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Abstract 

Little is known about the metastatic evolutionary dynamics of BRCA2-mutated 

cancers. Here, we applied whole-exome sequencing (WES) of primary tumor (PT), 

local relapse (LR) and eight serial plasma cfDNA samples collected from disease 

progression to depict the 12 years evolutionary trajectory of a metastatic BRCA2-

mutated breast cancer. While longitudinal WES-cfDNA recapitulated clonal and 

subclonal mutations and copy number profiles detected in LR, emergence of plasma-

exclusive mutations in TSC2 and HDAC9 cancer-related genes and loss of HLA loci 

as an immune escape mechanism were also detected. Lastly, mutation signature 3, 

associated with homologous recombination deficiency and response to platinum-

based therapy raised profoundly from 19% in PT to 60% in late stage disease. In 

conclusion, we show for the first time that longitudinal WES-cfDNA enables the 

evolutionary trajectory of advanced cancer to be uncovered and that increment of MS3 

and loss of HLA are key players in this BRCA2-mutated breast metastasis. 
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Introduction 

Breast cancer is the most commonly diagnosed cancer in women and a leading cause 

of death. Although advances in treatment and detection have improved survival rates, 

up to 30% of women worldwide who develop breast cancer die from metastatic 

disease every year 1. Distant relapse can occur up-to 20 years after primary diagnosis 

and treatment, and it is ultimately responsible for the patient’s death. Once the cancer 

has returned, it is not always possible to biopsy the recurrence meaning any targeted 

treatment usually relies on information from the primary tumor, despite the fact that 

the metastatic cancer may have evolved over time 2,3. Analysis of circulating tumor 

DNA (ctDNA) through “liquid biopsy’ provides an opportunity for non-invasive tumor 

monitoring, identification of mechanisms of resistance to therapies and detection of 

actionable mutations that emerge on disease progression 4-6. 

The development of targeted next generation sequencing (tNGS) enables detection of 

low frequency alterations at ≤0.1% variant allele fraction (VAF) in ctDNA 7-9.  Using 

tNGS, ctDNA has been detected in both early and late stage cancers, including breast 

cancer 10-14 and in metastatic breast cancer (MBC) ctDNA dynamics have been shown 

to reflect disease progression 12. In primary breast cancer, ctDNA profiling has be used 

to detect molecular relapse, ahead of scans following surgery and/or adjuvant therapy 
4-6. However due to their limited coverage of the genome, targeted sequencing 

approaches and patient specific mutation panels may miss key genetic events 

acquired as the tumor evolves, including potential therapeutic markers.  

Aiming to overcome these limitations, new liquid biopsy approaches such as total 

cfDNA whole-exome sequencing (WES-cfDNA) have been recently developed and 

shown high concordance with tumor whole-exome sequencing 15-17. This WES-cfDNA 

is able to non-invasively depict the genomic landscape of advanced cancer, monitor 

known circulating tumor mutations and pinpoint acquired somatic mutations at the time 

of cancer progression possibly associated with cancer therapy resistance.  

We here analysed WES data of 10 DNA samples collected over a 12-year period that 

comprised the primary tumor (PT, year 2005), local relapse ten years later (LR, year 

2015) and eight serial plasma samples collected after relapse, until the patient’s death 
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in 2017. We show for the first time that longitudinal WES-cfDNA enables the 

evolutionary trajectory of advanced cancer to be uncovered. Moreover, our results also 

demonstrate that WES-cfDNA can identify tumor mutation signatures, and immune 

escape mechanism by loss of HLA loci in late-stage cancer. Our study provides 

insights on the genetic evolution of advanced BRCA2-mutated breast cancer and 

show a prominent role of the BRCA-related mutation signature MS-3 and immune 

escape in the development and evolution of BRCA2-mutated breast metastasis. 

Results 

This WES investigation concerns a 52 year old female breast cancer patient who 

harbored a BRCA2 germline mutation (deletion of Exons 14-16). She was first 

diagnosed in June 2005 with a 25mm, grade 3, ER positive (5+2), HER2 3+, node 

positive lobular breast cancer. Following surgery for her primary cancer she was 

treated with adjuvant cyclophosphamide, doxorubicin and 5-FU plus trastuzumab 

followed by 5-years adjuvant tamoxifen. In January 2015 (approximately 10 years 

later) she relapsed with bone metastasis. A relapse biopsy showed ER positive 8/8, 

HER2 2+ by IHC FISH negative, breast carcinoma. She was followed up with 8 serial 

blood samples over a 2-year period on treatment until her death.  

 
 
WES sequencing metrics 

Using an average of only 15 ng cfDNA, we were able to generate genomic libraries for 

all eight plasma cfDNA samples, which were collected at stable disease or therapeutic 

response (samples B1, B2, B5, B7), and disease progression (samples B3, B4, B6, 

B8). The FFPE primary and relapse tumor tissues and germ line DNA isolated form 

buffy coat also generated successful genomic libraries using 20ng DNA. All 

sequenced samples passed QC metrics (Supplementary Tables 1 and 2) and we 

achieved a mean on-target coverage of 107X (range 56 -137) per sample.   

WES reveals genomic profiles of tumor and plasma cfDNA 

Applying WES-cfDNA to serial plasma samples enabled us to relate genomic profiles 

to the patient’s clinical disease course (Figure 1). The first CT showed lung 
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progression. Moreover, by the time of plasma B3, taken several weeks before this 

scan, multiple mutations were detected in ctDNA and a further CT scan soon after 

showed definitive disease progression within the lung and appearance of a right sided 

pleural effusion. Following this, the patient was given a course of TDM1, which was 

clinically ineffective as the subsequent CT showed progressive disease prior to B5. 

Following a further switch to carboplatin therapy a significant response of the lung 

disease was seen on CT, reflected by reduced mutations being detected in B5. Plasma 

B6 showed an increase in the number of mutations and the patient then progressed 

again with a CT scan showing lesions in her lung and brain and she was switched to 

letrazole therapy. The plasma cfDNA following a switch to letrazole (B7) showed a 

reduction in the number of mutations detected suggesting she was responding at that 

time. However, 10 weeks later a further CT scan confirmed disease progression to 

brain, which was reflected by a very large increase in mutations in the subsequent 

plasma (B8) (Figure 1A-C).  

A total of 667 Somatic SNVs and indels and 395 Somatic CNAs (SCNAs) were 

detected across the 10 samples (PT, LR, B1-B8) (Figure 1D, Table 1, Supplementary 

Tables 3-6 and Supplementary Figure 1). Applying stringent filtering criteria of having 

≥50 SNVs detected, four samples, PT, LR and plasmas B3 and B8 both taken at the 

time of disease progression were considered for further analysis (Figure 1D). Across 

these 4 samples the median VAF was 12-36% (range 5-81%, Table 1). Correlation 

analysis of somatic mutations (SNVs and indels) was performed taking into 

consideration the VAF of each variant (Figure 2A). All samples were highly correlated: 

B3 and B8, collected at the time of two different progression disease moments showed 

the highest correlation (r2=0.68 P <0.001), followed by B3 and LR (r2=0.63, P <0.001), 

and then LR and B8 (r2=0.49, P <0.001).  

We compared the overlap of variants from each of the four genomes. Of 121 mutations 

identified in the PT, only 33 (27.3%) were detected in the LR diagnosed 10 years later 

and 34 (28.1%) and 33 (27.3%) overlapped with B3 and B8 respectively (Figure 2B). 

WES-cfDNA of B3 and B8 were highly informative and captured 79.9% (111/139) and 

81.3% (113/139), respectively, of the mutations detected in the LR. Moreover, WES-

cfDNA uncovered highly confident plasma-exclusive mutations: 42 in B3 and 99 in B8, 

21 of which were common to both (Figure 2B). These longitudinal results suggest the 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.10.901330doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.901330


6 
 

occurrence of a small core group of mutations that persist from first diagnosis to the 

patient’s death 14 years later, and also reveal the dynamics of acquired sub-clonal 

mutations in BRCA2-mutated breast disease. 

WES-cfDNA empowers tumor evolution analysis 

To investigate the degree of tumor evolution, 321 eligible SNVs that were present in 

at least one of the 4-time points (PT, LR and plasmas B3 and B8) along with their 

corresponding VAFs were analysed using LICHEE 18 (Figure 3A). Thirty SNVs were 

detected to be common to all 4-time points with the PIK3CA p.E545K driver mutation 

present in the first cluster. This cluster persisted through all time points despite 

switches in treatment. We observed 85 SNVs that were unique to the PT (i.e. variants 

within the cluster that are not shared with any other sample time point) and no Tier 1 

or Tier 2 drivers were detected within this cluster.  Seventy-six additional SNVs were 

present in LR, B3 and B8 time points and this cluster contained the TIER 2 driver 

genes DCC, DNM2, ATP1A1.  Twenty SNVs were detected only at LR and the Tier 2 

driver FAT1 was found only at this time point. We observed 16 additional variants in 

common with B3 and B8 not present in PT and LR. B3 had 20 SNVs not detected at 

any other time-point, including a Tier 2 driver TSC2 variant. B8 had 68 SNVs with a 

tier 2 driver HDAC9 variant detected only at this time-point. The predicted tumor 

lineage reflects the known sample time points and provides evidence of tumor 

evolution, aligning with clinical progression of the patient. 

Emergence of cancer driver mutations and mutational signatures at disease 
relapse 
 
Somatic mutations from PT, LR, and plasmas B3 and B8 were analysed using the 

Cancer Genome Interpreter (CGI) 19 to detect known and predicted cancer driver 

genes. A single Tier 1 driver mutation, PIK3CA p.E545K, was detected in all 4 samples 

at a VAF of 21.6% - 53.8% (Supplementary Table 5). This mutation was also identified 

at 7.7% in B6 that had only 17 somatic mutations detected by WES-cfDNA. The 

PIK3CA p.E545K mutation was confirmed by targeted NGS (tNGS) using an Ampliseq 

panel 20 (Supplementary Table 7), which also identified sub-clonal ESR1 gene 

mutations,subsequently confirmed ,by ddPCR (Supplementary Table 8). 
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Three Tier 2 driver mutations (DNM2 p.G146D, DCC p.E495K and ATP1A1 p.W105X) 

were detected from WES (Supplementary Table 5) and stratified as clonal variants 

(Figure 3A). Interestingly, all three mutations were found in LR, plasma B3 and B8 but 

were undetected in the PT, suggesting that they emerged during the evolution of the 

disease. Other Tier 2 mutations were FAT1 p.A173T that was detected exclusively in 

the LR, TSC2 p.V461M detected exclusively in B3, and HDAC9 p.S525C that emerged 

exclusively in B8 (Figure 3A).  

 

Of interest, the cancer cell fraction (CCF) distribution shows a clear trend of 

progression from predominantly sub-clonal variants in the PT to a majority of clonal 

variants with disease progression in LR, B3 and B8 (Figure 3B). In addition, mutational 

signature analysis revealed that MS-1 was the predominant signature in the primary 

tumor at 60.17% (Supplementary Table 9 and Figure 3C) comprising both clonal 

(n=23) and sub-clonal mutations (n=48) (Supplementary Figure 2 and Supplementary 

Table 10). MS-1 is reported to be associated with an endogenous mutational process 

initiated by spontaneous deamination of 5-methylcytosine 21. MS-3, which is common 

to BRCA-mutated cancers and is associated with failure of DNA double-strand break-

repair by homologous recombination, was also detected (18.64%) comprising clonal 

(n=10) and subclonal mutations (n=12). Other prevalent signatures in the PT were MS-

16 (10.17%), and MS-29 (11.02%) (Supplementary Table 10). 

The local relapse (LR) showed changes to the mutational signatures, with MS-1 

reduced (5.43%) and MS-3 predominating (34.88%). Emergent signatures at LR 

included MS-13 (16.28%) found in many cancers 21 and attributed to APOBEC activity, 

MS-15 (16.28%) associated with defective DNA mismatch repair, MS-6 (16.28%) 

associated with defective DNA mismatch repair also known to be present in samples 

with MS-15 21, and MS-4 (10.85%) associated with exposure to tobacco carcinogens. 

At LR, the number of sub-clonal mutations was minimal with only 3 predicted out of 

129 mutations. In plasma B3, taken 5 months after disease progression, MS-3 

predominated (53.47%), whilst MS-1 (11.81%) increased and MS-15 (2.78%), MS-4 

(2.08%) and MS-13 (13.89%) decreased. Emergent new signatures at B3 were MS-7 

(11.11%) and MS-14 (4.86%). MS-6, detected at 16.28% in the LR was not detected. 

The number of sub clonal events for MS-3 increased to 25.97% (20/77) 

(Supplementary Figure 2 and Supplementary Table 11). 
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Our data show major changes in the mutation signature landscape from PT to 

subsequent relapse and late stage disease progression in BRCA2-mutated breast 

cancer. MS-3 rose from 18.64% in PT to 59.59% and was predominately clonal in 

contribution, becoming the major signature in plasma sample B8 taken shortly before 

the patient died. MS-13 increased (17.62%) and MS-6 re-emerged (15.54%). MS-15 

was greatly reduced (2.07%), MS-18, reported previously in breast and stomach 

carcinomas emerged (5.18%) and MS-1, which was the dominant signature in the PT 

was not detected (Figure 3C).  

Neo-epitope analysis 

The germ line DNA sample was used to determine the alleles of HLA genes encoding 

the MHC Class I complexes. The alleles predicted for MHC Class I HLA genes, 

specified up to the second field were HLA-A*02:01, HLA-B*14:01, HLA-B*08:01, HLA-

C*08:02, and HLA-C*07:01. The HLA-A gene was predicted to be homozygous, whilst 

HLA-B and HLA-C were predicted to be heterozygous. 

We considered 628 variants (347 unique) in the samples under study: PT, LR, B3, and 

B8. From these, 216 different mutations produce potential MHC Class I binding 

peptides. The scores for MHCflurry, which were successfully computed for just 187 of 

the 216 peptides (all peptides are successfully predicted by at least one method), are 

shown in Supplementary Figure 3A. Of the 216 mutations, 93 (43%) co-occur on 

several samples while the rest are unique to one sample; 74 (34%) were exclusively 

found in plasma, while 66 (30%) were only found in PT and LR. The epitopes common 

to both tumors were also detected in plasma (Supplementary Figure 3B, 

Supplementary Table 11). 

WES-cfDNA provides an opportunity to detect immune evasion as the tumor 
progresses 

To establish if WES-cfDNA samples could be used to detect immune evasion by the 

tumor, we used the HLA Class I allele predictions from Polysover 22 for the germline 

sample and plasma time points (Supplementary Table 12). As only HLA-B and HLA-

C were heterozygous, we then used the predicted alleles for HLA-B and HLA-C with 

the predicted ploidy and purity from Sequenza for each tumor and WES-cfDNA 
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timepoint and used the program LOHHLA 23 to establish if there had been any loss of 

heterogeneity at each time point. Evidence of LOH was detected in the HLA-B gene 

in PT, B3 and B8 samples, although only B8 reached statistical significance (P <0.05) 

and for HLA-C LOH was detected in all 4 samples (P<0.05) (Supplementary Figure 4, 

Supplementary Table 12). 

Clonal SCNAs persist with breast cancer progression 
 
Somatic copy number alterations (SCNAs) were identified using the allelic copy 

number caller Sequenza. A number of clonal SCNAs were detected by global genomic 

copy number profiling, including to 1q, 3q, 8q and 19q that persisted from PT through 

to B3 and B8 with breast cancer progression (Figure 4, Supplementary Figure 5). 

We defined the copy number calls into thresholds; amplifications (defined as 

CN=2*ploidy + 1), gains (CN + 1 & < CN amplification threshold), loss (CN < ploidy & 

>0) and deletions (CN=0) (Supplementary Table 6). We also defined the copy number 

calls into focal (<=25% of the chromosome arm size) and broad regions (>=25% of the 

chromosome arm). Calls less than 10kb in length were excluded. We detected 395 

regions of SCNAs across the 10 samples with a mean of 39.5 per sample 

(median=35.5). We observed 72 amplifications (71 Focal and 1 Broad), 123 gains (113 

focal, 10 broad), 189 losses (96 focal, 93 broad) and 11 homozygous deletions all 

focal, however there were no broad deletions (Supplementary Table 6 and 

Supplementary Figure 1). 

We analysed the genes in the copy number altered regions from the exome analysis 

in the CGI to establish any known SCNA drivers. We observed no deleted genes 

indicated to be drivers. A focal amplification containing the pro-oncogene MYC was 

detected in the LR at CN 6, and a focal gain in plasmas B3 at CN 4 and B8 at CN 4. 

We also detected MYC in the PT at a CN 4.  The highest level of amplification detected 

across all 4 samples (CN of 4-16), spanned 8q24.3 (chr8:145665359-145993019) and 

contains 13 genes, none of which are known cancer related genes. (Figure 4, 

Supplementary Table 6).  

The region 3q13.13-q29 (Chr3:109052732-1097847031) containing 728 genes 

showed a gain in the PT, B3 and B8 with a CN of 3-4 and contains the PIK3CA and 

SOX2 genes. Region 1q41-q42.11 (chr1:229366646-224202533) was amplified in 
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samples LR, B3 and B8 with a CN of 7-8. Three genes were present in this region, two 

pseudogenes and TP53 binding protein TP53BP2. 

There was uncertainty concerning the HER2 status of the patient at relapse. The FFPE 

primary tumor was reported as HER2 positive (HER2 3+ by immunohistochemistry 

analysis), whereas the relapse biopsy was reported as HER2 2+ and FISH negative. 

Review of the WES SCNA calls showed no amplification in the region encoding the 

ERBB2 gene (17q12, chr17:37856254 – 37884915) at any time point (Figure 4), 

suggesting a HER2 negative status throughout her disease course. Clinically, a HER2 

negative status for the patient is in keeping with the lack of clinical response seen to 

trastuzumab/pertuzumab and TDM-1 (Figure 1, time points B3 and B4). 

 

Discussion 

The usefulness of plasma ctDNA analyses using a targeted ddPCR or gene panel 

strategy are well established 4-14 but our study highlights the potential advantage of 

longitudinal WES-cfDNA as exemplified by this patient with metastatic breast cancer. 

WES-cfDNA combines the convenience of less-invasive plasma cfDNA studies with 

the robustness of an exome sequencing approach. We also show that WES-cfDNA 

genomic profiling is capable of identifying acquired mutations during breast cancer 

progression, as well as providing information as to clonal evolution, tumor mutation 

signature analysis, identification of neo-epitopes and detection of immune escape 

mechanisms.    

In addition to recent technical advances 17, our longitudinal WES-cfDNA approach 

generated biological insights of the patient’s disease course from relapse until near to 

the time of her death. We found a core of 31 mutations and specific SCNA profiles that 

remained throughout her disease development from the PT, LR and through treatment 

for metastatic disease, comprising a period of 14 years. Strikingly, this clonal driver 

core represented only 8.6% (31 of 361) of all the bona fide mutations identified within 

this period. This suggests that the history of this patient’s BRCA2-mutated breast 

cancer is mainly driven by an enduring clone with the acquisition of many sub-clonal 

mutations that fluctuated during the course of her disease and treatment. In this 
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regard, drugs against these core molecular targets would have had potentially high 

therapeutic impact controlling tumor growth. 

WES-cfDNA allowed the identification of Tier 1 drivers that were present at initial 

primary tumor biopsy and additional Tier 2 drivers emerging at relapse and as the 

cancer progresses. We identified a clonal Tier 1 driver in the PIK3CA gene p.E545K 

present at diagnosis in 2005, persisting when the cancer returned some 10 years later 

in the LR, and in the WES-cfDNA samples B3 and B8 despite switches in treatment. 

As a clonal driver, PIK3CA p.E545K was also observed at time point B6, which had 

only 17 somatic mutations detected by WES-cfDNA. Putative pathogenic mutations 

were detected in DNM2 (p.G146D), DCC (p.E495K) and ATP1A1 (p.W105X) in the 

LR and B3 and B8 plasma samples but were not present in the PT, which suggests 

evidence of tumor evolution and an implication with cancer relapse after many years 

dormant. The DNM2 gene has been linked with cell migration and metastasis, receptor 

endocytosis and with resistance to endocrine therapy receptor endocytosis 24,25. The 

DCC gene is frequently deleted or its expression reduced in breast cancer 26. ATP1A1 

genes has been shown to have decreased expression in human renal cell carcinomas 

compared to the adjacent non-tumor tissues and it was therefore proposed that 

ATP1A1 is a potential novel suppressor protein for renal cancer 27. One Tier 1 driver 

mutation in FAT1 (p.A173T), was exclusive to the LR, and not detected in the 

subsequent serial plasma samples. This mutation, was not detected in the PT and 

appears to be a sub-clonal mutation that resolved whilst the patient was on 

Pertuzumab, trastuzumab and docetaxel at time point B3. PIK3CA and FAT1 

mutations are frequent in hormone receptor positive patients 28, as in this case, where 

the PT was reported as ER+ (5+2). We also observed a mutation in TSC2 at B3 only, 

just prior to disease progression to her lung. TSC2 acts with TSC1 in a complex to 

inhibit mTOR, an emerging therapeutic target and known promoter of cell growth and 

cell cycle progression 29, This suggests that the patient would have benefited from 

everolimus. At timepoint B8 when the patient was on Letrozole therapy, we also 

observed a mutation in the HDAC9 gene. Increased expression of the HDAC9 gene 

is associated with antiestrogen resistance of breast cancers 30, consistent with the late 

acquisition of low frequency sub-clonal mutations in ESR1, detected by ddPCR in B8. 
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Knowledge of the key driver mutation in PIK3CA p.E545K, could have provided 

information for therapy selection. For example a recent ctDNA based study suggested 

that the mTOR inhibitor everolimus, may be a useful chemotherapy adjunct 31 which 

suppresses PIK3CA, ESR1, and GATA3 gene mutations and may have been a viable 

alternative therapy. Alternatively, treatment with the newly developed PI3K inhibitor 

drug alpelisib 32 could have been indicated alongside fulvestrant.  

Sequential WES-cfDNA also allowed the characterization of dynamic changes in 

mutational signatures throughout the disease progression, including 2 plasma 

samples that had sufficient variants detected in ctDNA (B3 and B8). Contrary to what 

we expected for a breast tumor from a patient carrying a BRCA2 exon 14-16 germline 

deletion, the MS-3 signature, associated with the failure of DNA double stranded 

break-repair by homologous recombination 21, was underrepresented in the PT 

(18.64%) and only became dominant later on disease progression, increasing from 

34.88% at LR, to 59.59% at B8. After progression to lung and liver on TDM-1 (timepoint 

B3), the patient was given carboplatin, a chemotherapy specifically shown to be active 

in patients with MS-3 BRCA-related disease 33 and she initially responded well to this 

therapy as determined by imaging and reflected in ctDNA results. However, overall no 

given treatment eradicated the MS-3 signature suggesting that MS-3 is likely to be 

reflecting the mutational signature of the lethal clone. Conversely, MS-1, that was the 

most prominent in PT, decreased with disease progression until it was completely 

undetectable in sample B8 just prior to the patient’s death. In line with this, it will be 

interesting in the future to use longitudinal WES-cfDNA to monitor tumor mutation 

signatures and especially the MS-3 in the context of BRCA2-mutated MBC treated 

with PARP inhibitors. Overall, there were 7 predominantly clonal mutational signatures 

detected in plasma as the disease evolved not present in PT, and 3 of these were also 

absent from LR. Identifying additional mutation signatures captures the evolving 

intrinsic mechanistic processes involved in the cancer progression by identifying 

mutational signatures that were not present in the PT. 

Our data also showed that the sequential WES-cfDNA approach can depict the 

dynamics of predicted tumor neoepitopes during the cancer evolutionary trajectory. As 

the genome of the breast cancer evolved and acquired new mutations, neoepitopes 

are potentially presented by the HLA proteins, recognized and become a focus for 
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tumor infiltrating lymphocytes (TILs) and other cells of the immune system. Our study 

shows that sequential WES-cfDNA can be a powerful tool for the identification of 

neoantigens that can be used for the design of cancer vaccines 34.. We also show for 

the first time that WES-cfDNA can be used to monitor dynamic changes in the copy 

number of HLA alleles, highlighting the opportunity to detect immune evasion as the 

tumor progresses. Based on these results, we are currently testing WES-cfDNA for 

monitoring of cancer patients treated with immunotherapy. 

Additional benefits highlighted by this study show that genomic copy number profiles 

can be generated from WES-cfDNA that capture key aberrations, including detection 

of clonal drivers. For example, amplification was detected in 1q, 3q, 8q and 19q 2 that 

persisted from PT through to LR, B3 and B8. Moreover, WES-cfDNA profiling revealed 

that this patient was likely to be HER2 negative, but had amplifications and gain 

alterations in MYC and other potentially important genes including MDM4, SOX2 35 

and AURKA (Figure 4). The WES-cfDNA ERBB2 result predicted non-response to 

TDM-1, an anti-HER2 antibody-chemotherapy conjugate drug indicated for use in 

HER2 positive breast cancers 36 given following sample B3. Since sample B3 also had 

a strong MS-3 profile, carboplatin could have been used at an earlier time-point 

instead of TDM-1. Several potential drugs are under development for the treatment of 

patients with MYC amplification including Omomyc 37 but none have yet reached 

clinical use. Acting on such information provided by WES-cfDNA and thereby selecting 

the right drug at the right time, may have prevented clinical deterioration, and 

highlights the possibility of developing WES-cfDNA for personalised precision 

medicine.  

A clear limitation of WES-cfDNA is the requirement for sufficient ctDNA levels in order 

to generate genomic profiles. As shown in our study plasma samples taken at times 

of disease progression (B3 and B8) were most informative and revealed a number of 

mutations and amplifications of key driver genes, whereas those plasma samples 

taken when disease was well controlled had few detectable variants. In these samples 

additional experiments such as targeted deep sequencing or ddPCR can be 

considered as used here, where emergent sub-clonal ESR1 gene mutations were 

detected in B8 that were not detected by WES-cfDNA.  
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In summary, our study shows that sequential WES-cfDNA is a reliable technology that 

can recapitulate the critical genetics of the underlying metastatic disease, and track 

the evolving changes in the cancer genomic landscape throughout different 

treatments. Sequential WES-cfDNA may provide data that can help the real-time 

selection of therapies to tackle the evolving cancer disease of the patient, which as we 

showed here can evolve and change over a short period of time. Importantly, this study 

shows that BRCA-related tumor mutation signature 3, which became highly prominent, 

and loss of HLA are potential influential players during the metastatic evolutionary 

history of BRCA2-mutated breast cancer. 

Methods 
 
Patient recruitment and sample collection 

The patient was recruited with written informed consent to our study at the time of 

relapse and followed up with 8 serial blood samples over a 2-year period on treatment 

until her death. The study protocol was approved by the University of Leicester Cancer 

Research Biobank UHL11274 tissue access committee (REC reference number: 

13/EM/0196), DNA from one region of the primary tumor, one region of the recurrent 

local relapse tumor and 8 serial plasma cfDNA samples were used for WES. 

Whole-exome sequencing 
 
An area of tumor tissue was identified in the diagnostic FFPE block by a consultant 

histopathologist and sampled using a 1mm TMA needle core to gain high cancer 

cellularity. Tumor DNA was extracted using the GeneRead™ DNA FFPE kit 

(Qiagen®). Total cfDNA was isolated from 3ml plasma using the QIAamp® Circulating 

Nucleic Acid Kit and quantified by Qubit as described previously 38. DNA isolated from 

cells in the buffy coat served as a germline control. Libraries were prepared using 15ng 

of DNA following the WES workflow using the Illumina HiSeq4000 platform as 

described in Toledo, Garralda et al 2018 17.  

  

Paired end raw data in FASTQ format were trimmed with trimmomatic (0.36) 39 and 

aligned to the reference human genome (hg19) using Burrows-Wheeler Aligner, BWA 

(0.7.15) 40. The aligned BAM file files were sorted with Samtools 1.3.2 41. Duplicates 
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and base recalibration was performed using Picard tools v2.7.1 

(http://broadinstitute.github.io/picard/) (Accessed October  2019)  and applied GATK 
42 base quality score recalibration, indel realignment, duplicate removal, and 

performed SNP and INDEL discovery using standard hard filtering parameters or 

variant quality score recalibration according to GATK Best Practices 

recommendations 43,44. 

We used the CollectHSmetrics from the Picard suite of tools to calculate the mean 

coverage across the aligned BAM for each sample and the percentage on target 

coverage. Values reported are based on the default setting of CollectHSmetrics using 

a minimum mapping and minimum base quality of 20. 

Somatic SNV and indel Detection 

Somatic SNVs and INDELS were called with Mutect2, part of the GATK4 suite of tools 
42. Additional filtering criteria was used on the VCF output of Mutect2 for confident 

somatic calls; for SNVs a depth of ≥50 reads with ≥3 mutant reads and a VAF ≥=5%. 

For INDELS a depth of ≥50 reads with ≥10 mutant reads and VAF ≥5%. The Cancer 

Cell Fraction (CFF) was calculated by Palimpsest 45 using filtered mutations in 

conjunction with SCNA segments, predicted tumor cellularity and ploidy information 

derived from Sequenza 46. 

Functional annotation 

Functional annotation of SNV and indels was performed with Variant Effect Predictor 

(v86),47 via the vcf2maf program (available at https://github.com/mskcc/vcf2maf) 

(Accessed October 2019), ensuring that each variant was mapped to only one of all 

possible gene transcripts/isoforms that it might affect. We used MAFtools 48 to 

summarise the variants. 

Driver gene identification 

TIER 1 and TIER2 drivers were identified using the cancer genome interpreter 19 for 

SNVs, INDELs, and SCNA using the web-based analysis function at 

https://www.cancergenomeinterpreter.org/home. 
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Mutational Signature Analysis 

To identify mutational processes that may be driving the tumor evolution, SNVs were 

analysed to extract the mutational signatures using the R package Palimpsest 45. We 

then compared the extracted mutational signatures once decomposed to known 

signatures derived from Alexandrov, Nik-Zainal 21, and cosine similarity was calculated 

to identify best match and the relative contribution in each sample. 

Phylogenetic analyses based on SNV and VAF 

We used LICHEE 18 to reconstruct multi-sample cell lineage trees and infer the 

subclonal composition based on the variant allele frequency (VAF) data of filtered 

SNVs from PT/LR tumor samples and B3 / B8 plasma samples, collected at different 

disease progressions. We eliminated private clusters that had fewer than 2 SSNVs 

and only considered mutations with a VAF <75%.  

Copy number Aberration Identification  

To determine the somatic Copy Number Aberration profiles of the WES-FFPE tumor 

and WES-cfDNA samples we applied the allele-specific copy number R package 

Sequenza v2.1.2 46. The processed final tumor and plasma BAM files with the matched 

lymphocyte as a germline sample were used as input. We followed the standard 

workflow for BAM files in the R Vignette (https://cran.r-

project.org/web/packages/sequenza/index.html) (Accessed October 2019). We then 

mapped the segmented regions to a cytoband location along with the genes within 

using Bedtools 49. 

MHC Class I typing 
The control sample (GL) was used to determine the alleles of HLA genes encoding 

the MHC Class I complexes. To this end, the data were processed using three different 

tools: SOAPHLA (v1.2), OptiType (v1.3.1), and Polysolver (v4).  

Neo-epitope prediction pipeline 

The somatic variants from all samples where submitted to the neo-epitope prediction 

pipeline using PVacSeq (from PVacTools package v1.3.7). First a VCF if composed 
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with the variants and annotated with VEP following the documentation of the PVacSeq 

tool. The tool was run for the alleles specified above, with peptides of sizes 8, 9 and 

10, and the following methods: MHCflurry, MHCnuggetsI, NetMHC, NetMHCcons, 

NetMHCpan, PickPocket, SMM, and SMMPMBEC. The MHCflurry 50 models were 

installed locally (v2.19.1). 

HLA Loss of Heterozygosity prediction 

To establish if there has been tumor HLA allelic loss over the timeline of the disease 

we used the predicted Polysover HLA alleles for A, B and C in addition to the predicted 

ploidy and tumor purity from sequenza and ran the LOH HLA copy number prediction 

pipeline 23 in tumor and plasma cfDNA samples. We used default parameters and 

followed the instructions for use at 

https://bitbucket.org/mcgranahanlab/lohhla/src/master/ (Accessed October 2019). 

Orthogonal validation of key mutations by tNGS and ddPCR  

20ng serial cfDNA samples were sequenced using a custom 23 amplicon Ion 

AmpliSeq panel covering hotspot regions in ESR1, PIK3CA, TP53, and ERBB2 as 

described previously 20,51, and using ddPCR assays (PIK3CA p.E454 from Bio-Rad) 

and in house ESR1 and ERBB2 assays. 
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Table 1. Summary of variants and driver mutations detected by WES 
 
Sample Total 

variants 
Total 
SNV 

Total 
Indel 

Median 
VAF 

VAF range 
min 

VAF range 
max 

T1 
Drivers 

T2 Drivers 

PT 121 119 2 12.12 5.19 51.35 PIK3CA 
p.E545K 

  

LR 139 130 9 15.58 5.13 33.77 PIK3CA 
p.E545K 

DNM2 p.G146D    
DCC p.E495K 
ATP1A1 
p.W105X FAT1 
p.A173T  

B1 1 1 0 - - 10     
B2 2 2 0 7.69 6 7.69 

  

B3 155 146 9 34.53 5.05 81.36 PIK3CA 
p.E545K 

DNM2 p.G146D     
DCC p.E495K  
ATP1A1 
p.W105X TSC2 
p.V461M  

B4 17 17 0 6.35 5.05 11.11 
  

B5 2 2 0 8.33 6.67 8.33     
B6 14 14 0 6.36 5.41 10.29 PIK3CA 

p.E545K 

 

B7 3 3 0 9.31 7.14 10.29     
B8 213 193 20 19.58 5.05 52 PIK3CA 

p.E545K 
DNM2 p.G146D    
DCC p.E495K 
ATP1A1 
p.W105X HDAC9 
p.S525C  
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Table Legends 

Table 1. Summary of variants and driver mutations detected by WES. Total 

number of SNVs and Indels, detected in each sample by WES analysis, showing the 

median variant allele fraction (VAF) and range (% of total reads), T1 and T2 drivers 

lists the Tier 1 and Tier 2 driver genes identified.  

Figure Legends 

Figure 1. WES captures the genomic landscape of tumor and serial plasma 
cfDNA. (A) Sequential CT scans (left to right) showing: (I) disease progression 

potentially lymphangitic carcinomatosis or an area of infection in the lung (arrowed 

white); (II)  areas of lymphangitic carcinomatosis within the lung (arrowed white) and 

pleural effusion (arrowed black);  (III)  progressive disease with extensive lung 

lymphangitic carcinomatosis (arrowed white) and pleural effusion (arrowed black);  (IV) 

resolution of lymphangitic carcinomatosis, and pleural effusion following carboplatin 

therapy; (V) progression of lymphangitic carcinomatosis (arrowed white) and 

appearance of bilateral pleural effusions (arrowed black) (B) Clinical history of a 

female breast cancer patient harbouring a BRCA2 germline mutation from diagnosis 

in 2005 to her death in 2017 showing dates of blood samples and progression (C) 

Treatment timeline, (D) Summary of alterations (SNVs and INDELs) detected in tissue 

and plasma, after applying filtering criteria. 

Figure 2. High correlation between serial plasma and tumor at relapse. (A) 

Correlation analysis of somatic mutations (SNVs and indels) including consideration 

the VAF of each variant.  (B) Overlap of mutations present in PT, LR, and plasma B3 

and B8 samples.  

Figure 3. Tumor evolution is characterised by emergence of driver mutations 
and clonal mutational signatures at disease relapse. (A) Phylogenetic tree of the 

WES samples, noting emergence of driver mutations with disease progression. Large 

circles link the clonal changes that are acquired on progression, smaller circles show 

private mutations; (B) The cancer cell fraction (CCF) distribution shows a clear trend 

of progression from predominantly sub-clonal variants in PT to predominantly clonal 
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variants with disease progression in LR, B3 and B8; (C) Mutational signature analysis 

revealed that MS-1 was the predominant signature in the primary tumor at 60.17% but 

this resolved by B8. MS-3, which is associated with failure of DNA double-strand 

break-repair by homologous recombination was also detected in PT (18.64%) and 

increased to 59.59% becoming the major signature in B8 taken shortly before the 

patient died. 

Figure 4. Clonal SCNAs persist with breast cancer progression. Somatic copy 

number alterations (SCNAs) were identified using the allelic copy number caller 

Sequenza. 

Supplementary Tables 

Supplementary Table 1: Whole exome sequencing metrics 

Supplementary Table 2: Whole exome sequencing on target coverage metrics 

Supplementary Table 3: SNV and Indel summary 

Supplementary Table 4: SCNA summary  

Supplementary Table 5: SNV and INDELS calls and annotations 

Supplementary Table 6: SCNA calls and annotations 

Supplementary Table 7: Targeted Sequencing Coverage for PIK3CA and ESR1 

mutations 

Supplementary Table 8: Digital Droplet results for PIK3CA and ESR1 mutations 

Supplementary Table 9: Mutational signatures proportions 

Supplementary Table 10: Clonal and subclonal mutational signature distribution  

Supplementary Table 11: Neoepitope summary 
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Supplementary Table 12: Loss of Heterozygosity prediction in the HLA-B gene and 

HLA-C gene 

Supplementary Figures 

Supplementary Figure 1.  (A) Number of somatic variants by mutation type (B) number 

of somatic copy number aberrations by call type. 

Supplementary Figure 2. Clonal and subclonal distribution of mutational signatures in 

PT, LR, B3 and B8. 

Supplementary Figure 3. (A) Number of potential MHC Class I binding peptides 

predicted by MHCflurry (B) Co-occurrence of neoepitopes in PT, LR, B3 and B8. 

Supplementary Figure 4 (A). HLA-B (B) HLA-C copy number prediction by LOH-HLA 

in PT, LR, B3 and B8. 

Supplementary Figure 5. SCNA profile of plasma samples, B1-B2 and B4-B7 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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