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Abstract 25 

Background 26 

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths 27 

worldwide. Although dysbiosis of lung and gut microbiota have been associated with 28 

NSCLC, their relative contributions are unclear; in addition, their roles in distant metastasis 29 

(DM) are still illusive.  30 

Results 31 

We surveyed the fecal and sputum (as a proxy for lung) microbiota in healthy controls and 32 

NSCLC patients of various stages, and found significant perturbations of gut- and sputum- 33 

microbiota in patients with NSCLC and DM. Machine-learning models combining both 34 

microbiota (mixed models) performed better than either dataset in patient stratification, 35 

with the highest area under the curve (AUC) value of 0.842. Sputum- microbiota 36 

contributed more than the gut in the mixed models; in addition, sputum-only models 37 

performed similarly to the mixed models in most cases. Several microbial-biomarkers were 38 

shared by both microbiota, indicating their similar roles at distinct body sites. 39 

Microbial-biomarkers of distinct disease stages were mostly shared, suggesting 40 

biomarkers for distant metastasis could be acquired early. Furthermore, Pseudomonas 41 

aeruginosa, a species previously associated with wound infections, was significantly more 42 
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abundant in brain metastasis, indicating distinct types of DMs could have different 43 

microbial-biomarkers.  44 

Conclusion 45 

Our results indicate that alterations of sputum-microbiota have stronger relationships with 46 

NSCLC and distant metastasis than the gut, and strongly support the feasibility of 47 

metagenome-based non-invasive disease diagnosis and risk evaluation. 48 

 49 

Keywords: gut microbiota, lung microbiota, machine learning, patient stratification, 50 

NSCLC, distant metastasis, brain metastasis 51 
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 53 

Background 54 

Lung cancer (LC) is the leading cause of cancer-related deaths mortality worldwide, with 55 

non-small cell lung cancer (NSCLC) being the most common form of LC [1]. Despite the 56 

recent development of therapies for NSCLC, tumor metastasis is the main cause of 57 

recurrence and mortality in patients with NSCLC [1]. One of the key challenges is the low 58 

heritability of lung cancer susceptibility revealed by genetic studies: although numerous 59 

studies have established the important roles of somatic mutations as well as inheritable 60 

familial risks [2, 3], the genetic influence can only explain 3~15% of the heritability [4, 5], 61 

depending on the surveyed population.   62 

Conversely, non-genetic factors, including life styles, environmental factors and lung 63 

and gut microbes are believed to contribute mostly to the disease. Especially, numerous 64 

recent studies have shown that both lung and gut microbiota are involved in the 65 

development of LC [6-8]. For example, researchers have used samples from 66 

bronchoalveolar fluid (BALF), tissues and spontaneous sputum of lung cancer patients for 67 

bacterial identification and microbiome characterization [7, 9-11]. When compared with 68 

healthy controls, researchers have identified certain lung or oral taxa, including 69 

Streptococcus and Veillonella were enriched in the patients, which might promote LC 70 

development through inflammation and/or unappreciated mechanisms [7, 12].  71 
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In addition, dysbiosis of gut microbiome has also been associated with many cancers 72 

[8, 13, 14], including LC [8]. A previous study suggested an increase in Enterococcus in the 73 

stool of patients with LC, compared with the stool of healthy subjects, and a decrease in 74 

Bifidobacterium and Actinobacteria [6], which others have shown that the response to 75 

immunotherapy (IO) in NSCLC patients is associated with changes of individual species 76 

such as Alistipes putredinis, Bifidobacterium longum and Prevotella copri as well as the 77 

overall diversity of the gut microbiome [7, 8]. Furthermore, increasing evidence have 78 

shown that the gut microbiome may play important roles in cancer by modulating 79 

inflammation [15], host immune response [16, 17] and directly interacting with therapeutic 80 

drugs [18].  81 

Despite these significant advances, two important questions remain. First, it is still 82 

unclear which microbiota has stronger association with the development of NSCLC; the 83 

relative importance of local (i.e. lung-associated) versus gut microbiota has been recently 84 

discussed [19], but no direct evidence has been provided so far. Second, their alterations 85 

along with distant metastasis of NSCLC are yet to be characterized. To address these issues, 86 

we first conducted a comprehensive survey on both fecal and sputum (as a proxy for lung) 87 

microbiota in NSCLC patients of various stages, including stage Ⅳ patients suffered from 88 

distant metastasis (DM), and compared them with healthy controls of matching 89 

demographic and clinical characteristics. We then built mathematical models using the 90 

taxonomic profiles of both gut and sputum microbiota to test their ability to distinguish 91 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.895490doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.895490


 

6 
 

patients of different disease stages and from healthy controls, and evaluate their relative 92 

contributions to the models.  93 

Results 94 

 Differential microbial diversity between sputum and gut microbiotas 95 

We enrolled in total 121 individuals who completed our study protocol (see Methods). 96 

Among which, 87 were newly diagnosed with NSCLC who had not previously received any 97 

anticancer therapy nor treated with any antibiotics, while 34 were healthy volunteers. We 98 

classified patients into distinct disease stages (i.e. from I to IV) according to the 8th 99 

American Joint Committee on Cancer (AJCC) guidelines [20]. All subjects currently lived in 100 

Hubei Province, China. As shown in Table 1, we found comparable demographic and 101 

clinical characteristics of these subjects between groups we were interested in. In this 102 

study, we used “Control”, “NSCLC”, “I_III” and “DM” to refer healthy controls, patients of all 103 

stages, patients of stages I to III and patients with distal metastasis (DM, also referred as to 104 

stage IV), respectively. 105 

We collected in total 30 sputum and 29 fecal samples from the healthy controls 106 

(Control) and 66 sputum and 85 fecal samples from the patients (NSCLC; see Figure 1A), 107 

and submitted them for 16S sequencing (see Methods). As shown in Figure 1 and 108 

Supplementary figure 1, we found that the microbial diversity, as measured by Shannon 109 
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index, was significantly higher in sputum than in gut in the healthy controls as well as 110 

different disease stage groups (Figure 1B left panel; Supplementary figure 1A-B; Wilcoxon 111 

rank-sum test). We also performed principal coordinate analysis (PCoA) based on 112 

Bray-Curtis distance at genus level to assess the beta diversity in microbial composition 113 

and found that the sputum microbiota were significantly different from the gut in healthy 114 

controls (Figure 1B right panel) and patients of different disease stages (Supplementary 115 

figure 1A-B). Together, our results suggested that sputum microbiota were significantly 116 

different from the gut microbiota and had significantly higher microbial diversity. 117 

 118 

Global alterations of sputum and fecal microbiotas in NSCLC patients of 119 

different stages 120 

We next investigated the global alterations (i.e. dysbiosis) of sputum and gut microbiota in 121 

patients of different stages and between patients and healthy controls. As shown in Figure 122 

2A, in the sputum microbiota, we found significant lower alpha-diversities (Shannon Index, 123 

left panel; Richness Index, middle panel) in NSCLC than the Control group. We also found 124 

that significantly different beta-diversities between NSCLC and Control (P = 0.001; Figure 125 

2B, left panel) and between I_III and DM (P = 0.002; Figure 2B, right panel). Thus, the 126 

dysbiosis of sputum microbiota was associated with both NSCLC and the distant 127 

metastasis (stage IV). 128 
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Conversely, in the gut microbiota, we did not find significant differences between 129 

NSCLC and Control (Figure 2C) in neither alpha-diversities nor beta-diversities (Figure 2D, 130 

left panel). However, we found significant beta-diversities between I_III and DM patients (P 131 

= 0.033; Figure 2D, right panel); in addition, the microbial composition of DM was 132 

significantly different from I_III at genus level, with a decreasing evenness (Figure 2C, right 133 

panel). Together, the dysbiosis of the fecal microbiota was associated with distant 134 

metastasis, but not NSCLC.135 
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A significant proportion of microbial biomarkers was shared by sputum 136 

and gut microbiota 137 

We then searched for individual taxa that showed differential abundances between subject 138 

groups (also known as microbial biomarkers) using LEfSe analysis (Linear discriminant 139 

analysis Effect Size; see Methods for details), and summarized the results in Figure 3.  140 

We first compared all NSCLC patients as a whole (i.e. from stages I to IV) with the 141 

healthy controls. We found a genus, Filifactor was significantly enriched in NSCLC sputum 142 

samples (Figure 3A, left panel). Filifactor belongs to Firmicutes and contains a few 143 

pathogenic species (e.g. F. alocis) that are associated with periodontal diseases and 144 

endodontic lesions [21, 22]. This results suggested that Filifactor either represented part of 145 

the oral microbiota from the sampling, or could thrive as pathogens in other body sites 146 

like many other oral microbes did (e.g. Fusobacterium nucleatum) [23, 24]. Conversely, we 147 

found that a few genera, including Cardiobacterium, Deinococcus, Bacillus, Alloscardovia 148 

and Lactonifactor were depleted in sputum sample of the NSCLC group (Figure 3A, left 149 

panel). These results confirmed that the normal sputum microbiome has been significantly 150 

altered, since many of these genera were known members of healthy oral and/or gut 151 

microbiota [25, 26]. In addition, we found that the genus Neisseria was enriched in healthy 152 

controls and Succinispira was enriched in NSCLC patients in gut (Figure 3A, right panel). 153 
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Neisseria belongs to the family Neisseriaceae and colonizes the mucosal surfaces of 154 

animals and contains a few known pathogenic species [27]. 155 

We next compared neighboring groups along the disease progression, i.e. Control 156 

versus I_III and I_III versus DM, in order to identify biomarker species for specific disease 157 

stages. We found that the Cardiobacterium was again identified to be enrichened in 158 

Control as compared with I_III (Figure 3B). In addition, we found a few biomarker species 159 

that were uniquely enriched in DM as compared with I_III, including three genera from the 160 

family Coriobacteriaceae (such as Atopobium, Eggerthella, and Olsenella). 161 

Coriobacteriaceae is a group of gram-positive bacteria that are often nonmotile, 162 

nonspore-forming, nonhemolytic and strictly anaerobic [28]. They are normal dwellers of 163 

mammalian body habitats including the oral cavity [29], the gastrointestinal tract [30], and 164 

the genital tract [31]. Consistent to our results, several members of the genera, including 165 

Atopobium, Eggerthella, Gordonibacter, Olsenella, and Paraeggerthella had been 166 

implicated in the development of various clinical pathologies including abscesses [32], 167 

periodontitis [33], intestinal diseases and tumors [34, 35]. Surprisingly, we found two 168 

genera of the family Coriobacteriaceae were identified as gut-biomarkers (Figure 3C). For 169 

example, genus Olsenella was also enriched in fecal samples of the I_III group as compared 170 

with the controls, while genus Eggerthella was also enriched the DM group as compared 171 

with I_III. Together, our results suggested that a significant proportion of sputum- and 172 
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gut- microbial biomarkers were shared; the overlapping could be due to either extensive 173 

transmission from oral to other body sites [24], or the exposure to the same environment. 174 

   175 

The contributions of sputum and fecal microbiotas in patient stratification 176 

We next assessed the potential value of sputum and gut microbiota in patient stratification. 177 

We generated predictive models using the Random forest algorithm implemented in 178 

Siamcat [36], evaluated the model performance with 10-times cross-validation and 179 

reported the averaged area under receiving operating characteristics curves values 180 

(AUROCs or AUC for short; see Methods) from 1000 repeats. We first generated models 181 

using the sputum and gut microbiota separately (referred to as sputum- and gut- models 182 

respectively). As shown in Figure 4A-D and Table 2, we found that sputum microbiota 183 

performed better than gut in patient stratification, in all subject group comparisons (Table 184 

2). 185 

We then built predictive models using both the sputum and fecal microbiome data as 186 

input (referred to as mixed models below). Among the enrolled subjects, we identified in 187 

total 91 subjects who had both sputum and fecal samples, among which 26, 27 and 38 188 

were healthy controls, stage I_III and DM patients respectively. As shown in Figure 4A-D 189 

and Table 2, we found that the mixed model could perform either slightly better than or 190 

comparable to that of the sputum (Table 2).  191 
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We then examined the top twenty genera ranked according to their importance to the 192 

mixed models. As shown in Figure 4 & Supplementary Figure 2, there were more 193 

sputum-derived genera than gut-derived genera in numbers. For example, only seven and 194 

three gut-derived genera were among the top twenty in the Control versus NSCLC (Figure 195 

4D) and Control versus I_III (Figure 4E) models, respectively. More importantly, the 196 

sputum-derived genera in general ranked higher in the mixed models and had higher 197 

cumulative importance scores (Table 3).  198 

Together, these results suggested that the sputum microbiota contributed more than 199 

the gut microbiota in patient stratification. In most cases, the sputum microbiota alone 200 

was sufficient for decent model performance.  201 

 202 

Top ranking taxa were also significantly shared by the sputum- and fecal- 203 

machine-learning models  204 

We next checked if there were significant overlap in the top-ranking taxa between 205 

sputum- and fecal- models between controls and NSCLC; shared taxa often indicated that 206 

they may play similar roles at different body sites. As shown in Figure 5A-B, we found four 207 

of the top genera were shared at the same time in Control vs. NSCLC and Control vs. I_III 208 

models, including Macellibacteroides, Streptococcus, Clostridium and Bacteroides. 209 

Bacteroides maintained a complex and generally beneficial relationship with the host 210 
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when retained in the gut, but when they escaped this environment they could cause 211 

significant pathology, including bacteremia and abscess formation in multiple body sites 212 

[37]. Clostridium were associated with a range of human diseases [38], and currently under 213 

investigation and testing as antitumor agents, because they germinated only in hypoxic 214 

tissues (i.e., tumor tissue), allowing precise targeting and direct killing of tumor cells [39]. 215 

Five out of twenty genera (Anaerosinus, Clostridium, Bacteroides, Actinomyces and 216 

Streptococcus) were shared by sputum and gut models of I_III vs. DM (Figure 5C). The 217 

human digestive tract was the main habitat for Anaerosinus [37]. There were several types 218 

of Streptococcus, two of which caused most of the strep infections in human: group A and 219 

group B [40]. These results indicated common features of sputum and gut dysbiosis during 220 

disease development and metastasis.  221 

We also checked the overlapping of the top-ranking taxa in models between 222 

neighboring disease stages, such as models for Control vs. I_III and I_III vs. DM. Again, we 223 

found even more shared taxa. For example, we found seventeen out of the top twenty 224 

genera were shared in the two models generated using individual microbiota (Figure 5E-F). 225 

Unlike the sputum with more variety genera, there were two main families in gut, 226 

Ruminococcaceae and Lachnospiraceae; most members of which were found in human or 227 

animal digestive tract [41]. Previous studies have noted that both of them were depleted in 228 

patients with cirrhosis [42], enriched during alcohol abstinence and inversely correlated 229 

with intestinal permeability [43, 44]. These bacteria were known to have a beneficial effect 230 
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on gut barrier function [44]. Not surprisingly, we found that in the mixed models, in which 231 

the same taxa from sputum- and fecal- were treated as distinct features, several of the 232 

above-mentioned taxa from both sputum and feces were among the top twenty taxa, 233 

including Streptococcus in the Control vs. NSCLC models, Anaerosinus, Bacteroides and 234 

Streptococcus in the I_III vs. DM models. Together, these results indicated that the same 235 

set of microbial taxa were underlying the development and progression of NSCLC, and the 236 

biomarkers for DM might be acquired early. 237 

 238 

Pseudomonas aeruginosa, a species implicated in infections, was enriched 239 

in brain-metastatic patients 240 

Brain-metastasis (BM) represented the deadliest form of distant metastasis of NSCLC. To 241 

identify putative microbial biomarkers that were capable of distinguishing BM from other 242 

types of distant metastasis, we divided stage IV patients into two groups, namely the BM 243 

group (18 sputum samples and 25 fecal samples) and nonBM group (21 sputum samples 244 

and 30 fecal samples) (Figure 6A, left panel). As shown in Figure 6A, in the sputum 245 

microbiota, we found significantly different beta-diversities (P=0.011; middle panel) 246 

between the two groups, while there was no significant difference in fecal microbiota 247 

(P=0.178; right panel). Thus, the dysbiosis of sputum microbiota was in stronger 248 

association with brain metastasis of NSCLC than fecal. We next performed LEfSe analysis 249 
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and Wilcoxon rank-sum test to identify potential microbial biomarkers between BM and 250 

nonBM groups (Figure 6B-C). Several differentially abundant genera were identified, 251 

including Pseudomonas, Actinomyces in sputum and Blautia and Pseudomonas in feces. 252 

Pseudomonas was highly abundant in the sputum of the BM group (~8.14%) but not 253 

detectable in the nonBM group with relative abundance close to zero (Figure 6B, right 254 

panel); Pseudomonas was also not detectable in any other disease stages nor in healthy 255 

controls. Pseudomonas was also significantly enriched in fecal samples of the BM group 256 

(with relative abundance of ~0.47%) and not detectable in other fecal samples.  257 

We then generated the distinguishing BM and nonBM models using the sputum 258 

microbiota, gut microbiota and mixed microbiota separately. As shown in Figure 7A, we 259 

found that sputum microbiota performed best in BM and nonBM group comparison. We 260 

also examined the top-ranking taxa in sputum-, fecal- and mixed models. As shown in 261 

Supplementary Figure 3, there were more sputum-derived genera than gut-derived 262 

genera in numbers. Only three gut-derived genera were among the top twenty in the BM 263 

versus nonBM mixed model. Again, we found Pseudomonas was the most important 264 

genus to sputum- and mixed models between BM and nonBM (Figure 7B and 265 

Supplementary figure 3). Thus, Pseudomonas is a prominent biomarker for brain 266 

metastasis in sputum. Pseudomonas consists of a groups of aerobic, Gram-negative and 267 

rod-shaped bacteria [1] that are associated with many human diseases but are relatively 268 

rare in the healthy gut (see https://gmrepo.humangut.info/species/286 for an overview 269 
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their prevalence and abundances in gut microbiota associated with human health and 270 

diseases [45]). According to a MAPseq tool [46], which assigns 16S sequencing reads to 271 

distinct taxa with confidence scores, most of the Pseudomonas reads could be reliably 272 

identified as Pseudomonas aeruginosa (see Methods for details). P. aeruginosa is one of 273 

the major causes of nosocomial infections worldwide [3] and is often associated with 274 

long-term wounds, pneumonia [4], chronic obstructive lung diseases [47], cystic fibrosis 275 

explanted lung [5], bronchiectasis [48] and chronic destroyed lung disease due to 276 

tuberculosis [47]. Its roles in brain metastasis needs to be further explored. 277 

 278 

Discussion 279 

We believed that the present study is the first to investigate the alterations of both sputum 280 

(as a proxy for lung) and gut microbiota on the development and metastasis of NSCLC. 281 

The results of our study suggest that lung microbiota may play major roles in the 282 

development of NSCLC, the dysbiosis of which could accurately stratify patients from 283 

healthy controls, while the distant metastasis (DM) was associated with both sputum and 284 

gut microbiota dysbiosis. We further identified a prominent microbial biomarker for brain 285 

metastasis (BM).  286 

In recent years, growing evidence have linked the alterations in lung or gut microbiota 287 

to LC or NSCLC. However, the relative importance of the gut and lung microbiota to the 288 
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development of NSCLC are still unclear; in addition, their alterations along with DM of 289 

NSCLC have not been characterized. Therefore, in this study we assembled a cohort 290 

including patients of diagnosed NSCLC, including those suffered from DM (stage IV), and 291 

collected both sputum and fecal samples. We delineated the microbial community 292 

structure by 16S rRNA sequencing. The sputum and gut microbiota differed significantly in 293 

terms of alpha-diversity and beta-diversity, regardless health statuses and disease stages; 294 

surprisingly, sputum microbiota had significantly higher richness (taxon count) and 295 

evenness than gut microbiota, suggesting unappreciated microbial complexity in the 296 

respiratory systems and putative important roles in related diseases. We built machine 297 

learning models to evaluate the relative importance of sputum and gut microbiota in 298 

patient stratification. We found that both sputum and gut microbiota dysbiosis 299 

contributed significantly to discriminating metastatic to non-metastatic patients, while 300 

sputum microbiota performed the best in discriminating stage I_III patients from healthy 301 

controls. These results highlighted the potentials using both sputum and gut microbiota in 302 

non-invasive disease diagnosis. 303 

By comparing to healthy controls of matching demographic and clinical characteristics, 304 

we identified microbial biomarkers that showed significant abundance differences 305 

between subject groups. Not surprisingly, many of the identified biomarkers were either 306 

previously associated with other diseases [38, 40], or known to induce inflammation 307 

and/or interact with host immunity [31-38]. For example, the genera Atopobium, 308 
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Eggerthella and Olsenell (Figure 3C,F), belong to the family Coriobacteriaceae, had been 309 

implicated in the development of various clinical pathologies including abscesses [32], 310 

periodontitis [33], intestinal diseases and tumors [34, 35]; and that Atopobium was the 311 

third important genus to I_III vs IV mixed model (Figure 4F). Similarly, a genus Filifactor, 312 

which was the most important genus in the Control vs NSCLC mixed model, was 313 

significantly enriched in NSCLC patients; it was known that some species of Filifactor were 314 

members of human oral microbiome and were pathogenic [21].  315 

We found significant overlap between sputum- and fecal- biomarkers, suggesting that 316 

these microbes may play similar roles at different body sites. In addition, most of the 317 

microbial-biomarkers of distinct disease stages, i.e. I_III vs. healthy controls and DM vs. I_III, 318 

also overlapped (Figure 5); we found that the cumulative abundances of these biomarkers 319 

were increased (decreased) continuously along disease development. These results 320 

suggested that distant metastasis (DM) was the ultimatum development of lung cancer, 321 

and the DM-modulating microbes were acquired early. 322 

We identified Pseudomonas aeruginosa as a prominent biomarker for brain 323 

metastasis (BM); P. aeruginosa was highly abundant in BM patients as compared with 324 

other NSCLC as well as other distant metastatic patients and was exclusively found in 325 

sputum. P. aeruginosa is found in many diseases and is often associated with long-term 326 

wounds; its role in BM should be further experimentally determined. 327 
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Despite the strengths of our study, there were two limitations. First, currently only 328 

limited numbers of subjects were enrolled, which could limit the predictive performance of 329 

our patient stratification models; better ML models would have been possible with more 330 

subjects and deeper coverage of metagenomics sequencing data. Second, the exact roles 331 

of gut and lung microbiota in NSCLC and metastasis needed to be further illustrated. 332 

Further experiments are needed to investigate their relative contributions by removing 333 

one at a time. 334 

 335 

Conclusions 336 

In summary, we surveyed both sputum (as a proxy for lung) and gut microbiota of patients 337 

with NSCLC and distant metastasis and compared them with healthy controls. We 338 

obtained mathematical models capable of distinguishing patients from healthy controls as 339 

well as patients at different disease stages with high performance. The top taxa ranked by 340 

these models could be used for future experiments to illustrate the underlying molecular 341 

mechanisms, and/or biomarkers for disease diagnosis. Our analyses revealed that the 342 

alterations of sputum (as a proxy to lung) microbiota have stronger association with 343 

NSCLC and distant metastasis than the gut, indicating that tumor-site associated 344 

microbiota may contribute more to disease development.  345 

 346 
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Methods 347 

Study design and sample collection  348 

NSCLC patients were recruited in the Cancer Center, Union Hospital, Tongji Medical 349 

College, Huazhong University of Science and Technology, China. Healthy relatives of these 350 

patients were recruited as healthy subjects. The criteria for selecting controls were as 351 

following: good physical status, no significant respiratory or alimentary conditions. NSCLC 352 

diagnosis was established according to histological criteria. Clinical stage of NSCLC was 353 

determined following the 8th American Joint Committee on Cancer (AJCC) guidelines [20]; 354 

patients were classified into four distinct disease stages (i.e. from I to IV), in which stage 355 

IV referred to distant metastasis. No distant metastasis to any regions of the intestines 356 

was collected in this study.  357 

The main exclusion criteria were as following: less than 18 years of age; any antibiotic 358 

therapy within the previous 1 month; known COPD (chronic obstructive pulmonary 359 

disease), pneumoconiosis, silicosis or any other diseases of the respiratory system; inability 360 

to give written informed consent. This study was approved by the Ethical Committees of 361 

the Cancer Center and registered with ClinicalTrials.gov (Identifier: NCT 03454685). All 362 

participants provided written informed consent before sample donation. 363 

All fecal and spontaneous sputum samples were obtained after NSCLC diagnosis and 364 

before the patients received treatment. These samples were immediately placed in -80 ℃. 365 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 7, 2020. ; https://doi.org/10.1101/2020.01.06.895490doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.06.895490


 

21 
 

Demographic and clinical data, including smoking status, gender, age, body mass index 366 

(BMI), disease stage and lung cancer pathology were obtained from each participant. 367 

DNA Extraction 368 

Bacterial DNA was extracted from the fecal and sputum samples using the OMEGA-soil 369 

DNA Kit (Omega Bio-Tek, USA) according to the manufacturer’s instructions. The quality of 370 

DNA was measured using a NanoDrop 2000 Spectrophotometer (Thermo Scientific, USA). 371 

The quality of DNA was detected by 1% agarose gel electrophoresis. Bacterial DNA was 372 

immediately stored at -80 °C until further analysis.  373 

16S rRNA amplification and sequencing 374 

Bacterial DNA was isolated from fecal and sputum samples as previous described. DNA 375 

libraries covering the V3-V4 hypervariable regions of the bacterial 16S-rDNA gene were 376 

constructed using the FastPfu Polymerase (TransGen, China) according to the 377 

manufacturer’s instructions. We used the primer set composed of 338F: 5’ – 378 

ACTCCTACGGGAGGCAGCAG - 3’, and 806R: 5’ – GGACTACHVGGGTWTCTAAT - 3’, which 379 

was designed to amplify the V3–V4 hypervariable region. All PCR products were purified 380 

with an AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, USA) and quantified using a 381 

QuantiFluor™-ST (Promega, USA) according to the manufacturer’s instructions. The 382 

sequencing of the PCR amplification products was performed on an Illumina Miseq 383 
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platform (Illumina, USA) by Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China). 384 

Sequence data has been deposited to the NCBI SRA database under the NCBI bioproject 385 

ID PRJNA576323. 386 

Sequencing data analysis and taxonomic assignment 387 

Overall read quality was checked for each sample using FastQC. After Trimmomatic, reads 388 

with quality less than 30 or length less than 100 bp were removed from subsequent 389 

analysis. The filtered reads were then analyzed using Qiime2 (version 2018.11) [49]. DADA2 390 

software, wrapped in QIIME2, was used to filter the sequencing reads and construct 391 

feature table. The taxonomy classify database was downloaded from Qiime2 392 

(gg-13-8-99-515-806-nb-classifier.qza). Taxa with relative abundance less than 0.001 was 393 

removed. All analyses were carried out on genus level except for the alpha diversity. The 394 

taxonomy classify on species level was identified using “MAPseq” [46], which is a highly 395 

efficient approach with confidence estimates, for reference-based rRNA analysis; while 396 

also providing more accurate taxonomy classifications. 397 

Statistics analysis  398 

Patients’ characteristics were expressed as mean ± std. deviation and compared using Χ2 399 

tests or Independent-Samples T Test as appropriate. Statistical analyses were performed 400 
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using SPSS V.19.0 for Windows (Statistical Product and Service Solutions, Chicago, Illinois, 401 

USA). 402 

The beta diversity analyses were performed using the R package “Vegan”. Principal 403 

coordinate analysis (PCoA) and adonis analysis were performed based on Bray-Curtis 404 

distance. Linear discriminant analysis effect size (LEfSe) analysis [50] and Wilcoxon 405 

rank-sum test [51] were used to identify differentially abundant genera between subject 406 

groups. R package “Siamcat” [36] was used for Random forest modeling and 10-fold cross 407 

validation with 100 times repeat. The operating characteristic curves (receiving operational 408 

curve, ROC) were constructed and area under curve (AUC) was calculated to assess the 409 

diagnostic performance of the model with the pROC package [52].  410 

Availability of data and materials 411 

Sequencing data is available and has been deposited to the NCBI SRA project under the 412 

NCBI BioProject ID PRJNA576323. Methods, including statements of data availability and 413 

additional references, are available at the publisher’s website.414 
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Figure 1. Sputum and gut microbiota differed significantly in terms of alpha- and 621 

beta-diversities. (A) Numbers of sputum (red) and gut (blue) samples collected in this 622 

study and their distributions in healthy controls and distinct disease stage groups. CON: 623 

healthy controls; I_III: patients with stages of I to III; DM: patients with distant metastasis 624 

(also referred to as stage IV). Disease stages were assigned according to the 8th American 625 

Joint Committee on Cancer (AJCC) guidelines [20]. (B) Comparisons of alpha-diversity and 626 

beta-diversity between sputum with gut in healthy controls. Shannon diversity index 627 

(alpha-diversity; left panel) was significantly lower in fecal; principal coordinate analysis 628 

(PCoA; right panel) based on Bray-Curtis distance at genus level showed that the overall 629 

microbiota composition was different between fecal and sputum samples. Wilcoxon rank 630 

sum tests were used to compare between groups. Level of significance: *** P<0.001; ** 631 

P<0.01; * P<0.05; NS. P≥0.05. (C) Comparisons of alpha-diversity (left panel) and 632 

beta-diversity (right panel) between sputum with gut in NSCLC patients (stages I to IV). 633 

 634 

Figure 2. Global alteration of sputum microbiota was associated with NSCLC and 635 

distant metastasis (A-B), while fecal microbiota was only significantly associated with 636 

the latter (C-D). (A) Alpha diversity of sputum dysbiosis in pairwise comparisons. Shannon 637 

index (left); Evenness index (middle); Richness index (right). Shannon index and Richness 638 

index were significantly lower in patients as compared with controls; no significance was 639 

found in Evenness index. Wilcoxon rank sum test was used to compare between groups. 640 
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Level of significance: *** P<0.001; ** P<0.01; * P<0.05; NS. P≥0.05. (B) Significant 641 

differences were found in beta-diversity between controls and NSCLC (left), as well as 642 

between controls vs I_III (middle) and I_III vs DM (right), indicating that dysbiosis of 643 

sputum microbiota was associated with lung cancer development and metastasis. 644 

Conversely, applying similar analyses to fecal samples, no alpha-diversities (C) but the 645 

beta-diversity in I_III compared with DM (D) was significantly different, suggesting that 646 

fecal microbiota dysbiosis was associated with distal metastasis, but not NSCLC. 647 

 648 

Figure 3. Shared and distinct microbial biomarkers between subject groups in sputum 649 

and feces microbiota. Differentially abundant microbial biomarkers between subject 650 

groups were identified using LEfSe analyses. (A) The relative abundance of 6 and 2 genera 651 

was significantly different between NSCLC and control group in sputum (left) and fecal 652 

(right), respectively. In order to identify biomarker for specific disease stages, we 653 

compared neighboring groups along the disease progression in sputum (B) and fecal (C). 654 

Control versus I_III, left; I_III versus DM, right. 655 

 656 

Figure 4. Disease classification based on taxonomic profiles of sputum, gut and both. 657 

Panels A to D showed the classification performance using relative abundance of genera 658 

as area under the ROC between subject groups. (A) Control vs NSCLC, (B) Control vs I_III, 659 

(C) I_III vs DM and (D) Control vs DM. Panels E to F showed the top twenty genera 660 
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important to the mixed models; they were ranked by the median values of 1000 repeats, 661 

therefore boxplots were used here to demonstrate the medians and distributions of these 662 

values. (E) Control vs NSCLC and (F) I_III vs DM. Red boxes: sputum-derived genera; blue 663 

boxes: gut-derived genera. The colorful genera names indicated the overlap genera 664 

between sputum with gut. Star demonstrated the genus was significantly different in 665 

abundance using LEfSe analysis. 666 

 667 

Figure 5. Top-ranking genera in the machine learning models were significantly 668 

overlapped. The Venn diagram showed the overlap of the top 20 genera between sputum 669 

with gut in (A) Control vs NSCLC classification model, (B) Control vs I_III classification 670 

model and (C) I_III vs DM classification model. The Venn diagram showed the overlap of 671 

top 20 genera (D) between sputum classification models and (E) between fecal 672 

classification models.  673 

 674 

Figure 6. Patients with brain metastasis differed significantly from other distant 675 

metastasis in microbial profiles of sputum and feces. (A) Numbers of sputum (red) and 676 

gut (blue) brain metastasis samples (left). BM: NSCLC patients in stage IV with brain 677 

metastasis, nonBM: stage IV NSCLC patients without brain metastasis. PCoA analysis 678 

showed differences on beta-diversity between BM and nonBM in sputum (middle) not gut 679 

(right). LEfSe (left) analysis and Wilcoxon rank-sum test (right) of differentially abundant 680 
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microbial biomarkers between BM and nonBM in sputum (B) and gut (C). Level of 681 

significance: *** P<0.001; ** P<0.01; * P<0.05; NS. P≥0.05. Star demonstrated the genus 682 

Pseudomonas was significantly different in abundance.  683 

 684 

685 
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 686 

Table 1. Clinical characteristics of healthy subjects and NSCLC patients. 687 

 Sputum Fecal 

  

Health

y 

Stage 

Ⅰ-Ⅲ 

Stage 

Ⅳ 

P value Healthy 

Stage 

Ⅰ-Ⅲ 

Stage Ⅳ P value 

n = 30 n = 27 

n = 

39 

Healthy vs  

Stage 

Ⅰ-Ⅲ 

Stage 

Ⅰ-Ⅲ  

vs Stage 

Ⅳ 

n = 29 n = 30 n = 55 

Healthy vs  

Stage Ⅰ-Ⅲ 

Stage Ⅰ-Ⅲ  

vs Stage Ⅳ 

Age (years) 

          

    Mean ± Std. 

Deviation 

54.67 

± 

12.46 

59.44 

± 

6.807 

58.31 

± 

7.79 

0.075 0.542 

55.83 ± 

12.04 

59.17 ± 

6.69 

58.36 ± 

8.292 

0.197 0.650 

Gender 

          

    male, n ( % ) 

17 

( 56.67

% ) 

18 

( 66.67

% ) 

29 

( 74.3

6% ) 

0.587 0.584 

15 

( 51.72% ) 

19 

( 63.33

% ) 

37 

( 67.27% ) 

0.435 0.812 

    female, n ( % ) 

13 

( 43.33

% ) 

9 

( 33.33

% ) 

10 

( 25.6

4% ) 

14 

( 48.28% ) 

11 

( 36.67

% ) 

18 

( 32.73% ) 

BMI (kg/m2) 

          

    Mean ± Std. 

Deviation 

22.34 

± 2.52 

23.74 

± 3.80 

22.13 

± 

3.446 

0.107 0.063 

22.28 ± 

2.38 

23.58 ± 

3.92 

22.16 ± 

3.161 

0.141 0.061 

Smoking status 
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    Smoker, n ( % ) 

14 

( 46.67

% ) 

14 

( 51.85

% ) 

23 

( 58.9

7% ) 

0.793 0.620 

12 

( 41.38% ) 

15 

( 50.00

% ) 

29 

( 52.73% ) 

0.604 0.244 

    Non-smoker, n 

( % ) 

16 

( 53.33

% ) 

13 

( 48.15

% ) 

16 

( 41.0

3% ) 

17 

( 58.62% ) 

15 

( 50.00

% ) 

26 

( 47.27% ) 

Disease stage 

          

    Stage Ⅰ, n ( % ) - 

9 

( 33.33

% ) 

0 - - - 

11 

( 36.7% 

) 

0 - - 

    Stage Ⅱ, n ( % ) - 

7 

( 25.93

% ) 

0 - - - 

7 

( 23.3% 

) 

0 - - 

    Stage Ⅲ, n ( % ) - 

11 

( 40.74

% ) 

0 - - - 

12 

( 40.0% 

) 

0 - - 

    Stage Ⅳ, n ( % ) - 0 

39 

( 100.

00% ) 

- - - 0 

55 

( 100.00% ) 

- - 

Lung cancer 

pathology           

    

Adenocarcinoma, n 

( % ) 

- 

19 

( 70.37

% ) 

26 

( 66.7

% ) 

- - - 

22 

( 73.3% 

) 

40 

( 72.73% ) 

- - 

    Squamous cell 

carcinoma, n ( % ) 

- 

6 

( 22.22

% ) 

9 

( 23.1

% ) 

- - - 

6 

( 20.0% 

) 

12 

( 21.82% ) 

- - 

    Non-small cell - 2 4 - - - 2 3 ( 5.45% ) - - 
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carcinoma, n ( % ) ( 7.41

% ) 

( 10.3

% ) 

( 6.7% ) 

 688 

Statistically differences were calculated by Independent-Samples T Tests for continuous data and Χ2 tests for count 689 

data 690 
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Table 2. The AUC values of classifying models. 

 Control vs. NSCLC Control vs. I_III I_III vs. DM Control vs. DM 

Sputum 0.778 (0.673 - 0.883) 0.842 (0.736 - 0.947) 0.740 (0.618 - 0.862) 0.791 (0.679 - 0.904) 

Fecal 0.632 (0.514 - 0.750) 0.607 (0.458 - 0.756) 0.707 (0.594 - 0.820) 0.723 (0.608 - 0.838) 

Sputum+Fecal 0.779 (0.666 - 0.893)  0.839 (0.730 - 0.948)  0.756 (0.637 - 0.876) 0.783 (0.661 - 0.905) 

 

Table 3. The sum of cumulative importance scores in mixed models. 

 Control vs. NSCLC Control vs. I_III I_III vs. DM Control vs. DM 

Sputum 8.030 (6.034 – 11.422) 7.586 (5.235 – 10.690) 7.230 (5.066 – 8.969) 6.420 (5.416– 8.797) 

Fecal 3.277 (2.639 – 4.466) 0.912 (0.618 – 1.366) 4.599 (3.140 – 5.964) 0.723 (0.608 - 0.838) 
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