
Signed Reward Prediction Errors in the Ventral Striatum 1 

Drive Episodic Memory 2 

Cristian Buc Calderon1, ¥, Esther De Loof1, ¥, Kate Ergo1, Anna Snoeck1, Carsten Nico Boehler1, Tom 3 

Verguts1 4 

1. Department of Experimental Psychology, Ghent University, Belgium  5 

 6 

Running head: Striatal SRPE drives episodic memory 7 

¥ Authors contributed equally to this work 8 

Corresponding author: 9 

Dr. Cristian Buc Calderon 10 

Department of Experimental Psychology 11 

Ghent University 12 

Henri Dunantlaan 2, B-9000, Ghent 13 

Belgium 14 

Phone: +32-(0)9 264 64 07 15 

Fax: +32-(0)9 264 64 96  16 

E-mail: cristian.buccalderon@ugent.be 17 

9086 words below  18 

 19 

 20 

 21 

 22 

 23 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.03.893578doi: bioRxiv preprint 

mailto:cristian.buccalderon@ugent.be
https://doi.org/10.1101/2020.01.03.893578


Abstract 24 

A growing body of behavioral evidence implicates reward prediction errors (RPEs) as a key factor in the 25 

acquisition of episodic memory. Yet, important neural predictions related to the role of RPE in 26 

declarative memory acquisition remain to be tested. Using a novel variable-choice task, we 27 

experimentally manipulated RPEs and found support for key predictions on the neural level with fMRI. 28 

Specifically, we demonstrate that trial-specific RPE responses in the ventral striatum (during learning) 29 

predict the strength of subsequent episodic memory (during recollection). Furthermore, functional 30 

connectivity between task-relevant processing areas (e.g., face-selective areas) and hippocampus, 31 

ventral tegmental area, and ventral striatum increased as a function of RPE value (during learning), 32 

suggesting a central role of these areas in episodic memory formation. Our results consolidate 33 

reinforcement learning theory and striatal RPEs as key operations subtending the formation of episodic 34 

memory.  35 
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Introduction 49 

When meeting a new person, being able to remember his/her name from a single encounter is essential. 50 

Referred to as episodic memory (Tulving, 1993), this information can for instance be recalled to strike up 51 

a conversation when running into that person later on.  52 

Several studies have investigated the behavioral and neural mechanisms by which such one-shot 53 

episodic memories are learned. In particular, previous work identified an important role of reward. 54 

Compared to unrewarded contexts, items memorized within rewarding contexts are associated with 55 

better recognition performance in old-new item decisions (Shneyer & Mendelsohn, 2018). Neurally, this 56 

beneficial effect of reward on episodic memory has been ascribed to increased activity of the striatum. 57 

For instance, rewarded to-be-remembered items elicit stronger striatal activation when subsequently 58 

remembered (Adcock, Thangavel, Whitfield-Gabrieli, Knutson, & Gabrieli, 2006; for review see, 59 

Miendlarzewska, Bavelier, & Schwartz, 2016; Wittmann et al., 2005). Additionally, reward induces a 60 

gradual retroactive effect whereby items temporally closer to the reward are best remembered (Braun, 61 

Wimmer, & Shohamy, 2018).  62 

However, learning based solely on reward has limited computational power. Reinforcement learning 63 

(RL) theory instead has highlighted the importance of reward prediction errors (RPEs) for learning 64 

(Sutton & Barto, 2018). RPEs arise when choice outcomes deviate from their predictions. They are 65 

implemented via dopaminergic activity bursts, stemming from midbrain nuclei (i.e. ventral tegmental 66 

area (VTA) and substantia nigra (SN)), and broadcast to ventral striatum (VS) and other cortical and 67 

subcortical areas (Watabe-Uchida, Eshel, & Uchida, 2017).  68 

In line with RL theory, recent work suggests a crucial role of RPEs in episodic memory. Behaviorally, 69 

memory encoding improves linearly with better-than-expected rewards, called signed RPEs (SRPEs) (De 70 

Loof et al., 2018; Jang, Nassar, Dillon, & Frank, 2019). Neurally, high-beta and high-alpha oscillatory SRPE 71 

signatures mirror behavioral SRPE effects (Ergo, De Loof, Janssens, & Verguts, 2019). The behavioral 72 

SRPE effect on episodic memory also correlates with hippocampal activation and functional connectivity 73 

between hippocampus and striatum (Davidow, Foerde, Galván, & Shohamy, 2016). In addition, striatal 74 

activation is positively correlated with SRPEs and predicts choice confidence levels in a delayed 75 

recognition test (Pine, Sadeh, Ben-Yakov, Dudai, & Mendelsohn, 2018). Finally, RPEs elicited during the 76 

recognition phase of a previously learned item list, control the decision criterion for old-new item 77 

decisions (Scimeca, Katzman, & Badre, 2016). 78 
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Although significant evidence points towards an RL-based acquisition of episodic memory, key neural RL 79 

predictions have yet to be tested; we proceeded with the following steps. First, we attempted to 80 

replicate the behavioral SRPE effect on recognition memory, and the linear SRPE pattern in VS. Second, 81 

and crucially, we tested a trial-to-trial SRPE slope effect on subsequent episodic memory accuracy. 82 

Third, we investigated if functional connectivity between stimulus-processing areas and hippocampus, 83 

VTA, and VS was modulated by SRPE value. Finally, we correlated VS activation (across subjects) with 84 

recognition memory. We addressed these RL predictions on episodic memory encoding using fMRI. 85 

Results 86 

Recognition memory improves with learning-evoked SRPE  87 

Thirty participants performed the variable-choice task in the MR scanner (Fig. 1A; see also Ergo et al., 88 

2019). Each trial started with a fixation cross (0.5 sec), followed by a celebrity face in the top part of the 89 

screen, together with four village pseudo-names. After exploring the display for four seconds, either 1, 2 90 

or 4 names were framed. The participant’s task was to guess which village name was associated with the 91 

celebrity face. Participants had to choose between the framed names, which was followed by choice 92 

feedback. By systematically varying the number of framed village names, we were able to manipulate 93 

the signed reward prediction error (SRPE) received at choice feedback, on each trial. We computed the 94 

SRPE as r – p, where r is the observed reward (1 and 0 for correct and incorrect guesses, respectively), 95 

and p is the probability of making a correct choice. This probability is 1, 0.5 or 0.25, respectively for the 96 

1-, 2- or 4-frame conditions. Hence, SRPEs could take on the values -0.5, -0.25, 0, 0.5, 0.75. Upon 97 

completion of the variable-choice task, participants performed the memory test (outside the scanner). 98 

During this test, participants again observed the 70 faces alongside the same four competing village 99 

names (shuffled relative to their previous positions in the display during the variable-choice task). They 100 

had to select the village name previously associated with the presented face and were instructed to 101 

provide a certainty rating on their choice afterwards. We imposed no time restrictions on either task. 102 

As expected from previous work (De Loof et al., 2018; Jang et al., 2019) memory performance (i.e., 103 

recognition accuracy) increased linearly with SRPE, χ2(1, N = 30) = 11.18, p = 0.00083 (Fig. 1B). We 104 

observed a positive main effect of reward, χ2(1, N = 30) = 7.61, p = 0.0058. Importantly, we also 105 

observed a positive main effect of choice options number, χ2(1, N = 30) = 3.92, p = 0.048; thereby, 106 

suggesting that this linear increase was not due to a mere reward effect. 107 
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 108 

Figure 1. Behavioral paradigm and results. A. Experimental design. Following a fixation cross (0.5 sec), 109 
participants saw a face alongside four words (4 sec). Subsequently, either 1, 2 or 4 names were framed, 110 
indicating the options participants could choose from. Following a jittered interval with just a fixation 111 
cross, participants were shown the to-be-learned face-word association framed in green/red for 112 
correct/incorrect choices; this choice feedback evoked an SRPE of different levels (color-coded by the 113 
arrows between the variable-choice and choice-feedback events). Subsequently, they were shown a 114 
monetary update. B. Memory test behavioral results. A positive linear relationship between SRPE and 115 
accuracy on the subsequent memory test was observed; i.e., recognition accuracy increased as SRPE 116 
values increased. Error bars depict the 95% confidence interval; the dashed line indicates chance 117 
performance (25%). 118 

 119 

Ventral striatum encodes SRPE  120 

We next turn to fMRI data. All fMRI results (summarized in Table 1 and 2) are family-wise error (FWE) 121 

cluster-corrected; see Table 1 for contrast-specific voxel-wise thresholds.  122 

As a first check of our experimental manipulation, we modeled five regressors representing choice 123 

feedback for each SRPE value (GLM-1), and contrasted all five regressors (with a contrast vector [1 1 1 1 124 

1]) against baseline (Fig. 2A). If participants were in fact encoding the associations between faces and 125 

village names, we expect this contrast to reveal strong hippocampal activation. The choice-feedback 126 

contrast indeed revealed robust activation in bilateral hippocampus (left: FWE-p < 0.0001, right: FWE-p 127 
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< 0.0001; also violet ROI in Fig. 3B), ventro-medial prefrontal cortex (vmPFC: FWE-p < 0.0001), and left 128 

inferior frontal cortex (IFC: FWE-p < 0.0001). 129 

We then investigated which brain areas encode SRPEs. Based on GLM-1 we tested, at the individual 130 

subject level, for a mean-centered SRPE contrast across the five regressors of interest (i.e., the choice-131 

feedback events associated with our five SRPE values). This contrast would hence identify SRPE-sensitive 132 

brain areas with increased activity as SRPE value increases. The SRPE contrast revealed robust bilateral 133 

VS activations (blue activation in Fig. 2B and Table 1; left VS: FWE-p = 0.001; right VS: FWE-p = 0.002), 134 

suggesting a crucial role of the VS in computing SRPE, in accordance with earlier work (Hyman, Malenka, 135 

& Nestler, 2006; Lisman, Grace, & Duzel, 2011; Pine et al., 2018; Scimeca et al., 2016). Notably, no other 136 

brain area was identified with this contrast.  137 

To further explore this pattern, we extracted the beta weights from VS for each SRPE level and subject. 138 

They displayed a positive linear relationship with SRPE values, χ2(1, N = 30) = 40.02, p = 2.5e-10 (Fig. 2C). 139 

We observed a main effect of reward (χ2(1, N = 30) = 51.4, p = 1.2e-12; i.e., rewarded trials beta weights 140 

have higher values compared with unrewarded trials beta weights). We also observed a main effect of 141 

number of options (t(29) = 7.05, p = 9.279e-08); 4-options trials beta weights have higher values 142 

compared with 2-options trials. To further certify that the number of options contributed to the SRPE 143 

effect, we performed an exploratory analysis. For each participant we averaged the slope for the 144 

negative RPEs (i.e., -0.5 to -0.25) with the slope for the positive RPEs (i.e., 0.5 to 0.75), resulting in the 145 

average VS activation increase as the number of options is increased from 2 to 4 options (hence 146 

controlling for the unbalanced design, see Fig. 7). We compared the slope of this activation increase 147 

against 0 (one-sample t-test, two-sided). Results show a significant increase (t(29) = 2.51, p = 0.018), 148 

suggesting an effect of SRPE which is also instigated by the number of options and not reducible to a 149 

pure reward effect. A more rigorous test that the SRPE effect is not reducible to a mere reward effect, is 150 

given in the next result section.  151 

We further explored whether the linear effect of SRPE on activation was present in our other ROIs. We 152 

did not observe such an effect, neither in face-selective areas (FSA, see below), hippocampus, nor VTA 153 

(all p > 0.16; Fig. 3). Note that we further tested whether specific brain areas would encode for an 154 

unsigned RPE (URPE) effect (see Materials and Methods). No brain area was active based on the URPE 155 

contrast. 156 
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 157 

Figure 2. Neural results (see Table 1 for map activation details).  A. Choice-feedback contrast. The 158 
contrast reveals robust bilateral hippocampal (left: z = 5.81, peak [-24, -12, -16]; right: z = 6.19, peak [30, 159 
-16, -14]), vmPFC (z = 5.41, peak [-6, 38, -10]), and left IFC (z = 5.95, peak [-42, 34, -12]) activations. B. 160 
SRPE and SRPE*accuracy interaction contrasts. Bilateral VS cluster (FWE-corrected) maps for SRPE 161 
contrast (GLM-1 (blue); left: z = 5.41, peak [-10, 4, -4]; right: z = 5.04, peak [12, 6, -6]), SRPE*subsequent 162 
memory accuracy interaction (GLM-2 (violet); left: z = 4.16, peak [-12, 6, -4]; right: z = 3.75, peak [10, 8, -163 
4]). C. Exploratory analysis: Positive linear relation between VS activation and SRPE. Mean beta weights 164 
extracted from VS (SRPE contrast) for each SRPE value, showing a positive linear relation between SRPE 165 
value and VS activation. D. Brain-behavior correlation. Positive correlation between mean beta weights 166 
extracted from VS and accuracy on the memory test (each dot represents a participant). Numbers 167 
above/below brain slices represent y-dimension MNI coordinates. Color bars indicate z-scores. Error 168 
bars indicate 95% confidence interval. 169 

 170 
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 171 

Figure 3. SRPE activation in ROIs. A. Face-selective areas. Top: Overlap of subject-specific face contrast 172 
activation maps in the inferior temporal lobes. Color bar indicates the number of subjects displaying 173 
activation in each voxel; numbers on top of slices indicate z-dimension MNI coordinates. Bottom: No 174 
linear relationship was observed between SRPE values and mean activation extracted from FSAs. B. 175 
Hippocampus. Top: Bilateral hippocampus ROI (violet) extracted from the choice-feedback contrast (Fig. 176 
2A). Numbers on top of slices indicate y-dimension MNI coordinates. Bottom: No linear relationship was 177 
observed between SRPE values and mean activation extracted from the hippocampus. C. VTA. Top: VTA 178 
ROI (yellow) extracted from Neurosynth (see Materials and Methods). Numbers above/under slices 179 
indicate z-dimension MNI coordinates. Bottom: No linear relationship was observed between SRPE 180 
values and mean activation extracted from VTA. 181 

 182 

Striatal SRPEs predict memory accuracy on a trial-by-trial basis 183 

RL theory predicts that steeper SRPE slopes on a trial-to-trial basis would improve subsequent memory. 184 

To test this, in a new GLM (GLM-2) we added 4 parametric modulators to a choice feedback regressor 185 

(see Materials and Methods). The first modulator indicated whether the encoding phase of that trial led 186 

to a correct (1) or wrong (0) recognition at the subsequent memory test (termed recognition accuracy 187 

modulator). The second modulator consisted of the SRPE value for the trial at hand; its value could be -188 

0.5, -0.25, 0, 0.5, or 0.75 (termed SRPE modulator). The third modulator was the SRPE*subsequent 189 

memory accuracy interaction (termed the SRPE interaction modulator). Testing for this third modulator 190 

identifies brain areas with a stronger SRPE-dependent linear increase driving episodic memory when 191 

recognition is correct (relative to wrong) at the subsequent memory test. We added a fourth modulator 192 
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composed of the interaction between reward (i.e., rewarded (1) or unrewarded (0) choice) and 193 

subsequent memory accuracy; allowing us to control for a pure reward*subsequent memory accuracy 194 

interaction effect. 195 

The SRPE interaction modulator revealed bilateral activation of the VS (Fig. 2A, violet activation map; 196 

left: FWE-p = 0.004; right: FWE-p = 0.006). This result suggests that VS activation is crucial for successful 197 

recognition. Furthermore, the SRPE modulator revealed bilateral VS activation (Fig. 4A, cyan activation 198 

map; left: FWE-p = 0.004, right: FWE-p = 0.006), thereby confirming results from GLM-1. Testing for 199 

other modulator contrasts revealed no activation surviving the statistical threshold (whole-brain or with 200 

small volume correction (SVC)). 201 

As an additional demonstration that the effect of striatal SRPE value on subsequent memory accuracy is 202 

not a pure reward effect, we repeated the GLM-2 analysis only for rewarded trials (i.e., with 3 reward 203 

levels 0, .5, and .75). This additional analysis again confirmed our second hypothesis; we observed 204 

bilateral activation of the VS (Fig. 4B, blue activation map; left: FWE-p = 0.004; right: FWE-p = 0.006).  205 

 206 

Figure 4A. SRPE modulator contrast results. Activation map shows bilateral VS activation (z = 4.18, peak 207 
= [-12, 4, -6]; z = 3.92, peak = [12, 6, -8], cluster-level correction). Color bar indicates z-scores; numbers 208 
on top of slices indicate y-dimension MNI coordinates. 4B. Additional analysis on rewarded trials. 209 
Activation map shows bilateral VS activation (left: z = 4.51, peak = [-12, 6, -4]; right: z = 4.43, peak = [12, 210 
8, -4], cluster-level correction). Color bar indicates z-scores; numbers on top of slices indicate y-211 
dimension MNI coordinates. 212 

 213 
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Functional connectivity between stimulus-processing areas and hippocampus, VTA, and 214 

VS depends on SRPE value 215 

Next, we tested if encoding of episodic memory is reflected by increased functional connectivity 216 

between stimulus-processing areas, i.e., subject-specific FSAs (Fig. 3A), and hippocampus, VTA and VS, 217 

as a function of SRPE value. We thus carried out a psychophysiological interaction (PPI) analysis 218 

(Gitelman, Penny, Ashburner, & Friston, 2003) (GLM-3). PPI allows to reveal which areas show an 219 

increase in functional connectivity with the seed (i.e., FSAs) as a function of SRPE values. Subject-specific 220 

FSAs were revealed using a functional localizer task (see Materials and Methods). Fig. 3A shows the 221 

across-subject overlap image statistic displaying where and to what extent FSAs overlap with one 222 

another, revealing bilateral activation maps in the inferior temporal lobes. Table 2 reports peak 223 

activation of face contrast activation maps for each participant. 224 

The PPI analysis revealed three clusters surviving whole-brain analysis (Fig. 5; FWE-corrected p < 0.05, 225 

cluster-level). Cluster 1 (Fig. 5A) encompasses activation in bilateral VS, extending to bilateral (anterior) 226 

hippocampus, and right amygdala. Cluster 2 (Fig. 5B) displays activation in inferior and medial temporal 227 

lobes. Cluster 3 (Fig. 5B) shows activation in superior parietal lobes. Two additional clusters survived 228 

theoretically-motivated SVC. Hippocampus (cluster 4) has been involved in previous episodic memory 229 

connectivity results and was therefore a theoretically predicted area (Davidow et al., 2016) . Cluster 4 230 

displays activation along right hippocampus (Fig. 5A), and was small volume corrected using bilateral 231 

WFU pickatlas hippocampus ROIs. Further, VTA (cluster 5) is a small size nucleus generally involved in 232 

learning (Bunzeck & Düzel, 2006; Worsley et al., 1996). Cluster 5 displays activation in ventral tegmental 233 

area (Fig. 5A), and was small volume corrected using a 6 mm sphere around its peak value. Overall, our 234 

PPI results demonstrate that functional connectivity between a stimulus-processing area (FSA) and a 235 

network that presumably supports RL of episodic memory (VS, hippocampus, and VTA; (Lisman et al., 236 

2011; Watabe-Uchida et al., 2017)), increases as a function of SRPE. Finally, when taking our other three 237 

ROIs as seeds, no significant results were observed. 238 

Ventral striatum activation predicts overall memory performance 239 

Finally, we tested whether VS activation would be predictive of overall memory performance across 240 

subjects. We therefore extracted mean beta weights from the VS (defined from the results of the 241 

abovementioned SRPE contrast) to correlate them with performance on the memory test. Our results 242 
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showed a positive correlation between VS mean beta weights and the percentage of correct 243 

recognitions in the memory test (r = 0.44; p = 0.014; Fig. 2D).  244 

 245 

 246 

Figure 5. Connectivity results. A. Functional connectivity with FSA as a function of SRPE value reveals 247 
clusters encompassing hippocampus, VTA and bilateral VS (GLM-3 (cyan); z = 4.87, peak [24, 8, -16]). 248 
Purple regions represent bilateral hippocampus from WFU_pickatlas. B. Additional connectivity clusters. 249 
Activation map shows activation in inferior and medial temporal lobes, as well as superior parietal lobe. 250 
Color bar indicates z-scores; numbers on top of slices indicate y-dimension MNI coordinates. 251 

 252 

Table 1. Summary of the activation clusters. 253 

Contrast 
Area (WFU pickatlas) 

Local Maxima 
MNI 

Coordinates 

Cluster 
Size 

(voxels 
nbr. ) 

Peak 
Z 

Cluster-
Level 

p(FWE-
corr) 

SRPE contrast (GLM-1) (**)     
Left pallidum (peak) -10 4 -4 38 5.41 0.001 
Right pallidum (peak) 12 6 -6 33 5.04 0.002 
Choice-feedback contrast (GLM-1) (**)     
Right hippocampus (peak) 30 -16 -14 272 6.19 0.000 
 26 -10 -14  6.02  
Right Amygdala 30 2 -18  5.13  
Left hippocampus (peak) -24 -12 -16 329 5.81 0.000 
 -28 -10 -16  5.69  
 -30 -20 -14  5.60  
Left fronto-medial orbitofrontal cortex (peak) -6 38 -10 356 5.46 0.000 
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Left anterior cingulum -10 48 2  5.41  
Left superior fronto-medial cortex -8 56 4  4.99  
 -8 60 12   4.96  
 -8 58 8  4.96  
Left inferior frontal cortex (peak) -42 34 -12 81 5.95 0.000 
SRPE interaction contrast (GLM-2) (*¥)     
Left Ventral Striatum 
Right Ventral Striatum 

-12 6 -4 
10 8 -4 

36 
19 

4.16 
3.75 

0.004 
0.006 

SRPE modulator contrast (GLM-2) (*¥)     
Left Ventral Striatum -12 4 -6 32 4.18 0.004 
Right Ventral Striatum 12 6 -8 17 3.92 0.006 
PPI contrast (GLM-3) (*)     
Cluster 1 
Right lateral front-orbital gyrus (peak) 

 
24 8 -16 

 
1005 

 
4.87 

 
0.000 

Left putamen -16 6 -6  4.74  
Right Insula 34 6 -16  4.64  
Left putamen -20 4 -14  4.55  
N/A 10 4 -4   4.50  
Right uncus 16 0 -12  4.40  
Left Thalamus -6 4 0   4.04  
Left uncus -14 -8 -14  3.42  
Right Thalamus 8 -18 8  3.40  
 2 -10 2  3.39  
 6 -12 8   3.26  
Cluster 2     
Left cerebellum (peak) -30 -54 -20 1958 4.72 0.000 
Right lingual gyrus 8 -72 2   4.18  
 2 -74 2   4.15  
 20 -64 -8   4.05  
Left fusiform gyrus -24 -72 -12  3.96  
Right calcarine gyrus 14 -58 16  3.78  
Left lingual gyrus -12 -58 2  3.70  
 -20 -54 -10  3.64  
 -12 -52 0  3.52  
Right lingual gyrus 12 -58 -2  3.44  
Right precuneus 14 -68 30  3.27  
Cluster 3     
Left superior parietal lobe (peak) -14 -66 50  524 3.96 0.001 
 -12 -68 54  3.89  
Left precuneus -10 -60 62  3.74  
Right precuneus 12 -58 56   3.67  
Right superior parietal lobe 18 -66 48   3.49  
Left precuneus -10 -78 50   3.48  
Left precuneus -2 -58 54  3.36  
Right precuneus 4 -56 54  3.27  
Left superior occipital lobe -14 -78 42  3.21  
Cluster 4 (¥)     
Right hippocampus (peak) 28 -28 -10 42 3.73 0.038 
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 28 -20 -4  3.67  
 26 -26 -2  3.16  
Cluster 5 (¥)     
Brainstem (VTA) (peak)  4 -16 -16 8 3.20 0.010 

(*) voxel-level threshold p = 0.001 uncorrected; (**) voxel-level threshold p(FWE-corr) = 0.05; (¥) small volume 254 
corrected (SVC). Note that all contrasts survive cluster-level FWE-correction (p < 0.05). We report peak and local 255 
maxima for all contrasts. 256 
 257 
 258 
Table 2. MNI coordinates of subject-specific face contrast activation maps peak value.  259 

Subject #   MNI 
coordinates 

 

  Left temporal 
lobe 

 Right 
temporal 

lobe 
1  -46 -54 -16  44 -50 -20 
2  -38 -70 -16  46 -48 -22 
3  -36 -54 -20  48 -48 -22 
4  -48 -54 -18  38 -56 -8 
5  -40 -78 8  44 -46 0 
6  N/A  52 -76 -4 
7  -38 -78 4  50 -44 4 
8  -40 -68 -16  46 -74 -2 
9  -44 -46 -14  44 -44 -16 
10  -44 -60 -16  34 -56 -12 
11  -38 -52 -16  42 -58 -12 
12  -46 -50 -22  52 -60 -18 
13  N/A  40 -56 -16 
14  -38 -52 -12  42 -46 -12 
15  -46 -60 -14  40 -56 -18 
16  -44 -72 -14  36 -54 -16 
17  -64 -40 -8  N/A 
18  -38 -44 -26  42 -44 -16 
19  -44 -46 -20  48 -48 -24 
20  -38 -48 -18   40 -46 -18 
21  -42 -64 -14  42 -60 -12 
22  -46 -68 -18  42 -54 -18 
23  -44 -48 -18  44 -54 -16 
24  -36 -48 -16  40 -52 -22 
25  -44 -44 -26  42 -68 -16 
26  -38 -62 -18  42 -54 -20 
27  -46 -70 8  46 -52 -16 
28  N/A  42 -64 -12 
29  -38 -80 -12  48 -74 -8 
30  -4-48 -16  40 -42 -18 

 260 
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Discussion 261 

By means of our novel variable-choice task (De Loof et al., 2018; Ergo et al., 2019), we experimentally 262 

manipulated SRPE. Using fMRI, we confirmed key RL theory predictions regarding episodic-memory 263 

formation. First, we replicated the behavioral effect of signed reward prediction errors (SRPEs) on 264 

memory: Stimuli associated to higher SRPE values induce better recognition test performance. 265 

Additionally, we confirmed that SRPEs are encoded in the ventral striatum (VS). Second, we revealed a 266 

trial-by-trial correlation between striatal SRPE value and subsequent episodic memory. Third, by using 267 

localizable task-relevant stimuli (i.e. face-selective area (FSA)), we further showed that connectivity 268 

between task-relevant areas and VS, VTA, and hippocampus depends on SRPE. Fourth, we showed that 269 

activity in VS correlates (across participants) with overall memory accuracy. 270 

Signed reward prediction errors influence encoding of episodic information 271 

Our behavioral results replicate earlier work showing that SRPEs drive episodic learning. A stronger 272 

better-than-expected reward signal, is associated with better performance at the recognition test (De 273 

Loof et al., 2018; Jang et al., 2019). We must consider whether our experimental manipulation 274 

confounds the SRPE effect with time-on-task. Importantly, in the 1-frame condition, participants have 275 

more time to encode the stimulus associations, given that they already know the correct association at 276 

variable-choice onset (i.e., they have 4 more seconds to encode the association compared with the 277 

other two conditions). Thus, under a time on task hypothesis, participants would have better memory in 278 

the 1-frame condition. Yet, our behavioral data (as earlier ones, see De Loof et al., 2018) show the 279 

opposite pattern, ruling out a time on task account. 280 

In our experimental design, the RPE and the to-be-learned face-name association temporally 281 

overlapped. Ergo et al. (2019) observed the same behavioral pattern when the feedback was presented 282 

prior to the to-be-learned association, demonstrating that a strict temporal overlap is not crucial. It is 283 

likely, however, that there is a temporal gradient such that an RPE too far removed from the 284 

memorandum leads to diminishing effects. In particular, (Braun et al., 2018) manipulated memorandum 285 

– reward temporal (and spatial) distance, and demonstrated such a (temporal and/or spatial) gradient. 286 

We predict a similar gradient for RPE effects, although, as the Ergo et al. (2019) data suggest, such a 287 

gradient may not be very steep.  288 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.03.893578doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.03.893578


In most studies, just a single reward (or RPE) event occurs on each trial. Instead, a recent study 289 

manipulated several types of RPE in each trial (Jang et al., 2019). In this study, participants observed the 290 

value associated with a specific upcoming gamble (leading to a value-based RPE). Next, they were shown 291 

an object (belonging to one of two categories) associated with a specific reward probability (leading to a 292 

probability-based RPE). Participants chose to gamble the previously cued value or not (by either 293 

selecting or passing on the object), with the instruction that a failed gamble would lead to a negative 294 

earning. After their choice, they received reward feedback (leading to a feedback-based RPE). They 295 

demonstrated that only the RPE arriving at the same time as the memorandum, yielded an effect on 296 

subsequent memory. This finding suggests that if one RPE occurs simultaneously with the 297 

memorandum, there is little room for other RPEs to still exert such an effect.  298 

In addition to the time scale of the RPE-memorandum difference, there is the time scale at which 299 

participants are tested. Several studies have shown the temporal robustness of the SRPE effect on 300 

episodic memory formation, lasting up to 24h (Davidow et al., 2016; De Loof et al., 2018; Jang et al., 301 

2019) or even a week (Pine et al., 2018). This demonstrates that the RPE effect operates at time scales 302 

that can support learning and memory in the real world. 303 

Striatal SRPEs predict subsequent memory 304 

Rewarded versus neutral to-be-memorized items have been found to activate (dopaminergic) midbrain, 305 

hippocampus, and striatal activation (Wittmann et al., 2005). Moreover, rewarded items elicit stronger 306 

activation in the ventral striatum (as well as in dopaminergic midbrain and hippocampus), when 307 

subsequently remembered versus forgotten (Adcock et al., 2006). These findings support a role of 308 

reward processing in episodic learning. The effect of reward on memory is thought to be due to 309 

dopaminergic signaling in the striatum, presumably leading to enhanced long-term potentiation (LTP) of 310 

the to-be-remembered stimuli (Lisman et al., 2011). 311 

Striatal activation associated to episodic learning does not necessarily need to be linked to explicit 312 

reward. For instance, successfully learning the meaning of new words caused striatal activation, similar 313 

to that of a reward gambling task (Ripollés et al., 2014). In addition, activity in bilateral ventral striatum 314 

increased when a previously learned word was recognized as being correctly used (i.e., made semantic 315 

sense) in a subsequent sentence, suggesting that self-monitoring of successful novel word learning may 316 

be associated with potential reward-related signals (Ripollés et al., 2016). Interestingly, novel word 317 
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learning performance is enhanced when participants are given levodopa (a dopaminergic precursor) 318 

compared with risperidone (a dopamine antagonist) (Ripollés et al., 2018). 319 

In addition, SRPE has been related to subsequent memory. In a recent study, participants learnt episodic 320 

information and were tested on their recognition in two subsequent tests, respectively 2 days (Test 1) 321 

and 7 days (Test 2) after learning. VS activity (measured in Test 1) was negatively correlated with choice-322 

confidence ratings in Test 2, specifically when participants transitioned from an incorrect (Test 1) to a 323 

correct response (Test 2) (Pine et al., 2018). Another study reported a negative relationship between 324 

striatal RPEs and subsequent memory performance (Wimmer, Braun, Daw, & Shohamy, 2014), 325 

seemingly in contradiction with our current data and with RL theory. The discrepancy between this and 326 

the current study may relate to how RPEs are calculated in each. Specifically, in one of the studies 327 

(Wimmer et al., 2014), subjects must track reward probability, thus imposing a challenging dual task on 328 

top of the memory task. In such case, trials with a strong RPE signal may signify that subjects were more 329 

attentive to the reward tracking task, at a cost for the memory task. Instead, our novel variable-choice 330 

paradigm imposes no dual-task requirements: The reward probability was explicitly and clearly 331 

presented on each single trial. In such case, we indeed observed a positive relationship between ventral 332 

striatal RPEs and subsequent memory encoding.  333 

In addition to the effect of SRPE during learning, as our data show, striatal RPEs may also play an 334 

important role during retrieval. For instance, during an old-new item decision task, biased positive 335 

feedback (i.e., overall more positive feedback regardless of decision accuracy) induces a shift in the 336 

decision criterion (towards a more lenient criterion) (Scimeca et al., 2016). Thus, striatal RPEs play a role 337 

in the strategies used to make memory decisions. Together with ours, these results suggest that RL may 338 

support episodic memory both during encoding and retrieval. 339 

SRPE value modulates connectivity strength between stimulus-relevant areas and the 340 

episodic memory network 341 

Several studies have demonstrated changes in connectivity profiles within (parts of) the episodic 342 

learning network prior to, during, and after encoding the to-be-remembered stimuli.  343 

For instance, when participants are cued that an upcoming to-be-remembered item is associated with a 344 

high reward, connectivity between VTA and hippocampus is increased during the cue interval (i.e. prior 345 

encoding) for subsequently remembered versus forgotten items (Adcock et al., 2006). 346 
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Other studies showed that connectivity strength between hippocampus and striatum (putamen) is larger 347 

for rewarded (correct) than for unrewarded (incorrect) items. This result was observed at the moment 348 

of incidental item encoding, and only present in adolescents but not in adults, suggesting a learning 349 

advantage to increased reward sensitivity in adolescents.  350 

An important aspect of our experimental design relies on the type of stimuli used. Specifically, 351 

participants had to remember face-word associations. Therefore, by using an independent face-selective 352 

area localizer, we were able to test whether changes in connectivity profiles could take place between 353 

stimulus-processing areas and a previously reported RPE-based learning network consisting of VTA, VS 354 

and hippocampus. We could test this at the moment of stimulus association encoding. The results 355 

confirmed our prediction: Connectivity between face-selective areas (our stimulus-processing area) and 356 

the RPE-based episodic learning network increases with SRPE values, i.e. the stronger the experienced 357 

SRPE, the stronger the coupling with the aforementioned areas. These data are in line with the 358 

neoHebbian framework (Lisman et al., 2011), suggesting that synaptic learning between two neurons is 359 

a (multiplicative) function of pre- and postsynaptic activity, modulated by a dopaminergic reward (here, 360 

SRPE) signal.  361 

Changes in connectivity profiles have already been observed post-stimulus encoding. Pre- versus post-362 

learning changes in the VTA-hippocampus resting-state functional connectivity (RSFC) predicted reward-363 

related memory recognition advantages (Gruber, Ritchey, Wang, Doss, & Ranganath, 2016). In the same 364 

vein, differences in connectivity strength prior to and post-stimulus encoding have been shown to be 365 

modulated by reward context. In particular, it has been shown that the connectivity between category-366 

selective areas (i.e. FFA and parahippocampal place area (PPA)) and hippocampus is enhanced when 367 

reward is high (Murty, Tompary, Adcock, & Davachi, 2017). 368 

Although RPE-dependent changes in connectivity profiles have been demonstrated, the question of how 369 

RPEs increase connectivity and thereby improve memory remains. One possibility may be that RPEs 370 

enhance theta phase synchronization. In line with such a view, experimentally induced theta 371 

synchronization between visual and auditory modalities improved multimodal stimulus memories 372 

(Clouter, Shapiro, & Hanslmayr, 2017), and theta phase synchronization in such a paradigm (as 373 

measured via EEG) predicts memory performance on a trial-by-trial basis (Wang, Clouter, Chen, Shapiro, 374 

& Hanslmayr, 2018) . Therefore, theta synchronization between relevant brain areas may play the role 375 

of efficiently cementing memory information.  376 
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Conclusions 377 

We manipulated SRPE in an episodic associative learning task. We replicated previous work showing the 378 

behavioral effect of SRPE on subsequent memory, i.e. high SRPE values lead to enhanced subsequent 379 

memory. Furthermore, we observed that SRPEs, encoded in VS, predict both, across subjects and on 380 

trial-to-trial basis, subsequent memory accuracy. Finally, we demonstrated that connectivity strength 381 

between stimulus-processing areas and VS, VTA, and hippocampus, is modulated by SRPE values. 382 

Therefore, we suggest that episodic memory encoding is guided by an RPE-based neural (RL) 383 

mechanism, as is also the case in procedural learning (Schultz, Dayan, & Montague, 1997). In episodic 384 

memory, bilateral VS relays VTA/SN-computed RPEs towards stimulus-processing areas and 385 

hippocampus, thereby increasing functional connectivity between hippocampus and cortical areas.  386 

 387 

Materials and Methods 388 

In this section, we provide all technical, methodological, and analytical details. We start by describing 389 

participant demographics, followed by a full description of the experimental design. We then 390 

successively explain behavioral and fMRI data acquisition and analyses. All tasks and analysis codes, as 391 

well as face, word, and house stimuli used in our experiment are available on OSF 392 

(https://osf.io/6vkwm/?view_only=8b1364c4cb6b41d4b0e96ad615827d33). 393 

Participants 394 

Thirty right-handed participants (26 females, mean age = 22, s.d. = 6.62; 4 males, mean age = 30, s.d. = 395 

11.15) with normal vision participated in this study approved by the local ethics committee (Ghent 396 

University-Hospital (UZ Gent), Ghent, Belgium). Participants received monetary compensation (30 euro) 397 

and provided written informed consent prior to the experiment. Our sample size was motivated by 398 

previous studies in our lab, robustly showing the sought for behavioral effect, using the same number of 399 

participants (De Loof et al., 2018; Ergo et al., 2019). 400 

Experimental design 401 
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Participants underwent four tasks (total duration ~80 min) in the following order: celebrity knowledge 402 

task (outside the scanner, ~15 min), variable-choice and functional localizer tasks (inside the scanner, 403 

~50 min), and memory test (outside the scanner, ~15 min). All tasks were programmed with PsychoPy2. 404 

Celebrity knowledge task. In the celebrity knowledge task, participants were shown a celebrity face 405 

alongside four potential celebrity names. Participants had to select the correct celebrity name by 406 

pressing the keys “d”, “c”, “n” or “j” to respectively select the name in the top left, bottom left, bottom 407 

right, or top right corner of the display (Fig. 6). Following their choice, participants gave a certainty 408 

rating on a 4-point scale ranging from “completely unsure”, “rather unsure”, “rather sure” to 409 

“completely sure”. They gave their answer using the same keys as above. Participants had no time 410 

restriction on these choices. The celebrity knowledge task was performed in one block of 140 trials. 411 

Once completed, we selected a subset of 70 accurately recognized faces, which had been rated as 412 

“completely sure”. When participants did not reach that level of accuracy, a random draw of faces was 413 

selected to complete the subset of 70 trials. This subset of 70 faces composed the stimulus set 414 

subsequently used in the variable-choice task for that subject (see below). We chose known celebrities 415 

because these stimuli can be verbalized and, hence, increase the possibility of learning the association 416 

between faces and village names (see below). On top of this, we randomly selected six of the remaining 417 

faces for the variable-choice task training, and a set of 60 of the remaining faces (not used in the 418 

variable-choice task) for the functional localizer task. This task was run on a Dell Latitude E5550 laptop. 419 

 420 

Figure 6. Celebrity knowledge task. Participants were first shown a celebrity face alongside four 421 
competing celebrity names. No time limit was imposed to respond with the keyboard (keys “d”, “c”, “n” 422 
and “j”, respectively for top left, bottom left, bottom right and top right names). Participants then (using 423 
the same keys) indicated their choice certainty. 424 
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 425 

Variable-choice task. Participants underwent the variable-choice task in the scanner (Fig. 1A). They first 426 

observed a fixation cross (0.5 sec), followed by the presentation of a celebrity face on top of the screen 427 

together with four village pseudo-names. After exploring the display for four seconds, either 1, 2 or 4 428 

names were framed. The participant’s task was to guess which village name was associated with the 429 

celebrity face. Participants were constrained to choose between the framed names. By varying the 430 

number of framed village names, we were able to manipulate the signed reward prediction error (SRPE) 431 

on each trial. We can compute the SRPE as r – p, where r is the observed reward (1 and 0 for correct and 432 

incorrect guesses, respectively), and p is the probability of making a correct guess. This probability is 1, 433 

0.5 or 0.25, respectively for the 1-, 2- or 4-frame conditions. Hence, SRPE could take on the values -0.5, -434 

0.25, 0, 0.5, 0.75. Participants made their choice (no time restrictions) using Cedrus Lumina LS-Pair MRI 435 

compatible ergonomic response pads. To select the upper left, bottom left, bottom right or top right 436 

option, participants respectively pressed with their left middle finger, left index, right index or right 437 

middle finger. Following their choice, a fixation cross was shown for a jittered amount of time, drawn 438 

from a Poisson distribution (λ = 4) truncated between 1 and 7 seconds. Subsequently, during the choice-439 

feedback (5 sec), participants were shown the celebrity face associated to the correct village name, 440 

either framed in green (if they guessed correctly) or in red (otherwise). Choice-feedback was followed by 441 

another jittered fixation cross, drawn from a Poisson distribution (λ = 4) truncated between 1 and 4 442 

seconds. The trial ended by a monetary update (2 sec) indicating the money earned for that trial (0.70 443 

euro for correct guesses and 0 euro otherwise), as well as a total tally. Both fixation cross jitters were 444 

optimized to maximize design efficiency using the DesignDiagnostics toolbox 445 

(https://montilab.psych.ucla.edu/fmri-wiki/). 446 

The variable-choice task was performed in one block of 70 trials. Figure 7 displays the distribution of 447 

trials in each condition. The 1-frame, 2-frame, and 4-frame conditions were respectively composed of 448 

10, 20, and 40 trials of which 10 trials (in each case) led to a correct guess (i.e., rewarded choice). 449 
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 450 

Figure 7. Trial distribution: Number of trials and associated SRPEs.  451 

 452 

Note that prior to the variable-choice task, participants underwent six training trials outside of the 453 

scanner; two of each condition (i.e., 1-, 2-, and 4-frame) leading to correct and incorrect guesses (except 454 

for the 1-frame condition always leading to correct guesses). Therefore, participants had experienced all 455 

the SRPEs prior to performing the task inside the scanner. The training phase was run on a Dell Latitude 456 

E5550 laptop, and participants gave their response with the “d”, “c”, “n” or “j” key (as in the celebrity 457 

knowledge task). 458 

Functional localizer task. Immediately following the variable-choice task, participants underwent the 459 

functional localizer task. In this task, participants alternatingly observed a centrally presented celebrity 460 

face or a house (1.5 sec) and a fixation cross (0.5 sec). The task of the participants was to respond with 461 

the right index finger, whenever the presentation of a face/house would repeat (i.e., 1-back task; Fig. 8). 462 

Note that contrasting blocks of a 1-back task on face versus house stimuli has been proven efficient to 463 

functionally reveal fusiform face area (FFA) activation (Berman et al., 2010) (see below). House pictures 464 

were taken from earlier work (Schiffer, Muller, Yeung, & Waszak, 2014) and faces were randomly 465 

selected from the subset of 60 faces that was not presented during the variable-choice task. Participants 466 

performed 16 blocks (8 blocks with faces and 8 with houses, in random order) of 18 trials. Each stimulus 467 

had a 0.2 probability of repeating itself (but could not repeat itself twice). 468 
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 469 

Figure 8. Functional localizer task. Participants observed a series of celebrity faces (or houses) and had 470 
to press with their right index finger whenever a face (or house) was repeated (blue arrow).  471 

 472 

Memory test. Upon completion of the functional localizer task, participants performed the memory test 473 

(Fig. 9). During this test, participants again observed the 70 faces alongside the same four competing 474 

village names (shuffled relative to their previous positions on the display during the variable-choice 475 

task). In order to minimize primacy or recency effects, we chunked the 70 trials presented during the 476 

variable-choice task in chunks of 10 trials; the first 10 trials forming chunk 1, the following 10 trials 477 

forming chunk 2, and so on. The trials of each chunk were randomly shuffled, and the chunks were 478 

represented in sequential order (from chunk 1 to 7). As in the celebrity knowledge task, participants 479 

pressed keys “d”, “c”, “n”, or “j” to respectively select the village names at the top left, bottom left, 480 

bottom right or top right; and were instructed to provide a certainty rating on their choice after each 481 

trial. We imposed no time restrictions on either task. 482 

 483 

Figure 9. Trial structure of the memory test. Participants observed a celebrity face alongside four village 484 
names. Using the same keys as in the celebrity knowledge task, participants recalled the association 485 
previously learned during the variable-choice task. Subsequent to their choice, participants rated their 486 
choice certainty (using the same keys). 487 
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Behavioral data analysis 488 

To test the behavioral effect of SRPE on recognition performance, we applied a (generalized) linear 489 

mixed effects model with a random intercept per subject and centered predictors. To combine the 490 

behavioral with the fMRI results, trial characteristics (e.g., accuracy and neural activation) were 491 

averaged per SRPE level for each participant. We report the χ2 statistics from the ANOVA Type III tests. 492 

All analyses were performed in R. 493 

fMRI data acquisition and analysis 494 

fMRI data acquisition. fMRI data were collected with a 3T Magnetom Trio MRI scanner system (Siemens 495 

Medical Systems, Erlangen, Germany), with a thirty-two-channel radio-frequency head coil. A 3D high-496 

resolution anatomical image was obtained using a T1-weighted MPRAGE sequence (TR = 2200 ms, TE = 497 

2.51 ms, TI = 900 ms, FA = 8◦, FOV: 250 × 250 mm, matrix size: 176 × 256 × 256, interpolated voxel size: 498 

0.9 × 0.9 × 0.9 mm). In addition, we acquired a field map per participant, to correct for magnetic field 499 

inhomogeneities (TR = 520 ms, TE1 = 4.92 ms, TE2 = 7.38 ms, image matrix = 80 x 80 x 50, FOV = 192 500 

mm, FA = 60°, slice thickness = 2.5 mm, voxel size = 2.5 x 2.5 x 2.5 mm, distance factor = 20%). Whole 501 

brain functional images were acquired using a T2*-weighted EPI sequence (TR = 1730 ms, TE = 30 ms, FA 502 

= 66◦, multiband acceleration factor = 2, matrix size: 50 x 84 × 84; voxel size: 2.5 × 2.5 × 2.5 mm). 503 

fMRI data analysis. SPM 12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/; Matlab R2016b) was 504 

used for preprocessing and fMRI data analysis. For each participant, the first five volumes were 505 

discarded to avoid transient spin saturations effects, and BIDS (https://bids.neuroimaging.io/) formatted 506 

raw data was defaced, realigned and unwarped, slice time corrected, normalized, and smoothed using a 507 

Gaussian kernel of 8 mm full width at half maximum (FWHM). We performed co-registration of the 508 

structural image with the mean realigned functional image. Additionally, time series were inspected for 509 

excessive movement using the Artifact Detection Toolbox (ART; 510 

https://www.nitrc.org/projects/artifact_detect), allowing us to regress out functional volumes 511 

displaying excessive motion/spikes (see below). 512 

Each participant’s data was modeled with a general linear model (GLM) using an event-related design. 513 

To test our different empirical predictions, we performed three distinct GLMs. Common to all GLMs, 514 

regressors were convolved with the canonical HRF, and the cut-off period for high-pass filtering was 128 515 

seconds. Six movement parameters, derived from spatial realignment, as well as spikes detected using 516 
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ART were included as covariates of non-interest. First-level summary statistic images were entered in a 517 

second-level analysis in which subjects were treated as random effects (RFX). Our neural predictions are 518 

based on choice-feedback related activity (Fig. 1A). We created three general linear models (GLM) to 519 

test them. GLM-1 tested for the SRPE effect, expected to be encoded in VS (Pine et al., 2018), and 520 

whether VS activity correlates (across subjects) with subsequent episodic memory. GLM-2, tested for 521 

the interaction between striatal SRPE value and subsequent episodic memory accuracy. GLM-3 tested 522 

for the PPI between SRPE (psychological factor) and subject-specific face-selective areas (FSA) time 523 

series (physiological factor). Below we describe in detail our three GLMs. 524 

First, as a check of our experimental manipulation and to reveal the area encoding SRPE, we constructed 525 

GLM-1. In GLM-1, we modeled the reading phase (i.e., the joint onset of faces and names) as a boxcar 526 

function (4 sec), and the choice (i.e., response press) and the monetary update as delta functions. Of 527 

main interest, we added five regressors of choice-feedback (boxcar, 5 sec) respectively for each SRPE 528 

value (i.e., -0.5, -0.25, 0, 0.5, 0.75). To check our experimental manipulation, we tested for an overall 529 

effect of choice-feedback, termed choice-feedback contrast, by contrasting all five SRPE regressors of 530 

interest (see above; with a contrast vector [1 1 1 1 1]) to baseline. Given that participants were asked to 531 

memorize the association between faces and words, we expected this contrast to reveal hippocampal 532 

activation. To reveal the area encoding SRPE, we then tested, at the individual level, for a mean-533 

centered SRPE contrast [-0.6 -0.35 -0.1 0.40 0.65] across the five regressors of interest (i.e., the choice-534 

feedback events associated with our five SRPE values). Any area sensitive to this contrast would display 535 

increased activity as SRPE value increases, and would therefore encode for SRPE. Given previous results 536 

(Davidow et al., 2016; Pine et al., 2018), we predicted that ventral striatum (VS) would encode for SRPE 537 

(although statistical correction was at whole-brain level). Furthermore, to test whether VS activation 538 

predicts overall subsequent memory performance, we extracted choice-feedback locked mean beta 539 

weights from the VS ROI, again defined using the group-level SRPE contrast (FWE-corrected, p < 0.05; 540 

blue activation map, Fig. 2B). We then correlated mean beta weights and subsequent memory accuracy 541 

(in %) across subjects. We expected a positive linear relationship between activity in VS and memory 542 

accuracy. Furthermore, we carried out two exploratory analyses based on GLM-1. In a first exploratory 543 

analysis, we assessed the SRPE contrast by extracting mean beta weights for each of the five SRPE 544 

regressors in four distinct empirically derived ROIs (Pine et al., 2018); all four ROIs were active in earlier 545 

episodic memory studies (Davidow et al., 2016; Ripollés et al., 2016). First, we focused on the VS, which 546 

was defined using the group-level SRPE contrast (FWE-corrected, p < 0.05; blue activation map, Fig. 2B). 547 

Second, we focused on the VTA (Cohen, Haesler, Vong, Lowell, & Uchida, 2012). Given that no contrast 548 
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revealed a clear VTA activation, we used Neurosynth (http://neurosynth.org/) to define our ROI. We 549 

searched for the term “Ventral Tegmental” and applied a threshold of 18 on z-scores of the activation 550 

map, yielding our VTA ROI. Third, hippocampus was defined using the group-level results of the choice-551 

feedback contrast (see above). Fourth, we considered the face-selective areas (FSA) with the face 552 

contrast (see GLM-4 below). In a second exploratory analysis, we tested for an unsigned reward 553 

prediction error (URPE) over the five RPE levels in GLM-1. The URPE values are calculated by taking the 554 

absolute value of the SRPE values followed by centering, to form the URPE contrast [0.1 -0.15 -0.4 0.1 555 

0.35]. Such contrast would reveal any potential areas encoding for surprise, irrespective of whether 556 

surprise has a positive or negative valence. 557 

Second, to test whether SRPE value in VS correlates with memory on a trial-by-trial basis, we 558 

constructed GLM-2. GLM-2 was similar to GLM-1 except as follows. The choice feedback was modeled as 559 

one regressor of interest (instead of five); irrespective of SRPE value. We further added four parametric 560 

modulators and turned off orthogonalization. The first modulator indicated whether the encoding phase 561 

of that trial led to a correct (1) or wrong (0) recognition at the subsequent memory test (termed 562 

subsequent memory contrast). The second modulator consisted of the SRPE value for the specific trial at 563 

hand; its value could be -0.5, -0.25, 0, 0.5, or 0.75 (termed SRPE modulator contrast). The third 564 

modulator was the SRPE*subsequent memory interaction. Testing for this third modulator identifies 565 

brain areas with a stronger SRPE-dependent linear increase driving episodic memory when recognition is 566 

correct (relative to wrong) at the memory test (termed the SRPE interaction contrast). We added a 567 

fourth modulator composed of the interaction between reward (i.e., rewarded (1) or unrewarded (0) 568 

choice) and subsequent memory accuracy; allowing us to control for a reward*subsequent memory 569 

accuracy interaction effect. To exclude any interpretation of the SRPE interaction contrast in terms of a 570 

pure reward effect, we repeated the previous analysis including only rewarded trials.  571 

Third, we carried out a psychophysiological interaction (PPI) analysis (Gitelman et al., 2003) (GLM-3). PPI 572 

allows to reveal which other areas show an increase in functional connectivity with the seed stimulus-573 

relevant area, as a function of SRPE values. In GLM-3, three regressors were added (on top of the 574 

nuisance regressors described in GLM-1). The first regressor consisted of the BOLD signal extracted from 575 

a 3 mm sphere (Davidow et al., 2016) around the peak value from subject-specific functionally localized 576 

face-selective area (FSA seed, see below; see Table 2 for MNI coordinates of subject-specific peak 577 

values). The second regressor is the psychological vector consisting of the SRPE contrast as described in 578 

GLM-1. The third regressor is the seed-by-condition interaction. Areas that show a linear increase in 579 
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coupling with the seed as a function of SRPE value will be identified by a significant seed-by-condition 580 

interaction regressor. To gain a deeper understanding of the functional connectivity between our ROIs, 581 

we also performed the PPI analysis using our hippocampus, VTA and VS ROIs (defined above) as seeds of 582 

interest.  583 

Our functional localizer task was modeled using a block design (GLM-4). Each block of the 1-back task 584 

was modeled using a boxcar function over the entire block duration. Nuisance regressors were modeled 585 

as in GLM-1. To reveal subject-dependent functional FSA, we contrasted face vs. house blocks (p < 586 

0.0001, uncorrected). Using the resulting statistical maps and MRIcron, we created an overlap image 587 

statistic displaying where and to what extent FSAs overlap with one another. 588 
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