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Abstract 

Background: Phytochemicals and other molecules in foods elicit positive health benefits, often by poorly 

established or unknown mechanisms. While there is a wealth of data on the biological and biophysical 

properties of drugs and therapeutic compounds, there is a notable lack of similar data for compounds 

commonly present in food. Computational methods for high-throughput identification of food compounds with 

specific biological effects, especially when accompanied by relevant food composition data, could enable more 

effective and more personalized dietary planning. We have created a machine learning-based tool (PhyteByte) 

to leverage existing pharmacological data to predict bioactivity across a comprehensive molecular database of 

foods and food compounds. 

 

Results: PhyteByte uses a cheminformatic approach to structure-based activity prediction and applies it to 

uncover the putative bioactivity of food compounds. The tool takes an input protein target and develops a 

random forest classifier to predict the effect of an input molecule based on its molecular fingerprint, using 

structure and activity data available from the ChEMBL database. It then predicts the relevant bioactivity of a 

library of food compounds with known molecular structures from the FooDB database. The output is a list of 

food compounds with high confidence of eliciting relevant biological effects, along with their source foods and 

associated quantities in those foods, where available. Applying PhyteByte to the PPARG gene, we identified 
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irigenin, sesamin, fargesin, and delta-sanshool as putative agonists of PPARG, along with previously identified 

agonists of this important metabolic regulator. 

 

Conclusions: PhyteByte identifies food-based compounds that are predicted to interact with specific protein 

targets. The identified relationships can be used to prioritize food compounds for experimental or 

epidemiological follow-up and can contribute to the rapid development of precision approaches to new 

nutraceuticals as well as personalized dietary planning. 

 

Keywords: Bioactivity, Food, Molecule, Natural compound, Nutrition, Protein target 

 

Background 

While a select set of essential nutrients for humans has been well characterized, there is an abundance of 

lesser-known compounds in the human diet, representing a type of exposure that has been referred to as the 

“dark matter” of the human exposome [1-2]. These dietary bioactive compounds can have meaningful effects 

on human phenotypes, to the extent that some, such as lutein and several flavonoids, are under discussion for 

the establishment of dietary recommended intakes [3]. Despite the potentially important cumulative effects of 

these compounds, little is known about their bioactivity in the body due to the difficulty of experimentally 

assaying thousands of compounds for activity against thousands of potential gene products, combined with the 

complexities of absorption, microbial interactions, and metabolism [4]. Cheminformatic methods, including 

quantitative structure activity relationship (QSAR) models, can provide in silico approaches to prioritize 

compounds and foods in experimental and epidemiological settings when only the structure of a food 

compound is known. Pharmaceutical drugs can provide a critical set of anchors for such models, as their 

primary biological mechanisms of action are typically well characterized.  

 

Computational approaches to generating hypotheses related to food and food compound bioactivity have been 

introduced [5-6]. However, existing methods have focused primarily on literature mining based on natural 

language processing, rather than optimizing for the output of food compound activities related to a given input 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2020. ; https://doi.org/10.1101/2020.01.10.902197doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902197
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

gene or protein of interest. Methods described to date have used relatively basic QSAR methods, such as 

comparisons based on Tanimoto similarity scores, which may fail to capture important signals. There can be 

significant utility in identifying the food(s) that contains a compound of interest both as a source material or in 

the formulation of a novel product. The growth of relevant databases containing pharmaceutical and food 

composition information continually offers opportunities to revisit and improve QSAR tools. The United States 

Department of Agriculture (USDA) has a long history of producing high-quality data for its food composition 

databases [7], and inclusion of established or potential health effects would be a useful extension of these 

data. 

 

Here, we develop and demonstrate a machine learning-based approach, PhyteByte, that assigns putative 

bioactivity to food compounds based on a training set of pharmaceutical drugs. We show the efficacy of 

PhyteByte using the specific example of PPARG, the known target of the thiazolidinedione (TZD) drug class. 

 

Implementation 

In order to identify functional relationships between a food compound and a drug, along with its associated 

bioactivity data, we used data from two sources: ChEMBL and FooDB. ChEMBL is a manually curated 

database of almost 2 million (1,879,206 in version 25) bioactive molecules with drug-like properties [8-9]. 

These data were retrieved from ebi.ac.uk/chembl/ on 9/27/2019. FooDB (version 1.0) is a comprehensive 

resource on food constituents, chemistry and biology, with over 85,000 compounds in its repository [10]. These 

data were accessed from foodb.ca on 9/27/2019. 

 

The PhyteByte computational pipeline is outlined in Figure 1 (along with details related to a specific gene input; 

see Results & Discussion). The processing of data through PhyteByte is initiated by selection of an input 

protein target query, from which drugs acting on that target (sourced from ChEMBL) are obtained to provide 

computational fingerprints of their molecular structure. The fingerprints are processed by a predictive model to 

yield likely bioactivity for food compounds (sourced from FooDB), which in turn are queried in FooDB to 

retrieve foods containing those compounds, with quantified amounts where available. 
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Figure 1. Schematic data flow for PhyteByte from protein target input to predicted bioactive food compounds. 
Figure 1 legend: Specifically, a target specification (provided in the form of an HGNC gene symbol) serves as 
input for a query to ChEMBL that retrieves chemical structures for molecules with evidence of relevant 
bioactivity for the protein encoded by that gene. Bioactivity is defined as an inhibitory concentration (IC50) or 
effective concentration (EC50) of <20,000 nM based on the user-specified compound effect type (antagonist 
vs. agonist). Because ChEMBL does not contain explicit annotations as to the effect type, a heuristic is used in 
which the strength of antagonists and agonists are evaluated using IC50 and EC50 values, respectively. 
Compound structures are retrieved as simplified molecular-input line-entry system (SMILES) strings, which are 
then converted into FP2 binary fingerprints using the Pybel Python package [11]. A set of negative examples, 
chosen to be 10 times the size of the positive set, is also retrieved at random from the full set of ChEMBL 
molecules. The negative examples are converted to FP2 fingerprints after filtering such that no negative 
compound has a Tanimoto similarity score >0.6 with any molecule in the positive set. 
 

Next, a random forest model is trained (using the sklearn Python package) to classify compounds as to their 

bioactivity against the protein of interest, with inputs consisting of the binary fingerprint vectors and class labels 
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(positive or negative). Models use 100 component trees, with additional parameters following sklearn defaults. 

Using this trained model, the full set of food compounds available from FooDB are then characterized as to 

their probability of bioactivity with respect to the input protein. The list of probable dietary bioactive compounds 

are presented as output, along with their concentrations in foods as available in FooDB and an indication of 

whether the relationship is novel (i.e. does the compound lack existing evidence of bioactivity for the input 

protein in ChEMBL?). PhyteByte source code and installation instructions are available at 

https://github.com/seanharr11/phytebyte. 

 

Results & Discussion 

We have demonstrated the functionality and output of PhyteByte using the input gene PPARG, whose protein 

product is the target of the thiazolidinedione (TZD) drug class. TZDs are widely prescribed to treat type 2 

diabetes, and additionally may have broader cardiometabolic benefits [12]. However, TZDs also have 

documented side effects and FDA-issued alerts of adverse effects [13], suggesting a potential benefit of 

identifying alternative or complementary food-based bioactives. Details of the PhyteByte pipeline as realized 

for PPARG agonists are presented in Figure 1. 2977 positive compounds were retrieved from ChEMBL, along 

with 297,700 negative compounds. The trained model exhibited an F1 score (harmonic mean of precision and 

recall) of 0.94 in a 30% held-out set, indicating a reasonably strong discriminative capacity within the set of 

molecules in ChEMBL. This score may be biased upwards due to limitations in the set of pharmaceutical 

compounds explored to date, but nonetheless indicates an ability to classify potential food compounds 

effectively. 

 

When used to score compounds from FooDB, the model identified a series of molecules with potential agonist 

bioactivity for PPARG. Table 1 lists the 10 molecules with a predicted bioactivity confidence of greater than 

0.60 that also had associated foods in FooDB. Molecules such as pirinixic acid (or WY-14643) and xanthoxylol 

have been shown to activate PPARG [14-16], albeit the latter only as an activator of PPARG transcription [17]. 

Other molecules have little to no existing evidence in the scientific literature of acting as PPARG agonists. 

These include irigenin (an O-methylated flavone found in lima bean), sesamin (a lignan found in sesame and 
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flaxseed), fargesin (a lignan from tea, herbs and spices), delta-sanshool (an n-acyl amine from herbs and 

spices), and the lignan sanshodiol (from herbs and spices). Such molecules could be prioritized for detailed 

experimental validation. Complete output of PhyteByte for PPARG as input and resulting identified compounds 

scoring above 0.50 is presented in Table S1. 

 

Tools such as PhyteByte consider only small molecules and are limited by the content of the input databases. 

Importantly, these resources are expected to become increasingly comprehensive, especially for food 

compounds. For example, efforts are underway by the USDA to expand their food composition databases [7], 

and recent investigations have identified additional compounds produced during food processing [18] and by 

human microbiota [19], which may promote certain health effects. Complementary data streams, such as those 

based on text mining [5] or pharmacology networks [20], could be incorporated into this pipeline to provide 

additional literature- or disease/herbal formula-based support for food compound-phenotype links. Future work 

should also include more fine-grained annotations of positive training molecules (based on type of effect on the 

target, strength, and mechanism of action) as well as alternative QSAR modeling approaches [21]. 

Experimental and/or epidemiological assessment will ultimately be needed to validate at least some subset of 

the algorithmic predictions before this tool could be used in clinical settings or for dietary recommendations. 

 

Conclusions 

PhyteByte is a machine learning-based tool for discovery of interactions between food compounds and specific 

proteins or phenotypes. The software enables prioritization of these compounds for future research and 

hypothesis generation for condition-specific dietary interventions. Applied to the PPARG gene, this tool 

recovered known ligands and generated the basis for new hypotheses useful for cell-based assays or 

epidemiological inquiries. Our work provides additional proof-of-concept for the emerging field of 

“computational nutrition” based on food compounds, building on previous research that applied cheminformatic 

approaches to assign putative biological function to molecules of interest. 
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Availability and requirements 

Project name: Phytebyte 

Project home page: https://github.com/seanharr11/phytebyte 

Operating system(s): Unix-based (MacOS, Linux) 

Programming language: Python  

Other requirements: Python 3.6 or higher 

License: AGPLv3 

Any restrictions to use by non-academics: License needed 

 

Abbreviations 

EC50 – effective concentration 

IC50 – inhibitory concentration 

PPARG – peroxisome proliferator activated receptor gamma 

QSAR – quantitative structure activity relationship 

SMILES – simplified molecular-input line-entry system 

TZD – thiazolidinedione 

USDA – United States Department of Agriculture 
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Table 1. Top food compound results from PhyteByte for input of PPARG. 

Compound Synonyms CAS ID1 FooDB ID Score2 Novel 

finding 

Foods3 

Pirinixic acid 2-Methylthioribosyl-trans-

zeatin; WY-14,643; CXPTA 

50892-23-4 FDB001402 0.96 No pea, wheat 

Amorfrutin A 3-Hydroxy-4-isopentenyl-

5-methoxybibenzyl-2-

carboxylic acid 

80489-90-3 FDB001743 0.88 No pigeon pea 

Irigenin 5,7,3'-Trihydroxy-6,4',5'-

trimethoxyisoflavone 

548-76-5 FDB008016 0.79 Yes lima bean, iris 

kemaonensis, leopard lily 

Xanthoxylol  (-)-Piperitol 54983-95-8 FDB000580 0.72 No herbs and spices, Asarum 

sieboldii 

Sesamin  (+)-Asarinin; Fagarol 607-80-7 FDB012573 0.72 No sesame, flaxseed, fats and 

oils 

2,3-

Dihydrobenz

ofuran 

2,3-Dihydro-1-benzofuran; 

Coumaran; 

Dihydrocoumarone 

496-16-2 FDB007352 0.72 Yes fenugreek 

(+)-Fargesin  (+)-Spinescin; 2-(3',4'-

Dimethoxyphenyl)-6-

(3'',4''-

methylenedioxyphenyl)-

3,7-

dioxabicyclo(3,3,0)octane; 

Methylpluviatilol; Planinin 

68296-27-5 FDB017481 0.69 Yes tea, herbs and spices  

delta-

Sanshool  

N-Isobutyl-2,4,8,10,12-

tetradecapentaenamide; 

g-Sanshool 

78886-65-4 FDB003203 0.65 Yes herbs and spices (general) 

Sanshodiol (5-Chloro-2-

hydroxyphenyl)acetic acid 

54854-91-0 FDB002461 0.65 Yes herbs and spices  

Samin  NA FDB018392 0.61 Yes fats and oils  
 

         

          

1 Chemical Abstracts Service Registry Number for the compound 
2 Score represents the predicted probability of the compound acting as a PPARG agonist 
3 For results presented, data on compound amounts in food extracted from FooDB were 
available only for sesamin in sesame, range: 62.7 mg/100 g to 644.5 mg/100 g 
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Table S1.
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