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Abstract

Resting-state functional connectivity is an important and widely used measure of individual

and group differences. These differences are typically attributed to various demographic and/or

clinical factors. Yet, extant statistical methods are limited to linking covariates with variations

in functional connectivity across subjects, especially at the voxel-wise level of the whole brain.

This paper introduces a generalized linear model method that regresses whole-brain functional

connectivity on covariates. Our approach builds on two methodological components. We first

employ whole-brain group ICA to reduce the dimensionality of functional connectivity matrices,

and then search for matrix variations associated with covariates using covariate assisted prin-

cipal regression, a recently introduced covariance matrix regression method. We demonstrate

the efficacy of this approach using a resting-state fMRI dataset of a medium-sized cohort of

subjects obtained from the Human Connectome Project. The results show that the approach
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enjoys improved statistical power in detecting interaction effects of sex and alcohol on whole-

brain functional connectivity, and in identifying the brain areas contributing significantly to the

covariate-related differences in functional connectivity.
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1 Introduction

In experiments of resting-state functional magnetic resonance imaging (fMRI), the study of con-

nectivity to characterize cerebral functional segregation and functional integration has received

considerable attention. The understanding of brain functional organization may provide critical

insights to cognitive function, as well as mental diseases. Functional connectivity, defined as the

correlation or covariance between fMRI time courses, reveals the level of synchrony in the fluctua-

tions of blood oxygenation level dependent (BOLD) signals between brain regions (Friston, 1994).

Brain regions with high functional connectivity are generally grouped as functionally related and

defined as a functional module/subnetwork. For example, the default mode network (DMN) is

a functional subnetwork that shows greater activity during resting states than during many task

challenges, and has been consistently identified through resting-state functional connectivity anal-

ysis (Greicius et al., 2003). Existing literature has shown that brain functional connectivity varies

with respect to individual characteristics, such as sex and age (Scheinost et al., 2015; Lopez-Larson

et al., 2011), and in patients with autism spectrum disorders (Assaf et al., 2010), Alzheimer’s dis-

ease (Wang et al., 2007), schizophrenia (Lynall et al., 2010) and other psychiatric disorders, as

compared to healthy controls.

To describe group-level differences in brain functional connectivity, investigators typically per-

form statistical analysis on each individual connection. One critical drawback of this element-wise

approach is the issue of multiplicity. That is, with p brain voxels/regions, statistical inference needs

to account for at least p(p−1)/2 hypothesis tests, one for each matrix element. To circumvent this,

Zhao et al. (2019) proposed a whole-matrix regression approach called Covariate Assisted Principal

(CAP) regression. It aims to identify a common linear projection of p time courses across subjects

so that variations in functional connectivity defined by the projection can be explained by the co-

variates of interest. It is considered as a meso-scale approach in the sense that with an appropriate
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thresholding, the projection defines a brain subnetwork. However, this approach suffers from the

so-called “curse of dimensionality”, in that the dimension of the data, p, cannot be greater than

the number of fMRI volumes. Therefore, it cannot be directly applied to voxel-level fMRI data.

In fMRI studies, independent component analysis (ICA) is a widely used technique to clus-

ter brain voxels into subnetworks (Beckmann, 2012). Applied to resting-state fMRI data, spatial

ICA identifies spatially independent and temporally coherent components. Based on the biological

assumptions regarding spatial contiguity of brain networks across individuals, group ICA was in-

troduced for population-level studies (Calhoun et al., 2001). The time courses of all subjects are

concatenated to identify independent spatial components shared by the study population.

In this study, we propose a method that integrates group ICA with CAP regression aiming

to discover brain subnetworks that are associated with population/individual characteristics of

interest. The method consists of three steps: (1) group ICA of the resting-state fMRI data; (2)

CAP regression on the IC time courses; and (3) reconstruction of brain networks. The proposed

method scales up the CAP regression in fMRI application to voxel-level analyses, and redefines brain

subnetworks that demonstrate population/individual variation in functional connectivity. Here, we

consider group ICA in the dimension reduction step as we aim to identify spatially independent brain

networks that are shared across individuals. Other methods that identify common components in

large scale data – group principal component analysis (PCA, Smith et al., 2014), for instance – can

also be applied to this end.

This paper is organized as follows. In Section 2, we introduce our method. Section 3 presents

an application in resting-state fMRI data obtained from the Human Connectome Project (HCP).

Section 4 summarizes results with a discussion.
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2 Method

Let Yi ∈ RTi×V denote the Ti BOLD scans of V voxels acquired in the resting-state fMRI study from

subject i (i = 1, . . . , n, n is the number of subjects). Let xi ∈ Rq be a covariate vector collected from

subject i. The method aims to perform whole-brain functional connectivity analysis, to produce

functional connectivity maps that vary with the covariates. Here, functional connectivity map

means those voxels/areas that contribute largely to the covariate-related variations in functional

connectivity across subjects.

We first implement group independent component analysis (ICA, Calhoun et al., 2001) to the

whole brain data; then employ covariate assisted principal (CAP) regression (Zhao et al., 2019) to

identify projections of the ICs that are associated with the covariates of interest; and finally we

reconstruct the CAP brain maps. Figure 1 summarizes the data analysis pipeline. We elaborate

on each step in the following sections.

2.1 Group ICA

Independent component analysis was introduced to decompose multivariate data into a linear mix-

ture of latent sources assuming that the latent components are non-Gaussian and statistically

independent. Consider an m-dimensional random vector x, a noise-free ICA model assumes:

x = As, (1)

where A ∈ Rm×n (n ≤ m) is a full rank mixing matrix and s ∈ Rn is a n-dimensional independent

random sources.

In fMRI studies, based on the sparse distributed nature of the spatial pattern for typical cogni-

tive activation paradigms (McKeown et al., 2003), spatial ICA has been successfully implemented

to discover spatially independent and temporally coherent brain regions. To elaborate, for BOLD
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Figure 1: Data analysis pipeline. Step 1: group independent component analysis (ICA) on the whole

brain. Step 2: the covariate assisted principal (CAP) regression on the IC time courses to identify

projections of the ICs that are associated with the covariates of interest. Step 3: reconstruction of

the CAP brain maps.
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signal Y ∈ RT×V acquired from a single subject, spatial ICA assumes

Y = AS, (2)

where A ∈ RT×K is the scalar mixing matrix and S ∈ RK×V is the spatial independent component

maps. It is assumed that the rows of S are statistically independent. However, it is not straight-

forward to make population level inference based on individual level IC decompositions. Calhoun

et al. (2001) introduced group ICA for drawing group level inference by temporally concatenating

BOLD time courses from multiple subjects. The method assumes common spatial brain maps

across subjects (see Step 1 in Figure 1). In practice, in order to reduce the computation complex-

ity and the amount of required memory, multiple data reduction steps, typically using principal

component analysis (PCA), are performed before concatenating the time courses (Calhoun et al.,

2009).

2.2 Covariate assisted principal regression

Covariate assisted principal regression aims to identify the optimal data rotation such that data

variation can be best interpreted by subject characteristics of interest. In fMRI studies, covari-

ance/correlation matrices are generally implemented to characterize the temporal coherence of

BOLD signals, so-called brain functional connectivity (Friston, 2011). Given the IC time courses

Ai’s attained from group ICA in the first step, the CAP approach assumes that there exist

R ∈ {1, . . . ,K} common diagnolizations of Ai’s covariance matrices and that data variation in

the projection space satisfies a log-linear model of the covariates (denoted by xi ∈ Rq). Let

Ait = (Ait1, . . . , AitK)> denote the tth row of Ai (for t = 1, . . . , Ti, where Ti is the number of fMRI

volumes of subject i) and γr a vector in RK . For r = 1, . . . , R, the CAP approach assumes that

log
{

Var(γ>r Ait)
}

= log {Var(Zitr)} = β0r + x>i β1r, (3)
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where Zitr
..= γ>r Ait; xi ∈ Rq is the vector of covariates of interest; β0 and β1r ∈ Rq are model

coefficients; γ>r γs = 1 if r = s and 0 otherwise imposing orthogonality between projections. Zhao

et al. (2019) proposed to estimate projection directions and model coefficients by maximizing the

likelihood function assuming Ait is normally distributed with mean zero and covariance matrix Σi

(for t = 1, . . . , Ti and i = 1, . . . , n). The number of projections, R, is determined based on the level

of deviation from diagonality, as introduced in Zhao et al. (2019).

2.2.1 Interpreting the CAP model under a special case

Though the CAP model aims to study global changes in functional connectivity, the regression

coefficients have a simple interpretation under a special case. Assume γr = (γr1, . . . , γrK)> and

Σi = (σijk)j,k for i = 1, . . . , n, then

Var(γ>r Ait) = γ>r Σiγr =
K∑
j=1

γ2rjσijj +
K∑
j 6=k

γrjγrkσijk.

Consider the special case that only two entries in γr are nonzero and identical. Without loss of

generality, assume γr = (1/
√

2, 1/
√

2, 0, . . . , 0)>, which indicates that this component consists of

the first two ICs. Since the IC time courses are standardized to have homogeneous variance, for

example all time courses are scaled with standard deviation one (that is, σijj = 1 for ∀ i and ∀ j),

then with σ12 = σ21,

Var(γ>r Ait) = 1 + σi12.

The regression model (3) assumes

log(1 + σ12) = β0r + x>i β1r.

In the classic edge-wise regression model, it is assumed that the Fisher z-transformed Pearson

correlation fits the linear regression model. The Fisher z-transformation takes the form

z =
1

2
log

(
1 + r

1− r

)
,

6
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where r is the Pearson correlation between two ICs. When σi12 ≈ 0, we have

log(1 + σi12) ≈ log

(
1 + σi12
1− σi12

)
.

Therefore, under this special case, the CAP regression coefficients have a similar interpretation as

those of edge-wise regression models.

2.3 Covariate related brain maps

The CAP procedure attains projections of the ICs. Integrating the spatial IC maps, we build new

brain maps that explain association with the covariates in the terms of brain functional connectiv-

ity. Let Γ = (γ1, . . . ,γR) ∈ RK×R denote the orthonormal projection matrix estimated from the

CAP procedure. Each row of Ω = Γ>S−> ∈ RR×V then gives the reconstructed CAP brain map

(Step 3 in Figure 1), where S− ∈ RV×K is the generalized inverse of matrix S. Each CAP brain

map, after threholding, should be interpreted as major brain areas contributing to specific func-

tional connectivity variations explained by the covariates, especially those areas with statistically

significant regression coefficients.

3 Analysis of resting-state fMRI from the Human Connectome

Project

We apply our analysis pipeline to the Human Connectome Project (HCP) resting-state fMRI data.

The HCP aims to characterize human brain structure, function and connectivity, as well as their

variability in healthy adults. We use the group ICA data from the HCP, as available at http://

www.humanconnectomeproject.org/. The fMRI data were first minimally-preprocessed following

Glasser et al. (2013). The artifacts were removed by using ICA+FIX (Salimi-Khorshidi et al., 2014;

Griffanti et al., 2014). Group-PCA results were first generated by MIGP (MELODIC’s Incremental
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Group-PCA) from 820 subjects, and then fed into group-ICA using FSL (https://fsl.fmrib.ox.

ac.uk/fsl/fslwiki/FSL) MELODIC tool (Hyvarinen, 1999; Beckmann and Smith, 2004). Spatial-

ICA was acquired in grayordinate space (surface vertices plus subcortical gray matter voxels, Glasser

et al., 2013) at various dimensionalities.

In this study, we use the 25-IC data of 109 subjects (aged 22–36) from the HCP S500 release.

The goal is to discover brain networks, within which the functional connectivity varies due to alcohol

use, and to examine whether the alcohol-induced variation differs by sex. We apply the proposed

method (i.e., ICA-CAP) and compare with an edge-wise regression approach. In both approaches,

the regression model includes age (continuous, mean 29.0, SD 3.4), sex (binary, 41 females and 68

males), alcohol drinker (binary, 67 non-drinkers and 42 drinkers), and a sex×alcohol interaction

(27 female non-drinkers, 40 male non-drinkers, 14 female drinkers and 28 male drinkers) as the

covariates. In the following, we will focus on the four contrasts derived from the sex×alcohol

interaction; that is (1) Male vs. Female among alcohol non-drinkers; (2) Male vs. Female among

alcohol drinkers; (3) Alcohol drinkers vs. non-drinkers in the female group; and (4) Alcohol drinkers

vs. non-drinkers in the male group.

In edge-wise regression, functional connectivity between IC’s is first calculated using the Pear-

son’s correlation and then Fisher z-transformed. Linear regression is performed with the Fisher

z-transformed correlations as the outcome. We present the corresponding effect size in Figure 2

for those pairwise correlations that are significant for any contrast (at α = 0.05). We observe

differences in functional connectivity between IC’s for all four comparisons. However, none of them

survives correction for multiple testing following the false discovery rate control procedure in Ben-

jamini and Hochberg (1995). Though the edge-wise regression approach identifies subtle variations

in functional connectivity and the interpretation is straightforward, the method suffers from the

curse of dimensionality as the number of tests increases dramatically as the number of components
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increases.

Using the deviation from diagonality to select model order, the proposed ICA-CAP approach

identifies five components. Figure 3 shows the loading profile and Table 1 presents the coefficient

estimates (with 95% bootstrap confidence intervals) of the five components. For the components

C1, C2 and C4, we observe significant sex difference in functional connectivity among alcohol

drinkers. In addition, among females, the functional connectivity within the component network

demonstrates a significant difference between alcohol drinkers and non-drinkers. For C3, both

the alcohol drinkers and non-drinkers groups show significant sex difference. For C5, all four

comparisons reveal significant difference in functional connectivity. Figure A.1 in the Supplement

presents the scatter plot of each sex×alcohol subgroup for the five components. For C1 and C3,

we fit the edge-wise regression model on the two top loading ICs and compare the results with

CAP in Figure 5. The significance of the β coefficients of the top loading pair in the element-wise

regression is consistent with those in the CAP components, which verifies the ICA-CAP findings.

We highlight the regions with high loadings in the reconstrcuted CAP brain map in Figure 4. Of

the five components, we use C1 and C3 as an example to further interpret the findings. For C1, the

precuneus is among the highlighted regions. The precuneus is implicated in cue-elicited craving and

altered emotion processing in alcohol dependence (Jansen et al., 2019). Individuals with alcohol use

disorder demonstrated decreases in cortical thickness in a number of brain regions that include the

precuneus (Schmidt et al., 2017). Compared with healthy controls, alcohol dependent participants

showed lower degree centrality values in the cerebellum, visual cortex and precuneus in graph

theoretical connectivity analyses (Luo et al., 2017). Another connectivity study reported that the

precuneus, postcentral gyrus, insula and visual cortex were the main brain areas with reduction

in network connectivity, perhaps suggesting reduced interoceptive awareness in alcohol drinkers,

compared to non-drinkers (Vergara et al., 2017). Overall, the current findings are consistent with
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(a) Male vs. Female (Alcohol non-drinkers) (b) Male vs. Female (Alcohol drinkers)

(c) Alcohol drinkers vs. non-drinkers (Female) (d) Alcohol drinkers vs. non-drinkers (Male)

Figure 2: Effect size with significance of the model contrast of sex and alcohol in the edge-wise

regression. The significance is evaluated if the raw p-value< 0.05. Red color indicates a positive

effect and blue indicates negative. The darkness of the color and the width of the cord suggest the

magnitude of the effect.
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these earlier studies.

For C3, we observe sex difference in brain functional connectivity. Very few studies have ex-

amined sex differences in resting state functional connectivity in neurotypical populations within

the age range of the current cohort. An earlier study employed ICA to identify four fronto-parietal

networks and showed sex differences in two of these networks with women exhibiting higher func-

tional connectivity in general, an effect that appeared to be independent of the menstrual cy-

cle (Hjelmervik et al., 2014). A life span study showed that the differences in connectivity between

men and women of 22–25 years of age did not differ significantly in functional connectivities (Con-

rin et al., 2018). However, the 26–30 (p = 0.003) and the 31–35 age groups (p < 0.001) showed

significant differences. At the most global level, areas of diverging sex difference include parts

of the prefrontal cortex and the temporal lobe, amygdala, hippocampus, inferior parietal lobule,

posterior cingulate, and precuneus. In a study of the elderly, males showed greater connectivity

than females in the salience network, whereas females showed greater connectivity than males in

the default mode network (Jamadar et al., 2018). Here, we demonstrate sex differences in somato-

motor and occipital cortex, and cold color regions are the orbitofrontal cortex and temporo-parietal

junction, suggesting that the ICA-CAP provides another analytical approach that may capture sex

differences in network connectivity.

4 Discussion

In this study, we propose an approach that integrates group ICA and a covariance regression

method. The covariance regression method identifies brain subnetworks that demonstrate popula-

tion or individual variation in brain functional connectivity. Applied to the independent compo-

nents (ICs) acquired from the group ICA, the proposed approach reconstructs principal component

brain maps, comprised of orthogonal groups of the ICs, in association with covariates of inter-
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(a) CAP-C1 (b) CAP-C2 (c) CAP-C3

(d) CAP-C4 (e) CAP-C5

Figure 3: Loadings of the five identified components from the ICA-CAP approach. ICs in red have

loading magnitude greater than 0.15 (gray dashed lines).
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(a) CAP-C1 (b) CAP-C2

(c) CAP-C3 (d) CAP-C4

(e) CAP-C5

Figure 4: Reconstructed brain maps of the five components from the ICA-CAP approach.
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CAP-C1

IC1-IC15

(a) CAP-C1 vs. IC1-IC15

CAP-C3

IC22-IC23

(b) CAP-C2 vs. IC22-IC23

Figure 5: A comparison of CAP components with element-wise regression. Figures on the left panel

shows the loading profile of the components/pairs, in the middle displays the corresponding brain

map, and on the right presents the estimate of the four comparisons with 95% confidence intervals.
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Table 1: Estimated model contrast (and 95% bootstrap confidence interval) of sex and alcohol for

the five identified components from the ICA-CAP approach.

Male vs. Female Alcohol drinkers vs. non-drinkers

Alcohol Non-drinkers Alcohol drinkers Female Male

C1 -0.026 (-0.287, 0.241) -0.461 (-0.785, -0.129) 0.530 ( 0.157, 0.882) 0.095 (-0.131, 0.307)

C2 -0.002 (-0.189, 0.202) -0.421 (-0.624, -0.198) 0.343 ( 0.093, 0.585) -0.075 (-0.247, 0.089)

C3 -0.359 (-0.579, -0.160) -0.290 (-0.517, -0.067) -0.209 (-0.469, 0.050) -0.140 (-0.306, 0.020)

C4 0.014 (-0.191, 0.236) 0.289 ( 0.010, 0.559) -0.333 (-0.602, -0.079) -0.058 (-0.290, 0.150)

C5 0.351 ( 0.203, 0.534) -0.165 (-0.336, -0.008) 0.326 ( 0.157, 0.496) -0.190 (-0.368, -0.027)

est. Compared to a standard pairwise approach, which requires fitting separate models for each

pair of regions/networks, the utilization of the covariance regression method illustrates superior

performance by avoiding the massive number of univariate tests.

Our method comparison adds a growing literature on comparing multivariate approaches to

univariate approaches for functional connectivity modeling. The effectiveness of multivariate ap-

proaches over univariate ones was also observed for multivariate covariance measures (Geerligs

et al., 2016; Yoo et al., 2019). In this first paper, we focused on multivariate modeling of whole

correlation matrices, instead of each connectivity edge separately. The correlation matrices were

computed using Pearson’s correlation, due to its wide adoption. However, this computation is

considered to be “univariate”, compared with other “multivariate” correlations such as distant

correlation (Székely et al., 2007). A future direction is to evaluate the potential improvement in

reliability and validity by replacing Pearson’s correlation with distant correlation.

There are several methodological limitations of our current method. Given the current sample
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size, we didn’t consider functional connectivity changes over time or cognitive state, also known

as dynamic connectivity (Hutchison et al., 2013). Additionally, spatial variations in functional

connectivity were also found recently to be related to cognitive state (Salehi et al., 2019). Our

framework takes a generalized linear model form, and this makes it amenable to inclusion of spatial

and temporal covariates. Though estimating the spatial and temporal effects seems achievable,

proper statistical inference would require future work to consider spatial and temporal dependence

in a more complex mixed effects model framework. Secondly, Our method does not model task acti-

vations and even further task-induced connectivity changes. It marginally depends on the Gaussian

distribution assumption, though Pearson’s correlation is relatively robust against slight departure

of Gaussianity. Note that the non-Gaussian assumption over spatial maps in our group ICA does

not apply to our Gaussian likelihood modeling of the extracted time courses. Future research is

required to extend our method to accommodate various ICA approaches (Calhoun et al., 2009) with

non-Gaussian assumptions on other components. Finally, we took a multi-stage approach which

can lead to decreased statistical efficiency. An alternative approach, though computationally more

expensive, is to consider fitting CAP regression and group ICA simultaneously in a uniform model.

We apply the proposed method to the HCP resting-state fMRI data and identify brain subnet-

works within which the functional connectivity variations can be explained by sex and/or alcohol

use. Our findings are in line with extant literature, lending evidence to the usefulness of the pro-

posed method in investigating the variability in brain connectomics. The main goal of the analysis

herein is to assess the effectiveness of the proposed method. Future analyses with larger cohorts are

warranted to validate the findings here. With increased cohort sizes and the availability of more

comprehensive covariates, the propose method may be adopted to include more complex covariates

and their interactions.

We also recognize several limitations in our fMRI analysis. First, we did not evaluate variations
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in brain maps related to covariates. Though these maps can be useful for generating hypotheses,

our current implementation does not provide statistical significance of these maps or cluster-level p-

values. One possible direction to use bootstrapped data to evaluate the variations in recovered brain

maps, though this can be computationally prohibitive not to mention a potential challenge to match

brain maps across bootstrapped samples. Second, it is expected that many other covariates could

impact functional connectivity networks, for example structural imaging measures and behavioral

assessments. In this first paper, we use the basic demographic variables in HCP as a demonstration

of our method, and our conclusions are subject to confounding from those additional covariates

not included in the model. Thirdly, we did not include additional data or external datasets to

validate our findings. Here, our analysis should be treated as a confirmatory study illustrating a

new method. The novel findings by our method should be further validated using ideally external

data.
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A Additional Results of the Human Connectome Project Analysis

Figure A.1 is the boxplot of model outcome in the proposed ICA-CAP approach for each sex×alcohol

subgroup. For example, in component C1 (Figure A.1a), we observe the difference between females

and males among the alcohol users; as well as the difference between female alcohol drinkers and

female non-drinkers. Figure A.2 presents the functional connectivity matrix of two subjects with

the highest and lowest model outcome in CAP-C1. One subject (Subject 82) is female and a alco-

hol user, and the other one (Subject 86) is also female but claims no alcohol consumption. From

the figure, we observe difference in connectivity patterns , where Subject 86 has strong functional

connectivities in more IC pairs.

Using edge-wise regression on the two top loading ICs in components C1 and C3, Figure A.3

verifies the findings from the ICA-CAP approach. Figure A.4 shows the brains of components.
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(a) CAP-C1 (b) CAP-C2 (c) CAP-C3

(d) CAP-C4 (e) CAP-C5

Figure A.1: Scatterplot for the five identified components from CAP after adjusting for age. Female-

NoAlcohol (blue solid circles): female alcohol non-drinkers. Male-NoAlcohol (red solid circles): male

alcohol non-drinkers. Female-Alcohol (blue solid squares): female alcohol drinkers. Male-Alcohol

(red solid squares): male alcohol drinkers.
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(a) Subject 82: female, alcohol user (b) Subject 86: female, no alcohol usage

Figure A.2: Functional connectivity matrix of two subjects with the highest and lowest model

outcomes in CAP-C1.
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(a) IC1-IC15 coefficient (b) IC1-IC15 scatter plot

(c) IC22-IC23 coefficient (d) IC22-IC23 scatter plot

Figure A.3: Estimated model contrasts of sex and alcohol (and 95% Bootstrap confidence intervals)

and scatterplots (after adjusting for age) in the edge-wise regression for the top loading pairs in

CAP-C1 and CAP-C3. In the scatterplot, Female-NoAlcohol (blue solid circles): female alcohol

non-drinkers; Male-NoAlcohol (red solid circles): male alcohol non-drinkers; Female-Alcohol (blue

solid squares): female alcohol drinkers; Male-Alcohol (red solid squares): male alcohol drinkers.
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(a) IC1 and IC15 (b) IC22 and IC23

Figure A.4: Brain maps of (a) IC1 and IC15 and (b) IC22 and IC23. In each brain map, the two

ICs have the same weight.
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