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Abstract  

IMPORTANCE Patients with prostate cancer more likely die of non-cancer cause of death (COD) than prostate 

cancer. It is thus important to accurately predict COD more precisely in these patients. Random forest, a model of 

machine learning, was useful for predicting binary cancer-specific deaths. However, its accuracy for predicting 

multi-category COD in prostate cancer patients is unclear.  

OBJECTIVE To develop and tune a machine-learning model for predicting 6-category COD in prostate cancer 

patients 

DESIGN, SETTING, AND PARTICIPANTS We included patients in Surveillance, Epidemiology, and End Results-18 

cancer registry-program with prostate cancer diagnosed in 2004 (followed up through 2016). They were randomly 

and equally divided into training and testing sets. We evaluated the prediction accuracies of random forest and 

conventional-statistical/multinomial models for 6-category COD in primary and cross validation processes and by 

data-encoding types. 

EXPOSURE Tumor and patient characteristics 

MAIN OUTCOMES AND MEASURES 13-year 6-category COD 

RESULTS Among 49,864 men with prostate cancer, 29,611 (59.4%) were alive at the end of follow-up, and 5,448 

(10.9%) died of cardiovascular disease, 4,607 (9.2%) of prostate cancer, 3,681 (7.4%) of Non-Prostate cancer, 717 

(1.4%) of infection, and 5,800 (11.6%) of other causes. We predicted 6-category COD among these patients with a 

mean accuracy of 59.1% (n=240, 95% CI, 58.7%-59.4%) in the random forest models with one-hot encoding, and 

50.4% (95% CI, 49.7%-51.0%) in the multinomial models. Tumor characteristics, prostate-specific antigen level, and 

diagnosis confirmation-method were important in random forest and multinomial models. In random forest 

models, no statistical differences were found between accuracies of primary versus cross validation, and those of 

conventional versus one-hot encoding. 

CONCLUSION: For prostate cancer patients, we developed a random forest model that has an accuracy of 59.1% in 

predicting long-term 6-category COD. It outperforms conventional-statistical/multinomial models with an absolute 

prediction-accuracy difference of 8.7%.  
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Introduction:  

Prostate cancer is the most prevalent cancer and the 

second leading-cause of cancer deaths among men 

in the U.S, accounting for 174,650 new cases and 

31,620 deaths in 2019.
1,2

 More patients with 

prostate cancer died of non-cancer causes than 

prostate cancer.
3,4

 It is thus important to understand, 

predict and prevent non-cancer causes of death 

(CODs) among these patients, particularly 

cardiovascular disease (CVD).
5
  However, only a 

handful of studies were focused on multi-category 

COD in prostate cancer patients, and none of them 

investigated the prediction of COD.
3,5,6

  

 

Random forests (RF) model, a  widely-used 

machine/statistical learning model, is based on the 

assumption that all trees have the same distribution 

in the same forest, whereas each tree links to the 

values of a random vector.
7
 The RF model 

outperforms several machine learning and 

conventional statistical (e.g.  logistic regression) 

models in predicting binary cancer-specific or all-

cause deaths, 
8-12

 except in 1 simulation study and 1 

biomarker study.
13,14

 It was also used for predicting 

cancer-specific deaths in prostate cancer patients.
15

 

But few studies have used RF model for predicting 

multi-category COD in cancer patients, or compared 

the prediction accuracies of RF versus conventional 

statistical model (e.g. multinomial model) for multi-

category COD.  

 

This population-based observational study was 

aimed to predict 12-year multi-category COD in 

prostate cancer patients using RF and multinomial 

models.  

 

Methods:  

Patients 

We extracted individual-patient data from the 

Surveillance, Epidemiology, and End Results-18 

(SEER-18) Program (www.seer.cancer.gov) SEER*Stat 

Database with Treatment Data using SEER*Stat 

software (Surveillance Research Program, National 

Cancer Institute SEER*Stat software 

(seer.cancer.gov/seerstat) version <8.3.6>).
16

 SEER-

18 is the largest SEER database including cases from 

18 states and covering near 30% of the U.S. 

population.
17

 The datasets have been widely used 

and validated for research on breast, and colorectal 

cancers.
18-20

 Since the SEER database is an existing, 

de-identified, publicly available dataset, this study is 

exempt from Institutional Review Board (IRB) review 

under exempt category 4. Any summary data 

involving fewer than 15 patients were statistically 

suppressed to protect patient identity.  

 

We included all qualified invasive prostate cancers in 

SEER-18 diagnosed in 2004 (2019 data-release, 

followed up through December 2016). The diagnosis 

year of 2004 was chosen because the 6
th

 edition of 

the Tumor, Node and Metastasis staging manual 

(TNM6) of the American Joint Commission on Cancer 

(AJCC) was started in 2004 and allowed 12 years of 

follow-up. But, the AJCC 7
th

 edition of the Tumor, 

Node and Metastasis staging manual (TNM7) was 

started in 2010, and would allow only up to 6 years 

of follow-up, which was not long enough in our view. 

The inclusion criteria were survival time longer than 

1 month, aged 20 years and older, with known COD 

and first primary only.  

 

Outcome and Covariates 

The outcome of the statistical models was patient’s 

6-category COD. The COD were originally classified 

using SEER’s recodes of the causes of death 

according to the COD definition of the U.S. Mortality 

Data, which were extracted from underlying cause of 

death on the  death certificates of deceased 

patients.
21

 The underlying COD was the unique and 

most important etiology of the patient’s death, while 

other causes may link to the death and be recorded 

as other COD on the death certificate. We simplified 

the SEER COD into 6 categories based on the 

prevalence of COD,
3,6,15

 including alive, CVD, 

infection, non-prostate cancer, prostate cancer and 

others. 

 

The following factors were included in the analysis as 

covariates in RF or multinomial models: age at 

diagnosis, race/ethnicity (non-Hispanic White, 

Hispanic, non-Hispanic Black, Asian and Pacific 

Islanders, and others),
22

 T, N and M categories of 

TNM6, AJCC TNM6 clinical staging, prostate specific 

antigen level (PSA, ng/ml), sum of the Gleason score, 

chemotherapy, radiotherapy, surgery, and attributes 

of the county where the patient resided at the time 

of diagnosis.
23

 The PSA levels and Gleason scores 
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were collected from medical records as site specific 

factors of prostate cancer since 2010.
24,25

 Specifically, 

sums of the Gleason score were obtained from 

pathology report of resected specimen when 

available, or that of biopsy specimen if no surgery 

done. The 4 census-regions of patient’s residence 

county were defined by the U.S. Census Bureau.
26

 

We converted continuous variables into 4-category 

variables based on their quartiles. The 

chemotherapy and radiotherapy data were obtained 

after signing a user agreement.
25,27

 It is noteworthy 

that no or unknown status of these treatments 

should be considered less reliable, while receipt of 

these treatments was generally confirmed and 

reliable. 
25,27

  

 

Statistical analysis 

We compared the accuracies of the RF and 

multinomial models after tuning the RF models and 

choosing the model with best accuracy. Using the 

1:1 cross-validation approach, the patients were first 

randomly divided into two sets of similar size 

(n=25,000 and 24,864, respectively), namely training 

and testing sets (Figure 1). For data-quality 

assurance, we compared the covariates in the 

training and testing sets using Chi-square or 

Student’s t test. To identify the RF model with best 

accuracy, which is termed as tuning process in data 

science, we examined prediction accuracies (i.e. 1 – 

validation error) of the models with various numbers 

of iterations (from 50 to 800 by an interval of 50) 

and variables (from 1 to 15). During the primary 

tuning process, the training set was used to develop 

models, and testing set used to predict outcomes 

using a RF or multinomial model. After the primary 

tuning process, we then conducted cross validation 

by developing model in the testing set and 

predicting outcomes in the training set. The tuning 

process during cross-validation followed the same 

protocol (Figure 1).  

 

Several sensitivity analyses were performed on RF 

models. To exclude patients lost to follow-up, we 

conducted primary training and prediction processes 

in the patients who died during the follow-up or was 

alive for >150 months (12.5 years). We also 

generated training and testing sets with balanced 

distribution in all tested independent and dependent 

variables, which were assessed using Chi-square or 

Student’s t test by each variable. Primary training 

and prediction were conducted in the balanced 

training and testing sets to study the model’s 

prediction accuracy.  

 

One-hot encoding appears to outperform complex 

encoding systems.
28

 It was also used for machine 

learning on cancer driver genes.
29

 We therefore 

conducted the primary and cross-validation 

processes using one-hot encoded data. For one-hot 

encoding, all multicategory variables (i.e. of >1 strata) 

were transformed into a number of new binary sub-

variables (e.g. quartiles of the age would become 4 

binary variables of corresponding age-quartile). 

 

For multinomial model, which is a conventional-

statistical model, we first generated the model using 

training set and predicted 6-category COD using 

testing set (Figure 1). If the predicted probability of a 

given COD was higher than 0.5, the COD would be 

assigned to the COD of the patient. Ideally, only one 

COD had a predicted probability >0.5 and was 

allowed for each case, thus any patient with 0 or >1 

predicted COD was considered unsuccessfully 

predicted using multinomial model.  

 

We used the RF package and multinomial logistic 

models of the Stata (version 16, College Station, TX) 

for statistical analyses.
30-32

 The 95% confidence 

intervals (CI) of prediction accuracies were 

estimated using both binomial and Poisson models, 

that produced very similar results. All P values were 

two-tailed, and the P value <0.05 was considered 

statistically significant.  

 

Results:  

Patients  

We identified and analyzed 49,864 men with 

qualified prostate cancer diagnosed in 2004 in the 

SEER-18 (Table 1), including 29,611 (59.4%) alive, 

5,448 (10.9) died of CVD, 4,607 (9.2%) of prostate 

cancer, 3,681 (7.4%) of non-prostate cancer, 717 

(1.4%) of infection, and 5,800 (11.6%) of other 

causes. The mean survival time was 117 months, 

while there were 31,273 patients who died during 

followup or was alive for >150 months. Majority of 

the cancers were of AJCC 6 stage 2 (80.9%) and not 

treated with prostatectomy (61.6%). We randomly 

divided the cases into training and testing sets 

(STable 1), and found the outcome and all covariates 

were similarly distributed in these sets, except 

radiotherapy status (P=0.047). We then sorted the 

data by outcome and radiotherapy, randomized the 
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cases again, and achieved similar distributions of the 

outcome and on covariates in the two sets (STable 2). 

For the sensitivity analyses on the patients who died 

during followup or was alive >150 months, CODs 

were similarly distributed in the training and testing 

sets (Stable 3). 

 

Predicting multi-category causes of death with 

random forests model 

There were 17 variables with conventional encoding 

and 61 variables with one-hot encoding, and 240 

models in each tuning process. Our tuning processes 

showed that the prediction accuracy increased with 

the iteration number in either conventionally or one-

hot encoded data (Figure 2), as shown before.
30

 The 

mean prediction-accuracy for 6-category COD were 

58.6% (95% CI, 58.2%-59.1%) in the RF models with 

conventional encoding and 59.1% (95% CI, 58.7%-

59.4%) in those with one-hot encoding. The best 

accuracy was reached in the model of 3 variables 

and 800 iterations for conventional encoding (59.2%, 

95% CI [58.6%-59.8%], Table 2 and Figure 3) and that 

of 1 variable and 700 iterations for one-hot encoding 

(59.6%, 95% CI [58.9%-60.2%], STable 4 and Figure 

3). The best RF model with one-hot encoding 

appeared to outperform that with conventional 

encoding, but no statistical difference was found. 

Alive was the COD that all RF models could predict 

with the best accuracy, while cancer pathological 

staging and age at diagnosis were top-important 

factors in the RF models (Figure 3).  

 

The sensitivity analyses revealed that the prediction 

accuracies were statistically similar in the primary-

validation models, cross-validation models and the 

models with balanced sets, but statistically lower in 

the models in patients who died during follow-up or 

was alive for >150 months (Figure 3).  

 

Predicting multi-category causes of death with 

multinomial model 

As RF models, multinomial models with one-hot 

encoding seemed to have better goodness of fit than 

with conventional encoding (Pseudo R= 0.1707 

versus 0.1416, Likelihood Ratio [Chi-square]= 

10854.51 vs 9009.2, respectively). Because 

multinomial models used a ranking approach to 

determine the best-fit outcome, it is possible that 

more than one outcome (i.e. COD) had a 

probability> .05. However, the predicted COD in 

multinomial model was only unique in being alive 

among the 6-category COD and all other categories 

were of < 0.5 probability (Table 2 and STable 4). The 

mean prediction-accuracy was 50.4% (95% CI, 

49.7%-51.0%) in the multinomial models, and lower 

than RF models, except the RF model on the patients 

who died during followup or was alive for >150 

months (Figure 3). Age at diagnosis, AJCC6 staging, 

confirmation method of diagnosis, surgery and PSA 

level were associated with all 6-category COD in 

multinomial model, while other factors were only 

linked to some of the 6-category COD (STable 5). 

 

Discussion 

In the patients with prostate cancer diagnosed in 

2004, 59.4% were alive at the end of 12-year follow- 

up, while the top-3 CODs were CVD, prostate cancer 

and non-prostate cancer. We predicted 6-category 

COD among these patients with a mean accuracy of 

59.1% (95% CI, 58.7%-59.4%) in the tuned RF model 

with one-hot encoding, and 50.4% (95% CI, 49.7%-

51.0%) in the multinomial model, suggesting RF 

models outperformed multinomial model. Tumor 

characteristics, PSA level, diagnosis confirmation-

method, and radiotherapy status were the top-

ranked variables in RF model, but only age, surgery, 

diagnosis confirmation-method, PSA level and AJCC6 

stages as the factors were linked to all of the COD 

(versus alive) in multinomial models. 

 

The proportions of various COD in our study are 

similar to those in prior reports.
4
 Given the 

increasing proportion of deaths from COD other than 

prostate cancer, it is critical to accurately predict or 

identify the factors linked to these COD among 

prostate cancer patients.  Several studies have 

attempted to predict cancer-specific or all-cause 

deaths in prostate cancer patients using clinical 

pathological and genomic/genetic factors.
15,33-36

 

However, few studies to our knowledge predict the 

causes of death in 6 categories. Multinomial logistic 

regression is suitable for analyzing categorical/multi-

category outcomes.
31,32

 In this study, multinomial 

logistic regression seems only able to predict alive 

status of the 6-category COD if any unique COD 

successfully identified. In the meantime, a tuned RF 
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model outperformed multinomial logistic regression 

in predicting 6-category COD by 17.2% higher 

prediction accuracy (8.7% absolute accuracy-

difference). This finding supports that RF’s accuracy 

is similar to or better than support vector machines, 

artificial neural network and logistic regression in 

predicting various clinical outcomes,
9-11,37

 but 

contrasts to that its accuracy is inferior to that of 

logistic regression.
38

 It is plausible, but needs 

additional validation, that RF could also be useful in 

predicting multi-category COD or outcomes of other 

diseases. Despite the slightly better accuracy linked 

to data with one-hot encoding than standard 

encoding, we found no statistical differences 

between the two methods. This finding is 

inconsistent with prior reports,
28,29

  and needs 

further validation. We also noticed that the minimal 

depths of trees in our best-fit RF models were 

usually 1 to 3. Those observations may help develop 

and improve machine learning models for predicting 

multi-category COD in cancer or other patients. 

 

Some of this study’s strengths are noteworthy. First, 

this population-based study provides early evidence 

on the frequencies of various COD among the 

prostate cancer patients who were followed up for 

12 years. Second, we tuned RF models for predicting 

6-category COD in prostate cancer patients, while 

prior RF models on prostate cancer only predicted 

binary cancer-specific death,
15,33

 all-cause death,
33,39

 

or cancer recurrence.
40

 Compared with binary death-

outcomes, multiple-category COD are more 

informative, but more difficult to predict. This is 

supported by the low success rate of multinomial 

models in predicting unique COD. Third, the tuned 

RF models in this study outperformed multinomial 

models in predicting 6-category COD. Indeed, the 

multinomial model was only able to predict alive as a 

unique COD, and missed other COD. Fourth, we 

characterized RF models and identified the model 

with best accuracy, while few of the prior works 

tuned their models.
15,33,40

 Fifth, the large sample-size 

and cross-validation design increased the statistical 

power and scientific rigor of this study, 

respectively.
41

 Some of prior studies using machine 

learning/RF model had either large sample size
15

 or 

cross validation,
42-44

 but few combined both. Small 

sample size was indeed reported as the most 

common limitation of machine learning studies on 

cancer prognosis and prediction.
41

 Finally, we 

identified several factors linked to long-term 6-

category COD in prostate cancer patients, including 

age, PSA level and tumor characteristics, as shown 

by both RF and multinomial models.    

 

This study has the following limitations. The 

prediction accuracy for 6-category COD in this study 

is not yet as good as prediction for binary outcomes, 

such as all-cause deaths.
33

 Moreover, despite some 

shared linked-factors, RF models did not completely 

agree with multinomial models on the factors linked 

to 6-category COD. However, RF and other machine 

learning models are known for their limitations in 

identifying associated factors.
45

 In addition, an 

outside validation dataset might be needed, but 

unavailable, largely due to the lack of registry-data. 

SEER18 is the largest population cancer dataset in 

the North America.
16

 Thus, it is very challenging to 

obtain another population dataset of similar size for 

validation. However, we prospectively used the 

cross-validation approach to validate our findings, as 

recommended.
41,45

 Finally, Gleason scores were 

available in a very small proportion of the patients, 

but might otherwise improve prediction accuracy.
46

  

 

Conclusions 

In this population-based study, CVD, prostate cancer 

and non-prostate cancer were the most common 

long-term COD among prostate cancer patients. RF 

and multinomial models could predict 6-category 

COD among these patients with acceptable 

prediction accuracy, which needs improvement. 

Those models enable clinicians to gain more granular 

prognostic information on prostate cancer patients, 

and target at relevant COD to improve survival. We 

also show that a tuned RF model outperforms 

multinomial models by 8.7% (absolute difference), or 

15,195 person-case for the cases diagnosed in 2019 

alone in the U.S. Additional works are needed to 

better predict multiple-category COD of other 

cancers. 
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Figure Legends 

Figure 1. Study flow.  

(1) We randomized the patients into training and testing sets with similar sample-size in each group, and 

performed quality assurance to ensure similar distribution of covariates in the two sets. (2) We then tuned the 

random forest (RF) model, chose the best-fit RF model, and developed multinomial (NM) model using training set 

(bold dash line). Using the NM and chosen RF models, we predicted 6-category causes of death among the patients 

in testing set (dash line). (3) The model building and outcome prediction were repeated in cross validation process, 

but using testing set for model building (bold solid line) and training set for prediction (solid line). 

 

Figure 2. Characteristics of random forest models.   

During primary validation process, prediction accuracies of random forest models varied by the corresponding 

numbers of variable and iteration (Contour graphs: A. conventional data encoding; B. One-hot data encoding). The 

random forest models provided computed relative importance-values for all included variables (C. and D. Relative-

importance values of the top 10 variables in the chosen random forest models using conventional data encoding 

and one-hot data encoding, respectively). Note: *, Continuous variables were converted to 4-category variables by 

their respective quartiles; Dx, diagnosis; PSA, Prostate specific antigen; Education attainment defined as percent of 

residents with less than high-school graduate in the county; Person in poverty defined as percent of residents with 

income below 200% of poverty in the county. 
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Figure 3. Summary of prediction accuracies by model and data type.  

In the tuning process and sensitivity analyses, we computed the validation accuracy of each random forest model 

by the numbers of variable and iteration (n=240), and chose the one with the best accuracy as the final model. The 

error bars show 95% confidence intervals of prediction accuracies in those models and data types during tuning 

process, except 3 models, whose 95% confidence intervals were calculated for the accuracy of a single model using 

binomial model (indicated by *). One-hot indicates one-hot encoding of the data; balanced set refers to the 

sensitivity analysis with training and testing sets that had balanced distribution of all variables.  

 

 

 Table 1. Baseline characteristics of included subjects 

 

Alive, 

n=29,611 

CVD, 

n=5,448 

Infection, 

n=717 

Non-

Prostate 

cancer, 

n=3,681 

Other 

cause, 

n=5,800 

Prostate 

cancer, 

n=4,607 

Total, 

n=49,864 

Age (yr)¶ 63 (50-77) 

74 (59-

87) 75 (58-88) 70 (56-83) 

73 (58-

86) 

72 (54-

88) 67 (51-83) 

Survival time 

(mo)¶ 

146 (131-

155) 

77 (7-

143) 78 (6-141) 

78 (12-

141) 

82 (11-

143) 

59 (4-

137) 

117 (16-

154) 

Race 

      API 1,453 210 43 172 268 195 2,341 

(%) (4.9) (3.9) (6.0) (4.7) (4.6) (4.2) (4.7) 

Hispanic 2,662 412 68 249 497 423 4,311 

(%) (9.0) (7.6) (9.5) (6.8) (8.6) (9.2) (8.7) 

NH Black 3,830 865 143 553 807 812 7,010 

(%) (12.9) (15.9) (19.9) (15.0) (13.9) (17.6) (14.1) 

NH White 21,093 3,920 461 2,690 4,189 3,147 35,500 

(%) (71.2) (72.0) (64.3) (73.1) (72.2) (68.3) (71.2) 

Unknown/Other 573 41 <15* 17 39 30 702 

(%) (1.9) (0.8) (0.5) (0.7) (0.7) (1.4) 

TNM6 T category 

     T1/2 26,641 4,873 635 3,245 5,201 2,917 43,512 

(%) (90.0) (89.5) (88.6) (88.2) (89.7) (63.3) (87.3) 

T3/4 2,543 278 40 281 329 890 4,361 

(%) (8.6) (5.1) (5.6) (7.6) (5.7) (19.3) (8.8) 

Unknown/Other 427 297 42 155 270 800 1,991 

(%) (1.4) (5.5) (5.9) (4.2) (4.7) (17.4) (4.0) 

TNM6 N category 

     0 28,140 4,850 631 3,354 5,226 3,057 45,258 

(%) (94.7) (88.3) (87.2) (90.6) (89.4) (65.2) (90.2) 

1 283 64 <15* 60 55 357 830 

(%) (1.0) (1.2) (1.6) (0.9) (7.6) (1.7) 

Unknown/Other 1,307 579 82 289 566 1,272 4,095 

(%) (4.4) (10.5) (11.3) (7.8) (9.7) (27.1) (8.2) 
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TNM6 M category 

     0 28,615 4,911 648 3,389 5,291 2,794 45,648 

(%) (96.3) (89.4) (89.5) (91.5) (90.5) (59.6) (91.0) 

1 160 182 25 120 174 1,363 2,024 

(%) (0.5) (3.3) (3.5) (3.2) (3.0) (29.1) (4.0) 

Unknown/Other 955 400 51 194 382 529 2,511 

(%) (3.2) (7.3) (7.0) (5.2) (6.5) (11.3) (5.0) 

AJCC6 staging 

     1 47 21 <15* <15* 26 <15* 110 

(%) (0.2) (0.4) 

 
(0.5) (0.2) 

2 25476 4459 574 3013 4785 2054 40361 

(%) (86.0) (81.9) (80.1) (81.9) (82.5) (44.6) (80.9) 

3 2110 173 19 200 216 328 3046 

(%) (7.1) (3.2) (2.7) (5.4) (3.7) (7.1) (6.1) 

4 607 252 38 200 240 1595 2932 

(%) (2.1) (4.6) (5.3) (5.4) (4.1) (34.6) (5.9) 

Unknown/Other 1371 543 81 258 533 629 3415 

(%) (4.6) (10.0) (11.3) (7.0) (9.2) (13.7) (6.9) 

Chemotherapy 

     None/Unknown 29,617 5,472 720 3,671 5,821 4,516 49,817 

(%) (99.6) (99.6) (99.5) (99.1) (99.6) (96.4) (99.3) 

Received 113 21 <15* 32 26 170 366 

(%) (0.4) (0.4) (0.9) (0.4) (3.6) (0.7) 

Radiotherapy 

     None/Unknown 18,450 3,364 446 2,094 3,537 3,257 31,148 

(%) (62.1) (61.2) (61.6) (56.6) (60.5) (69.5) (62.1) 

Received 11,280 2,129 278 1,609 2,310 1,429 19,035 

(%) (37.9) (38.8) (38.4) (43.5) (39.5) (30.5) (37.9) 

Surgery 

      Local Excision 1,093 599 72 270 657 483 3,174 

(%) (3.7) (11.0) (10.0) (7.3) (11.3) (10.5) (6.4) 

No surgery 15,142 4,261 578 2,649 4,413 3,666 30,709 

(%) (51.1) (78.2) (80.6) (72.0) (76.1) (79.6) (61.6) 

Prostatectomy 13,376 588 67 762 730 458 15,981 

(%) (45.2) (10.8) (9.3) (20.7) (12.6) (9.9) (32.1) 

Rural-urban continuum 2003§ 

    Metro 26,709 4,758 635 3,178 4,958 4,039 44,277 

(%) (89.8) (86.6) (87.7) (85.8) (84.8) (86.2) (88.2) 

Non-Metro 3,021 735 89 525 889 647 5,906 

(%) (10.2) (13.4) (12.3) (14.2) (15.2) (13.8) (11.8) 

Census region 

     Midwest 2,946 658 77 399 613 429 5,122 

(%) (10.0) (12.1) (10.7) (10.8) (10.6) (9.3) (10.3) 

Northeast 4,797 882 123 631 874 721 8,028 
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(%) (16.2) (16.2) (17.2) (17.1) (15.1) (15.7) (16.1) 

South 5,573 1,140 176 843 1,393 1,009 10,134 

(%) (18.8) (20.9) (24.6) (22.9) (24.0) (21.9) (20.3) 

West 16,295 2,768 341 1,808 2,920 2,448 26,580 

(%) (55.0) (50.8) (47.6) (49.1) (50.3) (53.1) (53.3) 

Percent of education attainment, quartile§ 

  Q1, <15.08 8,001 1,200 140 836 1,339 1,029 12,545 

(%) (26.9) (21.9) (19.3) (22.6) (22.9) (22.0) (25.0) 

Q2, 15.09-18.15 7,538 1,287 182 898 1,448 1,193 12,546 

(%) (25.4) (23.4) (25.1) (24.3) (24.8) (25.5) (25.0) 

Q3, 18.17-25.79 7,236 1,420 189 997 1,492 1,212 12,546 

(%) (24.3) (25.9) (26.1) (26.9) (25.5) (25.9) (25.0) 

Q4, >50.77 6,955 1,586 213 972 1,568 1,252 12,546 

(%) (23.4) (28.9) (29.4) (26.3) (26.8) (26.7) (25.0) 

Percent of persons in poverty, quartile§ 

   Q1, <21.18 8,034 1,210 160 865 1,305 1,044 12,618 

(%) (27.0) (22.0) (22.1) (23.4) (22.3) (22.3) (25.1) 

Q2, 21.33-29.81 7,655 1,258 152 929 1,364 1,129 12,487 

(%) (25.8) (22.9) (21.0) (25.1) (23.3) (24.1) (24.9) 

Q3, 29.86-37.36 7,276 1,493 220 986 1,662 1,256 12,893 

(%) (24.5) (27.2) (30.4) (26.6) (28.4) (26.8) (25.7) 

Q4, >67.40 6,765 1,532 192 923 1,516 1,257 12,185 

(%) (22.8) (27.9) (26.5) (24.9) (25.9) (26.8) (24.3) 

Percent of foreign-born residents, quartile§ 

  Q1, <5.95 6,864 1,467 188 1,041 1,747 1,254 12,561 

(%) (23.1) (26.7) (26.0) (28.1) (29.9) (26.8) (25.0) 

Q2, 5.98-15.22 7,739 1,399 172 922 1,498 1,157 12,887 

(%) (26.0) (25.5) (23.8) (24.9) (25.6) (24.7) (25.7) 

Q3, 15.45-21.55 7,412 1,257 179 866 1,342 1,171 12,227 

(%) (24.9) (22.9) (24.7) (23.4) (23.0) (25.0) (24.4) 

Q4, >38.52 7,715 1,370 185 874 1,260 1,104 12,508 

(%) (26.0) (24.9) (25.6) (23.6) (21.6) (23.6) (24.9) 

Confirmation method of diagnosis 

   Microscopic 29,628 5,321 697 3,652 5,688 4,223 49,209 

(%) (99.7) (96.9) (96.3) (98.6) (97.3) (90.1) (98.1) 

Radiologic and 

clinic 40 122 21 43 104 285 615 

(%) (0.1) (2.2) (2.9) (1.2) (1.8) (6.1) (1.2) 

Unknown/Other 62 50 <15* <15* 55 178 359 

(%) (0.2) (0.9) 

 
(0.9) (3.8) (0.7) 

PSA, quartiles (ng/ml) 

    <4.9 8,360 765 88 665 874 367 11,119 

(%) (28.2) (14.0) (12.3) (18.1) (15.1) (8.0) (22.3) 

5.0-6.8 7,406 829 108 735 1,023 337 10,438 

(%) (25.0) (15.2) (15.1) (20.0) (17.6) (7.3) (20.9) 
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6.9-11.3 6,331 1,199 157 804 1,239 580 10,310 

(%) (21.4) (22.0) (21.9) (21.8) (21.4) (12.6) (20.7) 

11.3+ 4,081 1,487 216 887 1,494 2,331 10,496 

(%) (13.8) (27.3) (30.1) (24.1) (25.8) (50.6) (21.1) 

Unknown/Other 3,433 1,168 148 590 1,170 992 7,501 

(%) (11.6) (21.4) (20.6) (16.0) (20.2) (21.5) (15.0) 

Gleason score 

     5 <15* <15* <15* <15* <15* <15* 15 

6 264 37 <15* 21 26 19 374 

(%) (0.9) (0.7) (0.6) (0.5) (0.4) (0.8) 

7 219 29 <15* 22 28 32 335 

(%) (0.7) (0.5) (0.6) (0.5) (0.7) (0.7) 

8 36 15 <15* <15* <15* 20 94 

(%) (0.1) (0.3) 

  
(0.4) (0.2) 

9 <15* <15* <15* <15* <15* <15* 65 

(%) 

     
(0.1) 

10 <15* <15* <15* <15* <15* <15* <15* 

Unknown/Other 29,069 5,358 701 3,624 5,728 4,493 48,973 

(%) (98.2) (98.4) (97.8) (98.5) (98.8) (97.5) (98.2) 

 

Note: AJCC, 6
th

 edition clinical staging of the American Joint Commission on Cancer; TNM6, 6
th

 edition Tumor, node 

and metastasis staging manual of the American Joint Commission on Cancer; API, Asian Pacific Islanders; NH, Non-

Hispanic; CVD, cardiovascular disease; PSA, Prostate specific antigen; *, statistically suppressed; ¶ 95% confidence 

intervals in parenthesis; §, County attributes of Year 2000; Education attainment defined as percent of residents 

with less than high-school graduate in the county; Person in poverty defined as percent of residents with income 

below 200% of poverty in the county. 

.  

Table 2. Prediction accuracy for long-term 6-category causes of death among the patients with prostate cancer 

diagnosis in 2004 (follow up through Dec. 2016) 

Predicted classes 

Alive, 

n=14,746 

CVD, 

n=2,689 

Infection, 

n=371 

Non-Prostate 

cancer, 

n=1,873 

Other 

cause, 

n=2,897 

Prostate 

cancer, 

n=2,288 

Total, 

n=24,864 

Random forest model     

Alive, % 87.70* 52.73 52.29 67.49 55.82 39.9 73.75 

CVD, % 3.79 15.88* 15.90 10.04 15.08 8.92 7.54 

Infection, % 0.21 0.67 0.27* 0.32 0.69 0.31 0.33 

Non-Prostate cancer, % 1.94 3.35 2.96 2.94* 3.11 3.23 2.44 

Other cause, % 3.82 17.44 16.44 10.62 15.05* 10.01 7.87 

Prostate cancer, % 2.54 9.93 12.13 8.60 10.25 37.63* 8.06 

Multinomial model        
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Alive, % 82.63* 33.51 31.27 51.84 37.04 32.87 64.34 

NA, % 17.37 66.49 68.73 48.16 62.96 67.13 35.66 

Note: CVD, cardiovascular disease; NA, not available; *, correct prediction.   
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Included 49,864 prostate cancer 
Cases of SEER18 diagnosed in 2004,
With follow up through Dec. 2016

Training set
n=25,000

Testing set
n=24,864

1. Randomization and Quality Assurance 
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