathways involved in gene expression regulation 213 

governed by TP53, RUNX1 and PTEN which includes pathways that regulates estrogen-214 

mediated transcription. CBFB deletion leads to expression loss of RUNX1[21], which can no 215 

longer regulate NOTCH signalling by repression, which is confirmed by pathway analysis. 216 

Some apoptosis pathways are enriched that include CDH1 and TP53 genes. The genes 217 

identified by the pan-cancer model for breast cancer samples identify genes functionally 218 

important in breast tumour cells. 219 

Predictions made for liver cancer were mostly novel, which made literature validation 220 

difficult. RNA expression levels of genes APOB, ALB and CD200 were higher compared to all 221 

other tissues (as reported by The Human Protein Atlas). Higher albumin levels are known to 222 
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decrease the risk of HCC (Hepatocellular carcinoma)  [28]. APOB mutational signatures are 223 

shown computationally to be significant to predict prognosis, by loss of regulation of genes 224 

such as TP53, PTEN, HGF [29]. While role of other genes is difficult to elucidate, our method 225 

helps identify research gaps which can be filled by studying these potential driver genes. 226 

DISCUSSION 227 

Identification of driver genes has been an important focus area of cancer research because 228 

these genes are potential targets for therapy and biomarkers. Different approaches have 229 

been used for identification using mutational information [17, 18, 30], gene expression 230 

levels [31], protein structural information [32], network analysis [33, 34] or using multiple 231 

data sources [31]. Advances in sequencing technologies have made mutational information 232 

easily available, and different tools have been developed to identify driver genes. Driver 233 

genes are further classified into TSGs and OGs based on the functional impact of the 234 

mutations they harbour.  235 

We adopt a classification approach that is able to predict TSGs and OGs by leveraging a set 236 

of ratio-metric and other new features. Traditional methods identify genes based on the 237 

mutation rate. Compared to previous approaches, we ascribe a higher significance to 238 

functional impact along with the position of the mutations, as the genes might contain 239 

mutations in functionally important regions even though the mutation rate may not be very 240 

different from the background mutation rate. Features like nonsense entropy, frameshift 241 

frequency captures the recurrence of a mutation when multiple samples are considered, 242 

thus taking into account the position at which the mutation occurs. 243 

For classification, many different algorithms are available, but the performance of the 244 

algorithm is dependent on the data and estimation of parameters. It is especially important 245 
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while solving biological problems, where the training data might be small, to build robust 246 

models. We tried the classification of genes using support vector machines (SVM), logistic 247 

regression, balanced bagging as well as random forest and found that random forest 248 

performed better in this case. Further, high performance on a given data might also be due 249 

to overfitting. We sought to avoid overfitting by performing a standard 5-fold cross-250 

validation while estimating random forest parameters as well as multiple iterations for 251 

estimation of stable parameters. We developed a procedure to verify that the predictions 252 

are reasonably stable. An ensemble of models is used to make final predictions. 253 

It is important that the estimated parameters are robust to changes in data. For random 254 

forest, we estimated four parameters out of which n_estimator seemed to have a large 255 

effect on the classification. For large values of n_estimator, we were able to show high 256 

accuracy scores similar to Davoli et al., (2013) but the accuracy scores for test set were 257 

much lower. We were not able to compare our performance on the test set with that of 258 

Davoli et al (2013), as their test set results have not been published. To build a better model 259 

that is not biased to data, we needed a more robust classifier, that is sufficiently generalized 260 

and not dependent on the training data. 261 

The models generated were used to find which of the new features are important for 262 

classification. To evaluate the model, we used 5-fold cross-validation with 20% test dataset 263 

while maintaining the ratio between TSGs and OGs and calculated metrics such as accuracy 264 

and F1 score. Instead of AUROC (Area under Receiver Operating Characteristic), we chose to 265 

show accuracy and F1 score, as AUROC only helps in estimating if the model can separate 266 

the given classes but tells us very little about the classification power for each of these 267 

classes. The F1 score is calculated for each of the given classes and helps understand if the 268 
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model is biased towards any one of the classes. The accuracy score on the test set shows 269 

that mere accuracy is not sufficient for judging a model. The models perform slightly better 270 

for TSGs, though it is far poorer at classifying OGs.  271 

While assessing the model, it is important to use metrics such as F1 score, as it scores 272 

predictions for each of the classes. Studies reporting only AUROC statistics present an 273 

incomplete picture and are not effective in estimating the performance of the model, 274 

especially in datasets having a class imbalance [35]. This is evident when we compare 275 

AUROC of Balanced bagging model (0.76 ± 0.07) with our model (0.54 ± 0.07). AUROC gives 276 

measures the models ability to separate the classes and not the prediction power. By 277 

reporting both accuracy as well as F1 score, we show that the model does not perform 278 

equally for both classes but tends to be better at classifying TSG than OG. This indicates that  279 

the chosen features are not sufficient to classify oncogenes. 280 

Feature ranking shows that features containing information about LOF, nonsense, 281 

frameshift and missense mutations are important. Nonsense and frameshift mutations are 282 

frequently seen in TSGs while recurrent missense mutations are characteristic of OGs as 283 

they lead to “gain of function”.  284 

The list of genes classified contained known driver genes and other transcript data for genes 285 

present in training and test set. We found that TSGs such as ATRX, PTCH1, and STAG2 were 286 

classified as TSGs with high probability. KDM6A gene and its transcripts (ENST00000377967, 287 

ENST00000382899) feature among the top, which shows that the model can also help 288 

classify a particular transcript of a gene. Similarly, TP53 and its six transcripts were all 289 

classified as TSGs.  Genes U2AF1, KRAS, BRAF, MED12 and MAX were classified as OGs 290 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.17.910075doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.17.910075
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

among the top genes identified as OGs. As the probability scores for OGs tend to be lesser 291 

than TSGs, relatively fewer OGs make the cut-off for the top 5 percentile. 292 

Among the top TSGs identified, CD36 (previously known as FAT) is receptor protein for fatty 293 

acids. CD36 is also a prognostic marker for different cancer types [36, 37] and found in 294 

metastatic cells [36, 38]. While the expression of a gene is markedly different from normal 295 

cells, the molecular mechanism that enables metastasis is not well understood. Another 296 

gene, ARHGAP35, is a glucocorticoid receptor DNA binding factor, which has also been 297 

previously identified as a potential driver gene by other methods [39, 40]. ZNF750, zinc 298 

finger protein 750 has been established as a tumour suppressor in oesophageal squamous 299 

cell carcinoma [41–43] though it is absent from the CGC diver gene list. Some other 300 

potential TSGs not present in the CGC list are MBD6 and RASA1. In the human protein atlas, 301 

MAP1LC3B is labelled as a prognostic marker for renal and stomach cancer among the three 302 

shortlisted OGs.  303 

Our model does have some limitations. We have used binary classification for identification 304 

of TSGs and OGs which, classifies all genes as either TSG or OG. All genes containing 305 

mutations are not driver genes, and thus, a majority of genes are neutral. We overcome this 306 

by taking consensus across the five models built. It may be possible to improve on this 307 

classification by solving a multi-class problem where each gene is identified as TSG, an OG or 308 

neutral gene. The difficulty in this problem stems from the huge class imbalance in the data 309 

as well as the definition of neutral genes. While there are studies showing the importance of 310 

a gene in tumour evolution, it is difficult to define genes that are not involved in cancer 311 

progression. Most methods use a list of genes that do not contain cancer driver genes and 312 

genes involved in cancer pathways, but this does not exclude potential driver genes. 313 
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Additionally, it has been seen that mutations are not always the reason for the change in 314 

functionality and regulation might also lead to change in expression at transcriptomic and 315 

proteomic levels. Other than adding new features to the analysis, including transcriptomic 316 

and proteomic data along with genomic mutation data might further improve the 317 

classification of genes. 318 

CONCLUSION 319 

In summary, we see two main contributions of our paper. First, we developed a classifier, 320 

which enabled an improved recall of TSGs and OGs compared to previously proposed 321 

methods in the literature. We carefully avoided overfitting for achieving consistent and high 322 

confidence results. Second, we predicted many potential TSGs and OGs at both the pan-323 

cancer and tissue-specific level, which form a ready short-list for further experimental 324 

investigation. Some of the top predictions were already well-known cancer drivers while 325 

others are reported in multiple cancer studies though their role in tumorigenesis is not yet 326 

well understood. Our approach is also readily amenable to the integration of other omic 327 

datasets, as they become available. 328 

METHODS 329 

Data 330 

We downloaded somatic mutation data from Catalogue of Somatic Mutations in Cancer 331 

 (COSMIC) (v79) [44]. These data were pre-processed to exclude hyper-mutated samples 332 

(samples containing more than 2000 mutations) Known SNPs were retained only if they 333 

were “confirmed somatic mutations”. The final processed data consist of 2,145,044 334 

mutations from 20,667 samples across 37 primary tissues. COSMIC also contains transcript 335 
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information, where different transcripts of a gene are saved as “gene_transcript” and are 336 

handled as separate genes. Splice site mutations were identified as mutations at 1 or 2 bps 337 

after the end of the exon border or 1 or 2 bps before the start of exon border. We used the 338 

popular tool Polyphen2 [45] to predict the phenotypic impact of missense mutations. For 339 

some mutations, Polyphen2 returns multiple scores, which we averaged for the purpose of 340 

our analyses. 341 

TSGs and OGs for training and test were taken from the CGC [16] gene list. Only those genes 342 

that were labelled “TSG” or “OG” and not “Fusion” were used for this analysis. A total of 213 343 

driver genes were used, of which 136 were TSGs and 77 were OGs. The TSG:OG ratio was 344 

maintained during all cross-validation steps and in both training and test sets. 345 

Ratio-metric features 346 

Mutations were divided into 11 different categories [17, 45]: silent, missense, splicing, High 347 

Functional Impact (HiFI), Mid Functional Impact (MiFI), Low Functional Impact (LoFI), 348 

nonsense, frameshift, in-frame, nonstop or complex. Not all missense mutations are equally 349 

deleterious — labelling them into HiFI, MiFI and LoFI categories helps differentiate genes 350 

that have a large number of mutations with low impact, from genes that have relatively 351 

fewer mutations but with larger functional impact. We use PolyPhen2 scores to categorise 352 

mutations as HiFI (� 0.85), LoFI (� 0.15) and MiFI (between 0.15 and 0.85), to differentiate 353 

between high confidence pathogenic mutation predictions.   354 

Additionally, other mutation categories were defined, which clubbed multiple mutations 355 

into one, such as ‘compound’ and ‘damaging’. Compound mutations are included because 356 

mutations types such as in-frame, nonsense and complex occur at a lower frequency than 357 

single nucleotide missense mutations, which might lead to patterns and impact of these 358 
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mutations to be masked. Since the functional impact is similar to missense mutations, 359 

combining similar mutation types might help in capturing information of these less 360 

frequently observed mutation types. Loss of function (LOF) mutations introduce large 361 

changes into proteins, causing disruption of function. Damaging mutations are the sum of 362 

HiFI and MiFI mutations; these capture impact of multiple MiFI and sparse HiFI mutations. 363 

Many features compute a ratio of mutation types, as outlined in Table 6. We defined 37 364 

features in all, with 18 of them being similar to those defined as Davoli et al., (2013). 365 

Entropy and Frequency features 366 

Entropy and frequency features were defined for four mutation types. A mutation (Mi) in a 367 

given gene i is represented by its location. For missense mutations, Mi is represented as a 368 

tuple (loc, wt, mt) where loc is the location of the mutation, wt is the wild type nucleotide, 369 

and mt is the mutated nucleotide. If k unique mutations are present in a gene, fi gives the 370 

frequency for each of the mutations. 371 

�� 	  ��
�  

where ��  is the number of occurrences of mutation � and � is the number of mutations in 372 

gene 
. 373 

� 	  � �� log ��
�

���

 

������� 	 log � � � 

Classification of genes 374 

Different machine learning algorithms such as random forest, support vector machines and 375 

logistic regression were used, among which random forest gave the highest accuracy. 376 
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Random forest was used for building a robust model and classifying TSGs and OGs. We used 377 

five-fold cross-validation to split data into training to test set ratio of 8:2; where each fold 378 

acts as a test set. We used the implementation of Random forest from the Python package 379 

Sci-Kit Learn [46]. We tuned the parameters using a five-fold cross-validation grid search 380 

along with multiple random iterations of random seed (described later). The parameters 381 

tuned are n_estimator (from 5-40), max_features (‘sqrt’ or ‘log2’), max_depth (2-4) and 382 

criterion (‘gini’ or ‘entropy’).  The number of maximum features each decision tree considers 383 

is given by the parameter max_features, which can be calculated in two ways, as either the 384 

square root or log2 of the total number of features.  385 

Tuning hyperparameters and estimating the robustness of the classifier 386 

Our initial results showed variation in classification depending on the random seed that was 387 

selected for classifying, even though cross-validation was used while estimating parameters. 388 

We used balanced bagging classifier to take into consideration the class imbalance and 389 

estimated parameters using cross-validation, which is the standard method. Poor results for 390 

this model led us to estimate hyper-parameters differently.  391 

To avoid this variation, classification and parameter selection were done for multiple 392 

random seeds (Fig. 3 block B). Grid search with five-fold cross-validation was done for 393 

multiple different random seeds. Optimum parameters were selected by first estimating 394 

parameter ‘n_estimator’ and using it to estimate other parameters. Recurrence of 395 

‘n_estimator’ across different random seeds was counted, and the maximum count was 396 

considered as the best ‘n_estimator’ to be given to the model. If multiple estimators were 397 

chosen, maximum accuracy during cross-validation was used to select one estimator. 398 

Maximum accuracy was used to find other parameters for the given best ‘n_estimator’. The 399 
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classification was rerun using the given parameters, and features were ranked. The model 400 

was used to predict the classification of test set genes.  401 

To estimate the effect of the number of random iterations on parameter estimation, the 402 

classifier was built on a varying number of iterations of random seeds (10, 20, 40, 80, 160, 403 

320). The stability of hyper-parameters selected was analysed based on the variation in the 404 

accuracy of the test dataset.  405 

Feature comparison and ranking 406 

All features defined were used for classification and ranked depending on their contribution 407 

to the model. Average rank was calculated across the five validation sets. The features are 408 

given in Table 7. 409 

Identification and functional analysis of novel TSGs and OGs 410 

We used the model built on the combined set of 37 features to classify unlabelled genes 411 

into TSGs and OGs. In total, 26,866 genes were classified as TSGs or OGs and ranked using 412 

their probabilities for each class. The genes given for classification contains different 413 

transcripts of the same gene symbol as different genes. In all, the gene list contained 18,951 414 

unique gene symbols. Genes were labelled TSG and OG depending on their presence in the 415 

top 5 percentile and consensus across models built during cross-validation. Since not all 416 

genes are necessarily TSGs or OGs, genes which didn’t fulfil these criteria remained 417 

unlabelled. Novel TSG and OG gene list predicted by greater than four models were further 418 

used for functional analysis to find the major pathways and gene ontologies these genes are 419 

enriched for. Functional analysis was carried out using DAVID [47, 48] for both, the genes 420 

above the threshold as well as training set genes, and the results were compared.  421 
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Further, the pan-cancer classifier was used to predict genes in different cancer types based 422 

on the primary tissue where the tumour is formed. The data were filtered based on primary 423 

tissue, and the feature matrix was generated for tissues with >1000 samples. The data was 424 

then standardized and run using pan-cancer models described earlier. 425 

We compared and calculated mutation rates using MutSigCV. Since the ground truth is not 426 

known for these predicted genes, we compared the genes used for training and calculated 427 

recall of these genes. Since MutSigCV does not classify genes as TSG or OG, the classes 428 

considered were Driver and Passenger. Further, we were interested in looking at the 429 

mutation rate distribution across the genes predicted. Since the distribution of mutation 430 

rates is unknown, we compared the similarity of the distribution of the predicted genes with 431 

the genes used for training (Kolmogorov-Smirnov statistic). Similarly, the similarity was 432 

compared for genes predicted by MutSigCV. 433 

LIST OF ABBREVIATIONS 434 

AUROC: Area under Receiver Operating Characteristic 435 

CGC: Cancer Gene Census 436 

COSMIC: Catalogue of Somatic Mutations in Cancer 437 

GO: Gene ontology 438 

HCC: Hepatocellular carcinoma 439 

HiFI: High Functional Impact 440 

Indels: insertions and deletions 441 

KS statistic: Kolmogorov-Simrnov statistic 442 
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LOF: Loss of function 443 

LoFI: Low Functional Impact 444 

MiFI: Mid Functional Impact 445 

OG: oncogenes 446 

TSG: tumour suppressor gene 447 
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FIGURE LEGENDS 568 

Figure 1 Distribution of top features identified by the classifier for TSG and OG. Training 569 

genes were used to study the differences between the distributions of features (kernel 570 

density) in TSG and OG. Kolmogorov-Smirnov statistic and the p-value is given for each 571 

feature. Higher value of KS statistic shows magnitude of difference of the two distributions. 572 

Figure 2 Fraction of genes predicted plotted against log transformed mutation 573 

rates. Genes predicted by a given method were sorted based on their mutation rate and 574 

plotted against the fraction of genes predicted below the given mutation rate 575 

Figure 3 Methodology for identifying novel driver genes. The figure presents an overview 576 

of the different steps involved in our study. Block A (light green frame) shows how our 577 
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classifier is built and is repeated 5 times. Block B (light blue frame) shows random iterations 578 

for estimation of hyper-parameters and is repeated 10 times. 579 

 580 

 581 

  582 
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TABLES 583 

Table 1. Classification metrics for training and test set. Numbers in bold indicate best 584 

performances for each metric between TSG and OG. The metrics are standard, and are 585 

defined as follows (T stands for True, F for false, P for positives and N for negatives):  586 

Accuracy = (TP + TN)/(TP + FP + TN + FN); Precision = TP/(TP+FP); Recall = TP/(TP+FN); F1 587 

score is the harmonic mean of Precision and Recall. 588 

 589 

 590 

 591 

Table 2. Classification metrics for training and test set using BalancedBagging. 592 

 Accuracy F1 score Precision Recall 

Training set 

OG 

0.93 ± 0.05 

0.92 ± 0.06 0.86 ± 0.09 0.99 ± 0.01 

TSG 0.94 ± 0.04 1.00 ± 0.01 0.90 ± 0.07 

Test set 

OG 

0.69 ± 0.06 

0.64 ± 0.06 0.56 ± 0.07 0.75 ± 0.06 

TSG 0.73 ± 0.06 0.82 ± 0.04 0.65 ± 0.09 

 Accuracy F1 score Precision Recall 

Training set 

OG 

0.86 ± 0.04 

0.77 ± 0.07 0.93 ± 0.04 0.67 ± 0.09 

TSG 0.90 ± 0.03 0.84 ± 0.04 0.97 ± 0.01 

Test set 

OG 

0.76 ± 0.03 

0.59 ± 0.10 0.79 ± 0.12 0.50 ± 0.19 

TSG 0.83 ± 0.02 0.77 ± 0.07 0.91 ± 0.07 
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Table 3. Hyper-parameters for each of the folds. For each cross-validation fold, the most 593 

frequent hyper-parameter set is reported. The average accuracy and F1-scores across the 594 

different random seed iterations (10, 20, 40, 80, 160, 320) are given along with the standard 595 

deviation. 596 

CV 

fold 

N 

estimator 

Max 

features 

Max 

depth 

Criterion Accuracy F1 score 

OG TSG 

1 6 log2 2 entropy 0.74 ± 0.02 0.55 ± 0.02 0.82 ± 0.02 

2 5 log2 2 gini 0.76 ± 0.03 0.60 ± 0.06 0.83 ± 0.02 

3 10 log2 2 gini 0.75 ± 0.03 0.60 ± 0.04 0.82 ± 0.03 

4 5 log2 4 entropy 0.76 ± 0.01 0.52 ± 0.04 0.84 ± 0.01 

5 20 log2 4 gini 0.79 ± 0.01 0.72 ± 0.02 0.84 ± 0.01 

 597 

 598 

 599 

Table 4. Kolmogorov-Smirnov statistic for mutation rate distribution of predicted genes 600 

when compared to training set genes. KS statistic for the top 60 predicted genes when 601 

compared with 208 genes in the training set. 602 

Method  KS statistic p-value 

MutSigCV 0.774 <<0.001 

Our model 0.193 0.054 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.17.910075doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.17.910075
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

Table 5. Driver genes predicted for each of the cancer types. The genes reported showed 603 

consensus for >4 CV models. Genes in bold did not find similar consensus in the pan-cancer 604 

predictions. Novel genes are underlined. 605 

Primary Tissue Genes 

Breast cancer TP53, CBFB, RUNX1, CDH1, GATA3, PTEN, TBX3 

Central nervous system TP53, HCN1 

Endometrium KRAS, PIK3R1, PTEN  

Hematopoietic TP53, B2M, CCND3, HLA-A 

Kidney PBRM1, VHL, TP53 

Large intestine TP53, FBXW7, FAM182A, SOX9, AHNAK2, 

TCF7L2, ENSG00000121031, FLT3LG, PMEPA1, 

ZFP36L2 

Liver TP53, ALB, KRTAP19-1, APOB, CD200, CRYGD, 

KRTAP24-1, OR6N2 

 606 

Table 6. Definitions of mutation categories and the ratio of mutation categories. 607 

Compound mutations 
 missense � complex � inframe � nonstop � LoFI 
Loss of Function �LOF� 
 nonsense � frameshift 

Damaging 
 HiFI � MiFI 

Benign 
 silent � LoFI 
"#$%&'( )* +

�

 , (�)� %- )� . 0

2 1 max �(� %- )� 
 0 2 
 608 

Table 7. The ratio-metric features used in this study for classification.  609 
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Previously 

defined in the 

literature 

(18 features) 

Silent/kb, Total Missense, Total Splicing, Total LOF, Missense/kb, LOF/kb, 

LOF/Silent, Splicing/Silent, Missense/Silent, LOF/Benign, Splicing/Benign, 

Missense/Benign, average Polyphen2 score, LOF/Total, Missense/Total, 

Splicing/Total, LOF/Missense, Missense entropy 

Defined in this 

paper 

(19 features) 

HiFI/LoFI, HiFI/Benign, MiFI/kb, Nonstop/kb, Inframe/kb, Complex/kb, 

Compound/Benign, Compound/kB, Damaging/kb, Damaging/Benign, 

Damaging/LoFI, High Missense frequency, Frameshift entropy, High Frameshift 

frequency, Splicing entropy, High Splicing frequency, Nonsense entropy, High 

Nonsense frequency, Total MiFI 

 610 
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