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Abstract10

1. Multi-environment trials (MET) are crucial steps in plant breeding programs that aim11

increasing crop productivity to ensure global food security. The analysis of MET data12

requires the combination of several approaches including data manipulation, visualization,13

and modeling. As new methods are proposed, analyzing MET data correctly and14

completely remains a challenge, often intractable with existing tools.15

2. Here we describe the metan R package, a collection of functions that implement a16

workflow-based approach to (a) check, manipulate and summarise typical MET data; (b)17

analyze individual environments using both fixed and mixed-effect models; (c) compute18

parametric and non-parametric stability statistics; (c) implement biometrical models19

widely used in MET analysis; and (d) plot typical MET data quickly.20

3. In this paper, we present a summary of the functions implemented in metan and how21

they integrate into a workflow to explore and analyze MET data. We guide the user22

along a gentle learning curve and show how adding only a few commands or options at23

a time, powerfull analyzes can be implemented.24

4. metan offers a flexible, intuitive, and richly documented working environment with tools25

that will facilitate the implementation of a complete analysis of MET data sets.26

Key-words: AMMI, biometry, genotype–environment interaction, GGE biplot, multi-27

environment trials, R software, stability, statistics28
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1 Introduction29

In 50 years (1967-2017) the world average of cereal yields has increased by 64%, from 1.68 to30

2.76 t ha−1. In the same period, the total production of cereals has raised from 1.305 × 109 to31

3.6 × 109 t, an increase of 175%, while the cultivated area increased by only 7.9% in the same32

period (FAOSTAT, 2019). These unparallel increases have been possible due to the improved33

cultivation techniques in combination with superior cultivars. For maize, for example, 50%34

of the increase in yield was due to breeding (Duvick, 2005). Plant breeding programs have35

been developing new cultivars for adaptation to new locations, management practices, or36

growing conditions, in a clear and crucial example of exploitation of genotype-vs-environment37

interaction (GEI).38

The breeders’ desire to modeling the GEI appropriately has led to the development of39

the so-called stability analyses, which includes ANOVA-based methods (Yates & Cochran,40

1938; Wricke, 1965; Shukla, 1972; Annicchiarico, 1992); regression-based methods (Eberhart41

& Russell, 1966); non-parametric methods (Huehn, 1979; Lin & Binns, 1988; Fox, Skovmand,42

Thompson, Braun, & Cormier, 1990; Thennarasu, 1995) and some methods that combines43

different statistical techniques, such as the Additive Main Effect and Multiplicative Interaction,44

AMMI, (Gauch, 2013), and Genotype plus Genotype-vs-Environment interaction, GGE, (Yan45

& Kang, 2003). Then, it is no surprise that scientific production related to multi-environment46

trial analysis has been growing fast in the last decades. A bibliometric survey in the SCOPUS47

database revealed that in the last half-century (1969–2019) 6590 documents were published48

in 902 sources (Journals, books, etc.) by 19.351 authors. In this period, the number of49

publications has been increased on average by 11.22% year−1 but were in the last ten years50

that the largest amount (~64%) of the documents were published (See Appendix S1, item 151

for more details).52

Linear Mixed-effect Models (LMM) has been more frequently used to analyze MET data.53

For example, between 2013 and 2015, the larger number of papers proposing methods to deal54
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with GEI were related to the Best Linear Unbiased Prediction (BLUP) in LMMs (Eeuwijk,55

Bustos-Korts, & Malosetti, 2016). Recent advances in this field showed that BLUP is more56

predictively accurate than AMMI and that the main advantages of these methods can be57

combined to help researchers to select or recommend stable and high productive genotypes58

(T. Olivoto, Lúcio, et al., 2019). Thus, the rapid spread of these methods to users around the59

world can be facilitated if these procedures are implemented in specific software.60

In most cases, analyzing MET data involves manual checking of the data subset(s) to61

identify possible outliers, using some biometrical model to explore the relationships between62

traits(or groups of traits), computing a within-environment ANOVA, computing a joint-63

ANOVA, and, in case of a significant GEI, applying some stability method to explore it.64

While a spreadsheet program (e.g. Microsoft Excel) may be used to perform a visual check65

for outliers, an integrated development environment (IDE, e.g. R, SAS, or Matlab) is often66

required to process the complex matrix operations required in some stability methods. IDEs,67

however, require a certain degree of expertise to use and have steep learning curves, which68

sometimes prevents that a coding layman implements certain methods. In this sense, R (Team,69

2019) packages have been making easier the life of hundreds of thousands of researchers by70

providing freely collections of functions developed by the community.71

Some open-source R software packages that are designed –or are suitable– for analyzing72

MET data are available. The stability package (https://CRAN.R-project.org/package=73

stability) contains a collection of functions to perform stability analysis. The ammistability74

package (https://CRAN.R-project.org/package=ammistability) computes multiple AMMI-75

based stability parameters. The gge (https://CRAN.R-project.org/package=gge) and76

GGEBiplots (https://CRAN.R-project.org/package=GGEBiplots) packages may be used to77

perform a GGE model. The R packages agricolae (https://CRAN.R-project.org/package=78

agricolae) and plantbreeding (http://plantbreeding.r-forge.r-project.org/), while not specif-79

ically coded for MET analysis provides useful functions for computing parametric and80

nonparametric stability statistics. Although useful, these packages do not offer options to81
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perform a complete analysis of MET data, i.e., to provide tools for all steps of the analysis82

(check, manipulation, analysis, and visualization of data). For example, GGEBiplots requires83

as input data a two-way table containing genotype by environment means with genotypes84

in rows and environments in columns, but doesn’t provide any function to create quickly85

such table from data that often is in a “long” format in R. In addition, several studies often86

compare different stability methods (e.g., Woyann et al., 2018; Scapim et al., 2010; Bornhofen87

et al., 2017; Freiria et al., 2018; Shahbazi, 2019; Teodoro et al., 2019). This requires a88

range of different packages to be used, making it the coding tedious and difficult to follow.89

Thus, it seems to be value the creation of an R package that presents an easy workflow, and90

incorporates the most used stability statistics, as well as recent introduced stability methods91

(T. Olivoto, Lúcio, et al., 2019; T. Olivoto et al., 2019) in addition to options for computing92

cross-validation (Piepho, 1994) and BLUP-based stability statistics (Colombari Filho et al.,93

2013), features frequently used but not yet implemented in any other R package for MET94

analysis.95

Here, we describe the metan (multi-environment trial analysis) package, an open-source96

R package designed to provide an efficient and reproducible workflow for the analysis of MET97

data. Our main aim in this paper is to describe the features of metan and how this collection98

of functions can be useful for an intuitive and complete analysis of MET data.99

2 The metan package100

The conceptual focus of metan is centered on five components (Fig. 1): (a) check, manipulate101

and summarise typical MET data; (b) performs within-environment analysis of variance; (c)102

compute parametric and non-parametric stability analysis; (d) compute biometrical models103

widely used in plant MET analysis of plant breeding trials; and (e) quickly create typical104

plots for two-way data considering any combination of qualitative and quantitative factors.105

The development version of metan is available on Github (https://github.com/106
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TiagoOlivoto/metan) and can be installed directly via the R console using devtools:107

# install.packages("devtools") uncomment to run

devtools::install_github("TiagoOlivoto/metan")

library(metan)

To illustrate the main features of the package, six example datasets (data_alpha, data_g,108

data_ge, data_ge2, int.effects, and meansGxE) are distributed with metan. Comprehen-109

sive details and examples of the functionality of metan are available in our online documenta-110

tion (https://tiagoolivoto.github.io/metan/). Indeed, we strongly encourage readers to refer111

to the vignettes as the primary source for information on metan’s functionality since they are112

updated with every package release.113

The metan package is constructed on an object-oriented approach, which allows for114

-among other things- the reliable use of S3 generic functions such as plot(), predict()and115

print(). These functions can be called any time to inspect and visualize a model. All116

functions in metan have a non-standard evaluation, where the expressions are evaluated in117

the specified data frame rather than in the current or global environments, thus avoiding118

ambiguity in input data. This makes it possible to evaluate code in non-standard ways.119

Basically, we can pass the argument as an expression rather than a value, reducing the120

amount of typing.121

In metan, all functions have as first argument the input data. So, all of them work122

naturally with the forward-pipe operator %>% (Bache & Wickham, 2014), which makes the123

typing cleaner and more logical. Most of MET analyze more than one trait in each genotype.124

Thus, when possible, functions in metan analyze a vector of variables and return the results125

into a list, saving a lot of time and code when several variables need to be analyzed. In126

metan, if we want to compute the AMMI stability value (Purchase, Hatting, & Deventer,127

2000) for several traits, we can combine the functions performs_ammi(), AMMI_indexes(),128

and get_model_data() with %>% to get a two-way table with the statistic for each genotype129
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and traits (see an example in Appendix S1, item 8.5.4). To our current knowledge, no other130

package designed for MET analysis presents these features.131

Sometimes in MET, a certain analysis needs to be run for each level of a factor, e.g.,132

compute a path analysis or check outliers for each environment of the trial. The R base133

function subset() could be useful, but worryingly tedious if a large number of levels need to134

be evaluated. Users of metan can count with the function split_factors(), which split the135

original data into n subsets according to the grouping variable(s), where n is the total number136

of combinations of the factors used. The object of class split_factors can be passed on137

to several functions %>%. If a function recognizes such class of data them it will take care138

of details and compute what is required for each one of the n levels (See an example in139

Appendix S1, item 6.3).140

2.1 Checking data141

It is assumed that MET data has the following structure (columns): ENV, a factor with e142

levels, being e the number of environments; GEN a factor with g levels, being g the number143

of genotypes; REP a factor with r levels, being r the number of replicates within each144

environment; and at least one numeric variable, e.g., grain yield. The expected number of145

rows in a typical MET data is then e × g × r.146

The function inspect() scans all columns of a data frame object for errors that may147

affect the use of functions in metan and return a warning if (i) the data has less than three148

columns as factor; (ii) the data has less than the expected number of rows based on the levels149

of factor variables; (iii) any variable has missing values; (iv) any possible outliers is detected.150

Running inspect() is an optional and exploratory step that flags potential issues before151

analysis. Error check results are summarised in the R console as warnings while a plot (Fig.152

1a) can also be created by using the argument plot = TRUE in the function (See more details153

in Appendix S1, item 6.1).154
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Outliers may violate the assumption of identically distributed errors in ANOVA models.155

Anomalous values tend to increase the estimate of sample variance, thus lowering the chance156

of rejecting the null hypothesis. In this regard, we strongly recommend checking for outliers,157

especially if the function inspect() returned a warning about them. Users of metan can use158

the function find_outliers() to check for possible outliers in a numeric variable, returning159

a summary in the console (Appendix S1, item 6.2) and a plot (Fig. 1b) if plots = TRUE is160

used.161

Descriptive statistics help researchers to describe and understand the structure of a MET162

data. The function desc_stat() computes a total of 30 statistics and when combined with163

split_factors() can be used to implement a descriptive analysis for each level of a factor,164

e.g., for each genotype (See more details in Appendix S1, item 6.3).165

Frequently in MET analysis two-way tables (e.g., genotypes in rows and environments166

in columns) need to be created to serve as data input in some procedure, for example, in the167

R package GGEBiplots. The function make_mat() can be used to create such a table. You168

inform the data frame in the “long” format, the two variables to be mapped to rows and169

columns and one numeric variable from which the values will fill the table and make_mat()170

take care of the details. Conversely, make_long() can be used to quickly convert a “wide”171

table to a “long” data frame (See an example in Appendix S1, item 6.4).172

2.2 Analyzing individual environments173

Individual analysis performed within each environment gives to researchers important in-174

formation regarding the performance of genotypes in such environments. Provided that a175

typical MET data is available, the function anova_ind() can be used to compute, for each176

environment, a fixed-effect ANOVA considering a Randomized Complete Block design. The177

function returns the significance of factors, coefficient of variation, heritability, and accuracy178

of selection (See a numeric example in Appendix S1, item 7).179
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The function gamem() is used to specifically analyze genotypes using a mixed-effect model180

considering both a randomized complete block design or an alpha-lattice design (Patterson181

& Williams, 1976). The function get_model_data() can be used to extract the model182

information such as variance components, genetic parameters, and P-values for the Likelihood183

ratio test for random effects. By using the function plot_blup() with an object of class184

gamem the plot in Fig. 1c is produced.185

2.3 Stability analysis186

After inspecting data, checking for outliers and possibly analyzing individual environments, a187

quick visual inspection of the genotype–environment interaction can be performed with the188

function ge_plot(), which will generate the plots in Fig. 1m-n. Statistically, GEI can be189

checked in a joint analysis of variance performed with the function anova_joint() (Appendix190

S1, item 7). If GEI is significant, then it is reasonable to proceed with some stability analysis191

to explore such interaction. metan provides a collection of functions to implement widely192

used methods for stability analysis in the evaluation of multi-environment trials (Table 1).193

After fitting a model, users can obtain custom plots to interpret the GEI. By invoking194

plot() in an object of class performs_ammi() residual plots (Fig. 1d) can be obtained. In195

AMMI analysis, biplots (Fig. 1f) are produced with the function plot_scores(), provided196

that an object of class performs_ammi, waas or waasb is available in the Global Environment197

(See Appendix S1, item 8.5.3 for more details). In GGE models, fitted with the function198

gge(), 10 types of biplots (Yan & Kang, 2003) can be created. Fig. 1g shows the biplot199

type 8, used for ranking genotypes. All plots are produced with package ggplot2 (Wickham,200

2016). So, users of metan can count on the high level of personalization provided by ggplot2201

to change any non-data elements of your plot (See an example in Appendix S1, item 7.5.3).202

Users who research the associations between stability indexes (e.g., Woyann et al.,203

2018; Bornhofen et al., 2017; Freiria et al., 2018; Shahbazi, 2019) often find difficulties in204
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computing the set of statistics and binding them into a “ready-to-read” file. metan provides205

an efficient solution for doing that. The function ge_stats() is a wrapper function and can206

be used to compute all the stability methods shown in Table 1 at once. Then, users can use207

get_model_data() to extract either the statistics or the ranks related to each genotype in208

each index and variable –if multiple variables are used in ge_stat()–, or corr_stab_ind(),209

to compute a Spearman’s rank correlation matrix between the computed stability indexes210

(See Appendix S1, item 8.9 for more details).211

2.4 Biometrical models212

Multi-environment trials often generate data on several traits, and this data should be213

exploited. In breeding trials (as well as in many other areas), indirect selection helps geneticists214

and breeders to select superior genotypes (Meira et al., 2017; T. Olivoto, Nardino, et al.,215

2017; T. Olivoto, Souza, et al., 2017; Ferrari et al., 2018; Santos et al., 2018; Fonseca, Lima,216

Dardengo, Silva, & Xavier, 2019; Gediya et al., 2019; Lopes Costa, Melo, & Oliveira Mano,217

2019); thus, any tool that facilitates this work is welcome. metan provides useful functions218

for implementing biometrical models easily. This includes the functions corr_coef() for219

computing Pearson product-moment correlation with P-values, lpcor() for computing partial220

correlation coefficients; covcor_design() for computing phenotypic, genotypic, and residual221

(co)variance/correlation matrices based on designed experiments; can_cor() for computing222

canonical correlation analysis; path_coeff() for computing path coefficients; corr_ss() for223

sample size planning; corr_plot() for a mixed (text and plot) visualization of a correlation224

matrix (Fig. 1j); corr_ci() for computing nonparametric confidence intervals of Pearson’s225

correlation (Fig. 1k); and clustering() for clustering analysis (Fig. 1l).226

Since metan was conceived for multi-environment trial analysis, the function227

split_factors() can be used to pass grouped data allowing, for example, that a path228

analysis or a canonical correlation be computed within each level of a factor, as shown in229

Santos et al. (2018). For more details, please, refer to Appendix S1, item 7.230
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2.5 Data visualization231

metan provides useful functions for creating quickly typical plots of two-way data, such as232

those observed in MET data. The function ge_plot() can be used for a visual inspection233

of the GEI (Fig. 1m-n). The function plot_factbars() is used to create bar plots with234

two factor variables (Fig. 1o). plot_factbars() has as mandatory arguments only the235

data, the factors 1 and 2, and the response variable. Similarly, line plots with options for236

fitting different polynomial degrees can be made with the function plot_factlines(). In237

an experiment with two quantitative factors, the function resp_surf() can be used to fit a238

response surface model; Then a surface plot (Fig. 1p) can be created with plot() (See more239

details in Appendix S1, item 10).240

3 Concluding remarks and future improvments241

The package metan was designed to facilitate the analysis of multi-environment trials, allowing242

for more effective and less time-consuming handling and processing of MET datasets that have243

been increasing rapidly in the last years. Users will find in metan a complete framework to244

implement the most used parametric and non-parametric stability statistics for MET analysis.245

The package implements stability methods not available in any other R package, including the246

estimation of BLUP-based stability statistics (Colombari Filho et al., 2013), newer stability247

methods such as the weighted average of absolute scores from the (T. Olivoto, Lúcio, et248

al., 2019), the multi-trait stability index (Olivoto et al., 2019), and the implementation of249

cross-validation procedures for AMMI and BLUP models (Piepho, 1994). metan can also be250

useful for to a lot of other researchers since it provides options for implementing worldwide251

used multivariate statistics, e.g., path analysis, linear, partial and canonical correlations, thus252

allowing exploiting the maximum of (good or bad) information that a data set can offer. The253

estimation of stability indexes for several variables at once and the estimation of biometrical254

models for each level of a factor makes metan to outperform already published R packages255
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for MET analysis. These features will reduce the amount of coding and save the precious256

time of the researchers when running their analyzes. The metan package is (and will always257

be) extensively documented online, with transparent and fully reproducible examples. metan258

is currently under active development; so, new functions will be implemented in the near259

future. Our next efforts will be focused on implementing cross-validation procedures for GGE260

models, allowing cross-validation to run in parallel, and increasing the number of stability261

methods available.262
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7 Supporting information278

Additional supporting information may be found online in the Supporting Information section279

at the end of the article.280
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Figure caption390

Fig. 1. Diagram showing steps in a typical workflow in the analysis of multi-environment391

trial data using metan. (a) inspect plot made with inspect(); (b) outlier check plot392

made with find_outliers(); (c) blups for genotypes made with plot_blup(); (d)393

model diagnostic made with plot.*(); (e) radar plot showing the multi-trait stability394

index made with plot.mtsi();(f) a gge biplot made with plot.gge(); (g-h) an AMMI2395

biplot and a nominal yield plot, respectively, made with plot_scores(); (i) results for a396

cross validation procedure made with plot.cv_ammif(); (j-k) visualization of correlation397

matrices with corr_plot() and plot.corr_coef(), respectively; (l) nonparametric398

confidence intervals for correlation made with plot.corr_ci(); (m-n) genotype-vs-399

environment plot made with ge_plot(); (o) a barplot created with plot_factbars();400

(p) a contour plot created with plot.resp_surf().401
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Table 1. Functions available in metan version 1.1.0 for computing stability analysis402

Function Method Reference
Parametric
Annicchiarico() Genotypic confidence index Annicchiarico (1992)
ecovalence() Wricke’s ecovalence Wricke (1965)
gai() Geometric adaptability index Shahbazi (2019)
ge_factanal() Environment stratification Murakami & Cruz (2004)
ge_reg() Joint Regression Analysis Eberhart & Russell (1966)
ge_stats() Wrapper function NA
gge() GGE biplot method Yan & Kang (2003)
mtsi() Multi-trait stability index T. Olivoto, Lúcio, et al. (2019)
performs_ammi() AMMI method Gauch (2013)
Resende_indexes() BLUP-based stability statistics Colombari Filho et al. (2013)
Shukla() Shukla’s stability variance Shukla (1972)
waas(), waasb() Weighted average of absolute scores T. Olivoto, Lúcio, et al. (2019)
wsmp() Stability and mean performance T. Olivoto, Lúcio, et al. (2019)
Non-parametric
Fox() The ‘top third’ method Fox et al. (1990)
Huehn() Huehn’s stability statistics Huehn (1979)
Superiority() Lin and Binns’ superiority measure Lin & Binns (1988)
Thennarasu() Thennarasu’s stability statistics Thennarasu (1995)
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