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Abstract. Recent experimental advances have enabled high-throughput single-cell measurement of
gene expression, chromatin accessibility and DNA methylation. We previously used integrative non-
negative matrix factorization (iNMF) to jointly learn interpretable low-dimensional representations
from multiple single-cell datasets using dataset-specific and shared metagene factors. These factors
provide a principled, quantitative definition of cellular identity and how it varies across biological con-
texts. However, datasets exceeding 1 million cells are now widely available, creating computational
barriers to scientific discovery. For instance, it is no longer feasible to use the entire available datasets
as inputs to implement standard pipelines on a personal computer with limited memory capacity. More-
over, there is a need for an algorithm capable of iteratively refining the definition of cellular identity as
efforts to create a comprehensive human cell atlas continually sequence new cells.

To address these challenges, we developed an online learning algorithm for integrating massive and
continually arriving single-cell datasets. We extended previous online learning approaches for NMF to
minimize the expected cost of a surrogate function for the iNMF objective. We also derived a novel
hierarchical alternating least squares algorithm for iNMF and incorporated it into an efficient online
algorithm. Our online approach accesses the training data as mini-batches, decoupling memory usage
from dataset size and allowing on-the-fly incorporation of new data as it is generated. The online imple-
mentation of INMF converges much more quickly using a fraction of the memory required for the batch
implementation, without sacrificing solution quality. Our new approach enables factorization of 939489
single cells from 9 regions of the mouse brain on a standard laptop in ~ 30 minutes. Furthermore, we
construct a multi-modal cell atlas of the mouse motor cortex by iteratively incorporating seven single-
cell datasets from three different modalities generated by the BRAIN Initiative Cell Census Network
over a period of two years.

Our approach obviates the need to recompute results each time additional cells are sequenced, dramat-
ically increases convergence speed, and allows processing of datasets too large to fit in memory. Most
importantly, it facilitates continual refinement of cell identity as new single-cell datasets from different
biological contexts and data modalities are generated.

Keywords: Single-Cell Genomics, Multi-Omic Integration, Nonnegative Matrix Factorization, Online
Learning.


https://doi.org/10.1101/2020.01.16.909861

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.16.909861; this version posted January 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

2 Gao and Welch
1 Introduction

1.1 Quantitative Definition of Cell Identity from Single-Cell Data

The cell is the building block of life. Defining cellular identity is foundational to a genomic approach to
medicine, because discovering what goes wrong in disease requires a reference map of the molecular states
of healthy cells. Cells have long been qualitatively characterized by a combination of features such as mor-
phology, presence or absence of cell surface proteins, and high-level function [18]. Recently, high-throughput
single-cell sequencing technologies have enabled researchers to profile individual cells using a wide range of
measurements, including mRNA, chromatin accessibility and DNA methylation [15]. Multi-modal single-cell
data offers tremendous opportunities for unbiased, comprehensive, quantitative definition of discrete cell
types and continuous cell states. The resulting catalog of normal cell types will lead to gaining a deeper
insight into fields like neuroscience, developmental biology and physiology [13]. More importantly, however,
knowing the molecular profiles of individual cells points to biochemical mechanisms by which genetic and
environmental factors cause disease, which is crucial for moving toward therapeutic intervention.

Multiple features contribute to cell identity, including gene expression, epigenomic modifications, and
spatial location within a tissue, but it is not currently possible to simultaneously measure all of these
quantities within the same single cells. Experimental methods for assaying transcriptome and epigenome
from the same single cells have been demonstrated, but have not been widely adopted due to significant
limitations in data quality and/or scalability. Large-scale gene expression, chromatin accessibility, DNA
methylation, chromatin conformation, and spatial transcriptomic measurements of different individual cells
are now widely available, but these features have generally been used separately to identify cell clusters
representing putative cell types, and it is unclear how these different definitions of molecular cell identity
are related. Combining these diverse features into an integrated picture of cellular state is crucial to defining
cell identity.

1.2 The Need for Scalable Integration of Single-Cell Data

Single-cell data integration thus represents a crucial step toward enabling quantitative definition of cell
identity, but existing computational approaches do not address this need. Three unique aspects make single-
cell integration challenging: (1) unlike bulk multi-omic data, only one modality is available from each single
cell; (2) both similarities and differences among datasets are of interest, so batch effect removal is not
sufficient; and (3) number of samples (n) per dataset is large and rapidly growing. Several recent single-
cell data integration approaches have been developed, including Seurat v3, Scanorama, and Conos [15, 6,
1], but these approaches are not designed to integrate multiple data types and/or have difficulty scaling to
massive datasets. Furthermore, none of these existing methods can incorporate new data, instead requiring
recalculating results each time new data arrive. Currently, scRNA-seq datasets are growing more rapidly
than other single-cell data modalities, but we also anticipate rapid growth in the scale of these other data
modalities in the near future. Indeed, a recent study assayed more than 100,000 cells with single-cell ATAC-
seq [3], and a recent spatial transcriptomic study assayed 1 million cells [12]. A key insight motivating our
approach is that techniques for so-called “online learning” [11], in which calculations are performed on-the-fly
as new data continuously becomes available (as in many internet applications), provides a path to scalable
single-cell data integration.

1.3 Integrative Nonnegative Matrix Factorization

In this paper, we build upon the nonnegative matrix factorization approach at the heart of our recently de-
veloped LIGER algorithm [16] to develop an online learning framework, allowing the algorithm to easily scale
to millions of cells, overcoming runtime and memory limitations, and avoiding the need to re-compute cell
type definitions from scratch each time new data arrive. The intuition behind LIGER is to jointly infer a set
of latent factors ("metagenes”) that represent the same biological signals in each dataset, while also retaining
the ways in which these signals differ across datasets. These shared and dataset-specific factors can then be
used to jointly identify cell types and states, while also identifying and retaining cell-type-specific differences
in the metagene features that define cell identities. LIGER takes as inputs two or more single-cell datasets,
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which may be scRNA-seq experiments across different individuals, time points, or species. The inputs to
LIGER may even be measurements from different molecular modalities, such as single-cell epigenome data
or spatial transcriptomic data that assay a common set of genes. LIGER relies upon integrated nonnegative
matrix factorization (iNMF) [17], which solves the following optimization problem:
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to jointly factorize N datasets (each consisting of a genes x cells matrix X;), inferring both shared (W)
and dataset-specific (V;) factors (Fig. 1). Each factor, or metagene, represents a distinct pattern of gene
co-regulation, often corresponding to biologically interpretable signals—like the genes that define a particular
cell type. The dataset-specific metagenes (V;) allow robust representation of highly divergent datasets; for ex-
ample, in a cross-species scRNA-seq analysis, dataset-specific factors will capture differences in co-expression
patterns of homologous genes. The factorization can also accommodate missing cell types by generating a
factor with a very large dataset-specific component.

1.4 Online Matrix Factorization

Since its proposal by Lee and Seung two decades ago, nonnegative matrix factorization (NMF) has been
widely used to learn interpretable representations of high-dimensional data [10]. NMF is a non-convex opti-
mization problem, so the strongest possible convergence guarantee for an NMF algorithm is that it converges
to a local minimum of the objective function. However, the widely used multiplicative update algorithm has
no such theoretical convergence guarantee and slow empirical convergence. More efficient NMF algorithms
based on block coordinate descent, including alternating nonnegative least squares (ANLS) and hierarchical
alternating least squares (HALS), have been developed [8], which show strong empirical performance and
are guaranteed to converge to a local minimum. However, even these approaches are not able to efficiently
handle large and streaming inputs such as images and videos (which often arise in web applications, hence
the name ”online learning”) [2]. As opposed to a batch learning algorithm, an online matrix factorization
approach accesses the data only as either single data points or mini-batches and continually updates the
basis elements in the metagenes in our context. Subsequently, an online NMF algorithm was developed with
guaranteed convergence to a local minimum as other batch NMF methods do. This approach showed strong
empirical performance and extremely fast convergence compared to batch NMF [11].
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Fig. 1. Overview of the online iNMF approach

1.5 Online iNMF

In this study, we extend the online NMF approach of [11] to make it suitable for iNMF tasks. Online iNMF
provides significant advantages in two related settings: (1) integration of large multi-modal datasets by
cycling through the data multiple times in small mini-batches and (2) integration of continually arriving
datasets, where the entire dataset is not available at any point during training (Fig. 1). Our proposed online
iNMF method iteratively refines shared and dataset-specific metagene representations using mini-batches
from multiple single-cell datasets. In this way, it allows for processing large-scale multi-modal datasets with
limited memory capacity as well as integrating continually arriving datasets.
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4 Gao and Welch

2 Methods

2.1 Derivation of Novel HALS Algorithm for iNMF

In the previous implementation of iNMF that we developed [16], we carried out an ANLS algorithm to
update H;, W, and V; in an iterative process. Briefly, ANLS optimizes the iNMF objective by iteratively
solving a nonnegative least squares problem to update each of the matrices (H;, W, V;) holding the others
fixed. For example, the update for H; (i € {1,...,N}) is:

() (o)
VAV * \Omxn;
This is a convex nonnegativity-constrained least squares problem that can be solved efficiently using the
block principal pivoting algorithm [9]. This ANLS algorithm is guaranteed to converge to a local minimum,
and we previously showed that it outperforms the multiplicative updates in practice [16].

Another type of NMF algorithm, HALS, also provides guaranteed convergence to a local minimum, but
often shows more efficient convergence in practice [8]. Thus, we sought to derive a novel HALS algorithm for
optimizing the iNMF objective. A HALS derivation proceeds by re-writing the objective function as a sum
of rank-one approximations (one for each of the K inner dimensions of the factorization), then deriving a
closed-form solution for each of the K basis vectors holding the others fixed. In the case of iNMF, this can
be considered as a block coordinate descent strategy with (2N + 1)K vector blocks. For example, for V; ;,
the jth factor in the dataset-specific metagene matrix V;, we want to solve the optimization problem:
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Taking the derivative with respect to kth element in V; ; gives:
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We then set the derivative equal to 0 and solve for (V; ;)i subject to nonnegativity constraints. Applying
the same process to all elements in V; ; yields the following update for jth column for V;:
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where [z], = max{107', z}. Similar derivations for H; and W give:
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To optimize the iNMF objective using HALS, we randomly initialize the factor matrices and iteratively
update each of the K factors of H;, then W, then V;. The HALS updates are very fast to compute because
they involve only sparse matrix operations (see Results).
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2.2 Optimizing a Surrogate Function for iNMF

We developed an online learning algorithm for integrative nonnegative matrix factorization by adapting a
previously published strategy for online NMF [11]. The key innovation that makes it possible to perform
online learning is to optimize a “surrogate function” that asymptotically converges to the same solution
as the original iNMF objective. We can formulate NMF using the following objective function: f(W, H) =
| X — WHJ3 where W and H are constrained to be nonnegative. The original online NMF paper proved
that the following surrogate function converges almost surely to a local minimum as ¢t — co:

R 1<
FW H) = 5 3 s = Whilly (8)
i=1

where H and W are constrained to be nonnegative. We can then perform NMF in an online fashion by
iteratively minimizing the expected cost ft(H , W) as new data points z; (or points randomly sampled from
a large fixed training set) arrive. Intuitively, this strategy allows online learning because it expresses a formula
for incorporating a new observation z; given the factorization result (W *=1 H(=1) for previously seen data
points. Thus, we can iterate over the data points one-by-one or in “mini-batches”—and also rapidly update
the factorization when new data points arrive. For iNMF, where we have N data matrices Xi,..., Xy and
data points z;, the iINMF objective function is given by (1). The corresponding surrogate function is:

t
1
ft(V[/,I/l,...,VN,Hl,...7HN):E}:Hmi—(W—&-Vdi)hdi 2 A ha, Va1 (9)
=1

where d; indicates which dataset the ith data point belongs to.

For a new data point (or mini-batch of new data points) z;, we first compute the corresponding metagene
loading values hg4,. In the original online NMF paper [11], the authors used a least angle regression algorithm
(LARS). We chose to use the ANLS update (2) instead because it is highly efficient and solves the subproblem
exactly in a single iteration. To update the shared (W) and dataset-specific (V;) factors, we use the HALS
updates (5) and (6), which are analogous to the updates used by Mairal et al [11]. Because the updates for
W and V; depend on all of the previously seen data points X; and their cell factor loadings H;, a naive
implementation would require storing all of the data and cell factor loadings in memory. However, the HALS
updates (5) and (6) depend on X; and H; only through the matrix products A = h;h;] and B = z;h, .
These matrix products have only K2 and mK elements respectively, allowing efficient storage, and can be
computed incrementally with the incorporation of each new data point or mini-batch x:

Al(t) _ Al(_tq) +h§t)hz(_t)
Bi(t) _ Bi(tfl) +x§t)h(_t)

?

.
. (10)

2.3 Implementation

We implemented online iNMF according to Algorithm 1 below. We used our previous Repp implementation
of the block principal pivoting algorithm to calculate the ANLS updates for h;. We implemented the HALS
updates for W and V; using native R, since the updates carry out only sparse matrix operations, which are
highly optimized in R. Because the online algorithm does not require all of the data on each iteration (only
a single data point or fixed-size mini-batch), we used the rhdf5 package [5] to load each mini-batch from disk
on the fly. By creating HDF5 files with chunk size no larger than the mini-batch size, we were able to create
an efficient implementation that never loads more than a single mini-batch of the data from disk at once.
The mini-batch size for the dataset with the most samples is set to 5,000. For the others, the mini-batch size
p; is proportional to its data size. For a mini-batch size of 5,000 cells, we found that reading each mini-batch
from disk added minimal overhead (less than 0.35 seconds per iteration) (Fig. S1). We also employed two
heuristics that were used in the original online NMF paper: (1) we initialize the data-specific metagenes
using K cells randomly sampled from the corresponding training data and (2) we remove the information
older than two epochs from matrices A and B.


https://doi.org/10.1101/2020.01.16.909861

bioRxiv preprint doi: https://doi.org/10.1101/2020.01.16.909861; this version posted January 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

6 Gao and Welch

Algorithm 1 Online learning for Integrative Nonnegative Matrix Factorization

Require: (X1)mxny,---» (XN)mxny

1: Initialize A” € 0X*K B c oM*K jc1,... N
2: Initialize elements in W using unif(0,2) ,V; using random sampled columns from X;, i € 1,..., N
3: fort=1to T do
4 Sample a mini-batch x; of size p; from X;, i€ 1,..., N
5 Compute h; using ANLS, i €1,...,N
2
. W +V; T4
= P - 11
h ag{girznén ( SV, ) h (Omxm) . (11)
6: Agt) — Agtfl) + %_hgt)hl(-t)—r > Discard information older than 2 epochs
7 Bi(t) — Bftil) —+ izﬁ”h?” > Discard information older than 2 epochs
8: Update W and V; using HALS
S B = (W V)(AP),
Wj = |:(W)J + 1 ]N 0) ! (12)
Ei:l(Ai )ii n
1 (Bi”)5 = (W + Vi)(A(") 5
(Vi) = m(Vi)-j + p o : (13)
(L4 N)(A) s n
9: end for

10: Solve for H; using ANLS with updated W and V;, i € 1,..., N
11: return W)V,  H;, i€ 1,...,N

3 Results

3.1 Online iNMF Converges Efficiently Without Loss of Accuracy Compared to Batch
iNMF

We benchmarked the performance of our online iNMF algorithm using a large scRNA-seq dataset from the
frontal cortex (194027 cells) and posterior cortex (116437 cells) of the adult mouse with selected 1369 highly
variable genes. Because the online algorithm optimizes the expected cost, we tracked the value of the iINMF
objective on both the training data (80% of the entire dataset) and a held-out testing set (20% of the entire
dataset) not seen during training. For this experiment, we set the number of factors (K) and the tuning
parameter A to 40 and 5, respectively. Batch methods including multiplicative updates (Multiplicative),
alternating nonnegative least squares (ANLS), hierarchical alternating least squares (HALS) were also tested
for comparison. The Hfrontar and Hposterior for the testing set were calculated using the W,Virontqr and
Vposterior learned on the training set and then the testing objective was obtained.

As Fig. 2 shows, online iNMF using a mini-batch size of 5000 converges much faster than ANLS and
Multiplicative, achieving a similar iNMF objective on the training set. Online iNMF performed even more
favorably in both convergence time and minimization of the objective on the held-out set, confirming its
capability, by design, of minimizing the expected loss. Reassuringly, we also find that the convergence behavior
of the online algorithm on both training and test sets is relatively insensitive to the batch size. For batch sizes
from 500 to 10,000, the convergence behavior is nearly identical. As the batch size approaches the dataset
size (50,000 or 155,222), the first few iterations take considerably longer, slowing the convergence time, but
the final objective remains unchanged.

Next, we investigated the effect of increasing dataset size n; on the convergence time and memory usage
of online iNMF with mini-batch size 5,000, in comparison with the batch methods. The Seurat v3 anchors
method (based on Canonical correlation analysis) [15] was also included for comparison. We used the same
adult mouse frontal and posterior cortex scRNA-seq datasets to generate training sets with different sizes,
from 20,000 cells to 200,000 cells, while using a fixed testing set of size 10,000. We observed that, for a
fixed test set, the length of time (number of mini-batches) needed to achieve convergence remains relatively
constant once the number of cells exceeds some minimum threshold (around 60,000, in this case). The
result highlights a key advantage of our online approach: convergence time appears to grow sub-linearly
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with the number of cells added (Fig. 3). This behavior likely occurs because, for a cell population of
fixed complexity (for example, a tissue containing 12 cell types), only some fixed number of observations is
required to effectively learn the metagenes. Thus, using the entire dataset to update the shared and data-
specific metagenes at each iteration becomes increasingly inefficient as the dataset size exceeds the minimum
threshold size needed to learn the metagenes.

In contrast with the online approach, the convergence time grows rapidly with dataset size for multiplica-
tive updating, ANLS, HALS, and CCA. Furthermore, by construction, the memory usage of online iNMF
depends only on the mini-batch size, which can be determined for training based on the available computing
resources, independent of dataset size. For example, the peak memory usage for online iNMF using a mini-
batch of 5,000 samples is about 500MB, regardless of the dataset size. In contrast, the peak memory usage
for the other batch methods increases significantly with n;, because they have to load the entire dataset into
memory. In fact, we were unable to run Seurat v3 with less than 32GB of RAM for datasets larger than
100,000 cells. Having established the efficiency of online iNMF in terms of time and memory usage, we next
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Fig. 2. Comparison of convergence behavior for online iNMF and three batch iNMF algorithms on
scRNA-seq data from the adult mouse cortex Training set objective are plotted against the training time
for multiplicative updates (Multiplicative), alternating nonnegative least squares (ANLS), hierarchical alternating
least squares (HALS) and online iNMF.(a)-(b) compare the performance between online iNMF and batch methods.
(c)-(d) compare the performance of online iINMF with different choices of mini-batch size.

evaluated the quality of our new approach with respect to clustering and dataset alignment. We applied
both online iINMF and ANLS (the implementation from our previous LIGER paper) to three benchmark
scRNA-seq datasets from human PBMCs, human pancreas, and mouse cortex. We created UMAP visual-
izations of the resulting factor loadings, colored by either dataset labels or published cluster labels (Fig.
4). These plots allow visual and qualitative assessment of dataset alignment and cluster preservation. For
all three datasets, online iNMF yields qualitatively similar visualizations with high dataset alignment and
accurate preservation of the original data structure. We also compared the batch and online iNMF results
by calculating the alignment metric as defined in our previous LIGER paper. Both approaches showed high
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alignment metrics, with online iNMF slightly exceeding batch iNMF in some cases (Table 1). Online and
batch iNMF both accurately preserved the published cluster assignments for each dataset, with purity scores
approaching the maximum possible value of 1 (Table 1).

a Testing Objective Function vs Training Time b Convergence Time vs Data Size c Memory Usage vs Data Size
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Fig. 3. Convergence time and peak memory usage of different algorithms in the presence of more
training samples. (a) With the mini-batch size fixed at 5000, the time needed for convergence does not differ
significantly among various sizes of the training set. (b) The convergence time of batch methods grows as more cells
included in the training set. (c) In contrast to the fixed memory usage of online iNMF, more memory is requested
for batch methods given a larger traning set.
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Fig.4. UMAP visualizations comparing batch method and online iNMF results on human PBMC,
human pancreas and mouse cortex datasets. Online iNMF is comparable to ANLS in preserving the data
structure.

3.2 Online iNMF Rapidly Factorizes Whole Mouse Brain Dataset Using Fixed Memory

To demonstrate the scalability of online iINMF, we analyzed the scRNA-seq dataset recently published by
Saunders et al. [14], which contains 939489 cells sampled from 9 regions (9 datasets) spanning the entire
mouse brain. Using a mini-batch size of 5,000, £ = 50 and A = 5, we performed 5 epochs of training. Our
online iNMF approach factorized the entire dataset in ~ 30 minutes on a MacBook Pro with an Intel i7
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processor using approximately 500 MB of RAM. We note that the published analysis by Saunders et al. did
not analyze all 9 tissues simultaneously due to computational limitations. Furthermore, we estimate (based
on the data in Fig. 2) that performing this analysis using our previous batch iNMF approach would have
taken 4-5 hours and required over 40 GB of RAM.

We used this factorization to cluster the cells into 50 groups by assigning each cell to the factor on which
it has the largest loading, a common procedure using NMF approaches. We then investigated the biological
properties of our factorization. Visualizing the iNMF factors using UMAP showed that the factors clearly
preserved the broad cell classes of the brain, as identified by Saunder et al (Fig. 5). Inspection of the UMAP
plots further indicates substantial variation in the cell type composition of each brain region. For example, the
“neurogenesis” cell class appears in a portion of the visualization that is almost exclusively occupied by cells
from the hippocampus, consistent with the known presence of adult neural stem cells in the dentate gyrus.
Reassuringly, our cluster assignments largely represent subtypes within the broad cell classes and do not
span class boundaries (Fig. 5; cluster purity of 0.975). As expected, neurons show by far the most diversity
with 11 subclusters. In contrast, choroid plexus, ependymal cells, macrophages, and mitotic cells each have
only a single cluster. We also examined differences in the regional proportions of each cell cluster (Fig. 5).
Neurons and oligodendrocytes showed by far the most regional variation in composition, consistent with
previous analyses [19]. The total proportion of oligodendrocytes varied by region, but individual subtypes
of oligodendrocytes were not region-specific, as expected. In contrast, individual subtypes of neurons were
highly region-specific, reflecting highly diverse regional specializations in neuronal function.

Table 1. Alignment quality and cluster purity metrics for batch and online iNMF on three datasets.

Alignment  Purity

Dataset Batch Online Batch Online
Human PBMC 0.937 0.948 0.867 0.832
Human Pancreas 0.990 0.990 0.926 0.921
Mouse Cortex 0.828 0.843 0.986 0.984

3.3 Online iNMF Allows Iterative Refinement of Cell Atlas from Mouse Motor Cortex

One of the most appealing properties of our online learning algorithm is the ability to rapidly incorporate
new data points as they arrive. This capability is especially useful for large, distributed collaborative efforts
to construct comprehensive cell atlases [4,7,13]. These cell atlas projects involve multiple research groups
asynchronously generating experimental data with constantly evolving protocols, making the ultimate cell
type definition a moving target that needs to be constantly updated. To demonstrate the utility of online
iNMF for iteratively refining cell type definitions, we used data generated by the BRAIN Initiative Cell
Census Network (BICCN), an NIH-funded consortium that aims to identify all of the cell types in the
mouse and human brains. During a pilot phase starting in 2018, the BICCN generated single-cell datasets
from a single region of mouse brain (primary motor cortex) spanning 3 modalities (single-cell RNA-seq, and
single-nucleus RNA-seq) and totaling more than 600,000 cells. These datasets have been publicly released
on the BICCN data portal (https://nemoarchive.org/).Over the past 2 years, the 4 funded research groups
have sequentially generated datasets, re-running the experiments as additional replicates and new protocols
become available. Thus, this dataset provides an ideal case study to demonstrate how online iNMF can refine
a cell atlas as additional cells are sequenced.

We used online iNMF to incorporate the datasets in chronological order, refining the factorization with
each additional dataset (Fig. 6). These datasets represent a sort of historical record reflecting the rapid
development of single-cell experimental techniques, with the first dataset generated using SMART-seq, the
dominant protocol before the advent of droplet-based protocols. Subsequent datasets reflect newer technolo-
gies, including two versions of the 10X Genomics scRNA-seq protocol (v2 and v3); droplet-based single-
nucleus RNA-seq; and droplet-based single-nucleus ATAC-seq. We used a fixed mini-batch size of 5,000 cells,
k =40, A = 5, and performed a single epoch of training (each cell participates in exactly one mini-batch).
When adding a new dataset, we incorporated a new dataset-specific factor matrix V; and randomly initialized
it. We did not use the previously seen data to refine the factors after the initial single epoch per dataset.
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Fig. 5. Online iNMF analysis of 939489 single cells from 9 regions of mouse brain. (a) Dot plot showing
the proportion of each of 50 clusters inferred from iNMF in each brain region. (b)UMAP visualization of the iNMF
factors for learned for each brain region, colored by the published cell class labels of Saunders et al.
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Iterative Refinement: Data Alignment
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Fig.6. UMAP visualization of iterative refinement of cell identity using data from mouse primary
motor cortex. Each of panels (a)-(f) shows a successive step in iterative refinement. Panel (g) shows the result
after the final dataset is added and quantile normalization is performed. Panel (h) shows the result from running
online iNMF for 5 epochs using all of the datasets at once.

The results indicate that our approach is able to successfully incorporate each new RNA-seq dataset
(Fig. 6a-f). Although no ground truth labels or published clustering assignments are available for this
dataset, UMAP visualizations indicate that the structure of the datasets is iteratively refined with each
successive dataset that is added. Even without performing quantile normalization (as previously described
in LIGER [16]), we observed high alignment between datasets already seen and each new RNA dataset that
we added (Fig. 6a-f). However, we found that the single-nucleus ATAC-seq data, the last dataset to arrive,
did not align as well as the RNA datasets (Fig. 6g). We reasoned that this may be because each cell is
seen only once in this setting. Consistent with this hypothesis, we observed much better dataset alignment
of the snATAC-seq data when we sampled mini-batches from the whole dataset for 5 epochs (Fig. 6h).
This suggests that incorporating unseen datasets can prove challenging when the new datasets are very
different from those seen so far. Additionally, we visualized the shared metagene values W to see how they
change during training. The metagene values change with each new dataset that is incorporated, indicating
refinement in the gene signatures defining each cell type (Fig. S2). The magnitude of these changes decreases
markedly with training, indicating that the signatures stabilize as training progresses. Overall, we conclude
that the iterative refinement capability of online iNMF shows great promise on this real-world cell atlas
dataset.

4 Discussion

In summary, our online iNMF' algorithm achieves faster convergence on the objective than previously devel-
oped batch algorithms such as ANLS and Multiplicative updating rules. Although the performance of HALS
on minimizing the objective is comparable to the proposed method, it requires the input data to be loaded
in the memory. On the contrary, by specifying a reasonable mini-batch size, the online algorithm can be
implemented with fixed memory usage regardless of the size of the input datasets, which are saved on the
disk. This characteristic allows users to carry out analyses on a regular laptop without worrying about the
size of the data. Additionally, online iNMF can iteratively refine cellular identity by processing new data
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points either from the same type of datasets or different ones, as we demonstrated on a cell atlas of the
mouse primary motor cortex. Future effort is needed for improving the performance of online iNMF when
integrating a dissimilar type of dataset (such as snATAC-seq) on top of the previous integrative analysis
result.
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Fig.S1. The effect of data loading method on the implementation of online iNMF. In this study, each
chunk in HDF5 files stores 1000 samples. Pulling data from the disk does not add significant overhead compared to
loading the data from memory, as long as the size of the mini-batch size is close to the specified chunk size.
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Fig. S2. Shared metagenes W are iteratively refined using online iNMF. Heatmaps showing the shared
metagenes W after each new dataset is incorporated (see Fig. 6). Columns of W after each new data are normalized
to unit norm. The value of each gene in each column represents its relative contribution to this metagene. AW is the
absolute difference before and after the update upon arrival of new dataset.
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