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Abstract

Despite considerable progress on pathogenicity scores prioritizing both coding and non-

coding variants for Mendelian disease, little is known about the utility of these pathogenicity

scores for common disease. Here, we sought to assess the informativeness of Mendelian disease

pathogenicity scores for common disease, and to improve upon existing scores. We first applied

stratified LD score regression to assess the informativeness of annotations defined by top variants

from published Mendelian disease pathogenicity scores across 41 independent common diseases

and complex traits (average N = 320K). Several of the resulting annotations were informative

for common disease, even after conditioning on a broad set of coding, conserved, regulatory

and LD-related annotations from the baseline-LD model. We then improved upon the pub-

lished pathogenicity scores by developing AnnotBoost, a gradient boosting-based framework

to impute and denoise pathogenicity scores using functional annotations from the baseline-LD

model. AnnotBoost substantially increased the informativeness for common disease of both

previously uninformative and previously informative pathogenicity scores; our combined joint

model included 3 published and 8 boosted scores. The boosted scores also significantly outper-

formed the corresponding published scores in classifying disease-associated, fine-mapped SNPs.

Our boosted scores have high potential to improve candidate gene discovery and fine-mapping

for common disease.
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Introduction

Despite considerable progress on pathogenicity scores prioritizing both coding and non-coding vari-

ants for Mendelian disease1–10 (reviewed in ref. 11), little is known about the utility of these

pathogenicity scores for common disease. The shared genetic architecture between Mendelian dis-

ease and common disease has been implicated in studies reporting the impact of genes underlying

monogenic forms of common diseases on the corresponding common diseases12, significant cormo-

bidities among Mendelian and complex diseases13, and gene-level overlap between Mendelian dis-

eases and cardiovascular diseases14–16, neurodevelopmental traits17,18, and other complex traits19.

However, variant-level assessment of shared genetic architecture using Mendelian pathogenicity

scores has not been explored. Thus, our current understanding of the genetic relationship between

Mendelian disease and common disease remains limited.

Here, we sought to assess the informativeness of Mendelian disease pathogenicity scores for

common disease, and to improve upon existing scores. We focused our attention on polygenic

common and low-frequency variant architectures, which explain the bulk of common disease heri-

tability20–24. We assessed the informativeness of annotations defined by top variants from published

Mendelian disease pathogenicity scores by applying stratified LD score regression25 (S-LDSC) with

the baseline-LD model26,27 to 41 independent common diseases and complex traits (average N =

320K). We assessed informativeness conditional on the baseline-LD model, which includes a broad

set of coding, conserved, regulatory and LD-related annotations.

We improved upon the published pathogenicity scores by developing AnnotBoost, a gradient

boosting-based machine learning framework to impute and denoise pathogenicity scores using func-

tional annotations from the baseline-LD model. We assessed the informativeness of annotations

defined by top variants from the boosted scores by applying S-LDSC and assessing informativeness

conditional on annotations from the baseline-LD model as well as annotations derived from the

corresponding published scores. We also assessed the informativeness of the published and boosted

pathogenicity scores in predicting disease-associated, fine-mapped SNPs.
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Results

Overview of methods

We define a binary annotation as an assignment of a binary value (0 or 1) to each SNP with

minor allele count ≥ 5 in a 1000 Genomes Project European reference panel28, as in our previous

work25. We define a pathogenicity score as an assignment of a numeric value quantifying predicted

pathogenicity to some or all of these SNPs; we analyze 11 Mendelian missense scores, 6 genome-wide

Mendelian scores, and 18 additional scores. Our primary focus is on binary annotations defined

either using top variants from published (missense or genome-wide) Mendelian disease pathogenicity

scores, or using top variants from boosted scores that we constructed from those pathogenicity

scores using AnnotBoost, a gradient boosting-based framework that we developed to impute and

denoise pathogenicity scores using coding, conserved, regulatory and LD-related annotations from

the baseline-LD model26,27 (see Methods). AnnotBoost uses decision trees to distinguish pathogenic

variants (defined using the input pathogenicity score) from benign variants; the AnnotBoost model

is trained using the XGBoost gradient boosting software29 (see URLs). AnnotBoost uses odd

(resp. even) chromosomes as training data to make predictions for even (resp. odd) chromosomes;

the output of AnnotBoost is the predicted probability of being pathogenic. Further details are

provided in the Methods section; we have publicly released open-source software implementing

AnnotBoost, as well as all pathogenicity scores and binary annotations analyzed in this work (see

URLs).

We assessed the informativeness of the resulting binary annotations for common disease heri-

tability by applying S-LDSC25 to 41 independent common diseases and complex traits30 (average

N = 320K; Table S1; see URLs), conditioned on coding, conserved, regulatory and LD-related

annotations from the baseline-LD model26,27 and meta-analyzing results across traits. We assessed

informativeness for common disease using standardized effect size (τ∗), defined as the proportionate

change in per-SNP heritability associated to a one standard deviation increase in the value of the

annotation, conditional on other annotations26 (see Methods). We also computed the heritability

enrichment, defined as the proportion of heritability divided by the proportion of SNPs. Unlike

enrichment, τ∗ quantifies effects that are unique to the focal annotation (see Methods). We also

assessed the informativeness of the underlying (published and/or boosted) pathogenicity scores in
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predicting disease-associated, fine-mapped SNPs.

Informativeness of Mendelian missense scores for common disease

We assessed the informativeness for common disease of binary annotations derived from 11 Mendelian

disease pathogenicity scores for missense variants1,5–8,31–35 (see Table 1). These scores reflect the

predicted impact of missense mutations on Mendelian disease and were trained using rare variants,

primarily from ClinVar36 and Human Gene Mutation Database (HGMD)37. For each of the 11

missense scores, we constructed binary annotations based on top missense variants using 5 dif-

ferent thresholds (from top 50% to top 10% of missense variants) and applied S-LDSC25,26 to 41

independent common diseases and complex traits (Table S1), conditioning on coding, conserved,

regulatory and LD-related annotations from the baseline-LD model26,27 and meta-analyzing results

across traits; proportions of top SNPs were optimized to maximize informativeness (see Methods).

We incorporated the 5 different thresholds into the number of hypotheses tested when assessing

statistical significance (Bonferroni P < 0.05/500 = 0.0001, based on a total of ≈ 500 hypotheses

tested in this study; see Methods). We identified (Bonferroni-significant) conditionally informative

binary annotations derived from 2 published missense scores: the top 30% of SNPs from MPC34

(enrichment = 27x (s.e. 2.5), τ∗ = 0.60 (s.e. 0.07)) and the top 50% of SNPs from PrimateAI8

(enrichment = 17x (s.e. 2.0), τ∗ = 0.42 (s.e. 0.09) (Figure 1, Table 2 and Table S2). The MPC

(Missense badness, PolyPhen-2, and Constraint) score34 is computed by identifying regions within

genes that are depleted for missense variants in ExAC data38 and incorporating variant-level met-

rics to predict the impact of missense variants; the PrimateAI score8 is computed by eliminating

common missense variants identified in other primate species (which are presumed to be benign in

humans), incorporating a deep learning model trained on the amino acid sequence flanking the vari-

ant of interest and the orthologous sequence alignments in other species. The remaining published

Mendelian missense scores all had derived binary annotations that were significantly enriched for

disease heritability (after Bonferroni correction) but not conditionally informative (except for the

published M-CAP score, which spanned too few SNPs to be included in the S-LDSC analysis).

We constructed boosted scores from the 11 Mendelian missense scores using AnnotBoost, a

gradient boosting-based machine learning framework that we developed to impute and denoise

pathogenicity scores using functional annotations from the baseline-LD model26 (see Methods).
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We note that AnnotBoost scores genome-wide (missense and non-missense) variants, implying low

genome-wide correlations between input Mendelian missense scores and corresponding genome-wide

boosted scores (0.02-0.24; Table S3A). AnnotBoost attained high predictive accuracy in out-of-

sample predictions of input missense scores (AUROC= 0.76-0.94, AUPRC= 0.43-0.82; Table S4),

although we caution that high predictive accuracy does not necessarily translate into conditional

informativeness for common disease39. We further note that out-of-sample AUROCs closely tracked

the genome-wide correlations between input Mendelian missense scores and corresponding genome-

wide boosted scores (r = 0.65), implying that accurately predicting the input pathogenicity scores

results in more correlated boosted scores.

For each missense pathogenicity score, after running AnnotBoost, we constructed binary anno-

tations based on top genome-wide variants, using 6 different thresholds (ranging from top 10% to

top 0.1% of genome-wide variants, as well as variants with boosted scores ≥ 0.5; see Methods). We

assessed the informativeness for common disease of binary annotations derived from each of the

11 boosted scores using S-LDSC, conditioning on annotations from the baseline-LD model and 5

binary annotations derived from the corresponding published Mendelian missense score (using all

5 thresholds) (baseline-LD+5). We identified conditionally informative binary annotations derived

from boosted versions of 10 Mendelian missense scores, including 8 previously uninformative scores

and the 2 previously informative scores (Figure 1, Table 2 and Table S2). Letting ↑ denote boosted

scores, examples include the top 0.1% of SNPs from M-CAP↑7, a previously uninformative score

(enrichment = 23x (s.e. 2.6), τ∗ = 0.43 (s.e. 0.08); the published M-CAP pathogenicity score

spanned too few SNPs to be included in the S-LDSC analysis of Figure 1) and the top 0.1% of

SNPs from PrimateAI↑7, a previously informative score (enrichment = 35x (s.e. 2.7), τ∗ = 0.83

(s.e. 0.08)). The M-CAP (Mendelian Clinically Applicable Pathogenicity) score7 is computed

by training a gradient boosting tree classifier to distinguish pathogenic variants from HGMD37

vs. benign variants from ExAC38 using 9 pathogenicity likelihood scores as features (including

PolyPhen-21, MetaLR32, CADD2; see Table 1); the PrimateAI score is described above. Interest-

ingly, binary annotations derived from 7 boosted scores had significantly negative τ∗ (−0.72 (s.e.

0.07)) to −0.13 (s.e. 0.01)). All but one of these binary annotations were significantly enriched for

disease heritability, but less enriched than expected based on annotations from the baseline-LD+5

model (Table S5; see ref. 40 and Methods), and thus uniquely informative for disease heritability
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(analogous to transposable element annotations in ref. 40 that were significantly depleted, but

less depleted than expected and thus uniquely informative). The boosted version of the remaining

Mendelian missense score (MVP↑; not included in Figure 1) had a derived binary annotation that

was significantly enriched for disease heritability (after Bonferroni correction) but not conditionally

informative (Table S2).

We performed two secondary analyses. First, we restricted the 10 significant binary anno-

tations derived from our boosted Mendelian missense scores to non-coding regions, which were

previously unscored by the Mendelian missense scores, and assessed the informativeness of the

resulting non-coding binary annotations using S-LDSC. We determined that the non-coding anno-

tations retained the bulk of the overall signals (85%-110% of absolute τ∗; Table S6), implying that

AnnotBoost leverages information about pathogenic missense variants to usefully impute scores for

non-missense variants. Second, we investigated which features of the baseline-LD model contributed

the most to the informativeness of the boosted annotations by applying Shapley Additive Explana-

tion (SHAP)41, a widely used tool for interpreting machine-learning models. We determined that

conservation-related features drove the predictions of the boosted annotations, particularly (binary

and continuous) GERP scores42 (Figure S1).

Informativeness of genome-wide Mendelian pathogenicity scores for common dis-

ease

We assessed the informativeness for common disease of binary annotations derived from 6 genome-

wide Mendelian disease pathogenicity scores2–4,9,10 (see Table 1). These scores reflect the predicted

impact of (coding and) non-coding variants on Mendelian disease and were also primarily trained

using rare variants from ClinVar36 and HGMD37. For each of the 6 genome-wide scores, we con-

structed binary annotations based on top genome-wide variants using 5 different thresholds (from

top 0.1% to top 10% of genome-wide variants) and applied S-LDSC to the 41 traits, condition-

ing on the baseline-LD model26 and meta-analyzing results across traits; proportions of top SNPs

were optimized to maximize informativeness (see Methods). We identified (Bonferroni-significant)

conditionally informative binary annotations derived from 3 genome-wide scores: the top 0.5% of

SNPs from ReMM4 (enrichment = 19x (s.e. 1.2), τ∗ = 0.82 (s.e. 0.09)), the top 0.5% of SNPs from

CADD2,43 (enrichment = 18x (s.e. 1.3), τ∗ = 0.71 (s.e. 0.10)), and the top 0.1% of SNPs from
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Eigen3 (enrichment = 24x (s.e. 2.1), τ∗ = 0.40 (s.e. 0.06)) (Figure 2, Table 2 and Table S7). The

CADD (Combined Annotation Dependent Depletion) score2,43 is computed by training a support

vector machine to distinguish deleterious vs. neutral variants using functional annotations as fea-

tures; the Eigen score3 is computed from 29 input functional annotations by using an unsupervised

machine learning method (leveraging blockwise conditional independence between annotations) to

differentiate functional vs. non-functional variants; the ReMM (Regulatory Mendelian Mutation)

score4 is computed by training a random forest classifier to distinguish 406 hand-curated Mendelian

mutations from neutral variants using conservation scores and functional annotations as features.

The remaining 3 genome-wide scores all had derived binary annotations that were significantly en-

riched for disease heritability (after Bonferroni correction) but not conditionally informative (Table

S7).

We applied AnnotBoost to the 6 genome-wide Mendelian scores. We observed moderate correla-

tions between input genome-wide Mendelian scores and corresponding boosted scores (r = 0.35-0.66;

Table S3B). AnnotBoost again attained high predictive accuracy in out-of-sample predictions of

input genome-wide scores (AUROC = 0.83-1.00, AUPRC = 0.70-1.00; Table S4); however, out-

of-sample AUROCs did not closely track the correlations between input genome-wide scores and

corresponding boosted scores (r = 0.05).

We again constructed binary annotations based on top genome-wide variants, using 6 different

thresholds (ranging from top 0.1% to top 10% of genome-wide variants, as well as variants with

boosted scores ≥ 0.5; see Methods). We assessed the informativeness for common disease of binary

annotations derived from each of the 6 boosted scores using S-LDSC, conditioning on annotations

from the baseline-LD model and 5 binary annotations derived from the corresponding published

genome-wide Mendelian score (using all 5 thresholds). We identified conditionally informative

binary annotations derived from boosted versions of all 6 genome-wide Mendelian scores, including

the 3 previously uninformative scores and the 3 previously informative scores (Figure 2, Table 2

and Table S2). Examples include the top 5% of SNPs from ncER↑9 (enrichment = 6.2x (s.e. 0.30),

τ∗ = 0.74 (s.e. 0.10)) and the top 0.5% of SNPs from boosted Eigen-PC↑3 (enrichment = 16x (s.e.

1.1), τ∗ = 0.62 (s.e. 0.12)), both of which were previously uninformative scores, and the top 1% of

SNPs from ReMM↑4 (enrichment = 17x (s.e. 0.8), τ∗ = 1.17 (s.e. 0.12)), a previously informative

score. The ncER (non-coding Essential Regulation) score9 is computed by training a gradient
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boosting tree classifier to distinguish non-coding pathogenic variants from ClinVar36 and HGMD37

vs. benign variants using 38 functional and structural features; the Eigen-PC score3 (related to

the Eigen score) is computed from 29 input functional annotations by using the lead eigenvector of

the annotation covariance matrix to weight the annotations; the ReMM score is described above.

We performed two secondary analyses. First, for the 4 genome-wide Mendelian scores with

<100% of SNPs scored (Table 1), we restricted the binary annotations derived from our boosted

genome-wide Mendelian scores to previously unscored variants and assessed the informativeness

of the resulting binary annotations using S-LDSC. We determined that these annotations retained

only a minority of the overall signals (17%-54% of absolute τ∗; Table S8), implying that AnnotBoost

usefully denoises previously scored variants. Second, we again investigated which features of the

baseline-LD model contributed the most to the informativeness of the boosted annotations by

applying SHAP41. We determined that both conservation-related features (e.g. GERP scores) and

LD-related features (e.g. LLD-AFR; level of LD in Africans) drove the predictions of the boosted

annotations (Figure S2).

Informativeness of additional genome-wide scores for common disease

For completeness, we assessed the informativeness for common disease of 18 additional genome-

wide scores not directly related to Mendelian disease, including 2 constraint-related scores44,45, 9

scores based on deep learning predictions of epigenetic marks46–48, and 7 gene-based scores38,49–51

(see Table S9). For each of the 18 additional scores, we constructed binary annotations based on

top variants using 5 different thresholds and applied S-LDSC to the 41 traits, conditioning on the

baseline-LD model26 and meta-analyzing results across traits; in this analysis, we also conditioned

on 8 Roadmap annotations52 (4 annotations based on the union across cell types and 4 annotations

based on the average across cell types, as in ref. 39), as many of the additional scores pertain to

regulatory elements, making this an appropriate conservative step.

We identified (Bonferroni-significant) conditionally binary annotations derived from 6 informa-

tive scores, including the top 1% of SNPs from CDTS44 (enrichment = 9.3x (s.e. 0.75), τ∗ = 0.35

(s.e. 0.06)) and the top 5% of SNPs from DeepSEA-H3K4me346,47 (enrichment = 3.9x (s.e. 0.23),

τ∗ = 0.21 (s.e. 0.04)) (Figure 3, Table 2 and Table S10). CDTS (Context-Dependent Tolerance

Score)44 is a constraint score based on observed vs. expected variation in whole-genome sequence
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data; DeepSEA-H3K4me3 scores46,47 are computed by training a deep learning model to predict

chromatin marks using proximal reference genome sequence as features and aggregated across dif-

ferent cell types39 (The DeepSEA annotations in Figure 3 were more significant than those analyzed

in ref. 39, because we optimized binary annotations based on top variants; however, no DeepSEA

annotations were included in our combined joint model (see below)). 9 of the remaining 10 scores

(excluding two that were not analyzed due to small annotation size) had derived binary annota-

tions that were significantly enriched for disease heritability (after Bonferroni correction) but not

conditionally informative (Table S10).

We applied AnnotBoost to the 18 additional scores, and to the 47 main annotations of the

baseline-LD model (Table S9). Correlations between input scores and corresponding boosted scores

varied widely (r = 0.005-0.93; Table S3C). AnnotBoost again attained high predictive accuracy in

out-of-sample predictions of the input scores (AUROC = 0.55-1.00, AUPRC = 0.23-0.98; Table S4);

out-of-sample AUROCs closely tracked the correlations between input scores and corresponding

boosted scores (r = 0.65).

We again constructed binary annotations based on top genome-wide variants, using 6 different

thresholds (ranging from top 0.1% to top 10% of genome-wide variants, as well as variants with

boosted scores ≥ 0.5; see Methods). We assessed the informativeness for common disease of binary

annotations derived from each of the 65 boosted scores using S-LDSC, conditioning on annotations

from the baseline-LD model, the 8 Roadmap annotations, and (for the first 18 additional scores

only) 5 binary annotations derived from the corresponding input scores (using all 5 thresholds).

We identified conditionally informative binary annotations derived from boosted versions of 13/18

additional scores (including 11 previously uninformative scores and 2 previously informative scores)

and 24/47 baseline-LD model annotations (Figure 3, Table 2 and Table S10). Examples include the

top 10% of SNPs from DeepSEA-DNase↑46,47 (enrichment = 3.7x (s.e. 0.27), τ∗ = 0.69 (s.e. 0.11)),

a previously uninformative score, the top 1% of SNPs from CCR↑45 (enrichment = 7.9x (s.e. 0.65),

τ∗ = 0.51 (s.e. 0.09)), a previously uninformative score, and the top 5% of SNPs from H3K9ac↑53

(enrichment = 5.4x (s.e. 0.31), τ∗ = 0.76 (s.e. 0.09)), a baseline-LD model annotation. The

CCR (Constrained Coding Regions) score45 is a constraint score based on observed vs. expected

variation in whole-exome sequence data; DeepSEA scores are described above. We note that the 18

additional scores included 7 gene-based scores, which did not perform well; 3 published gene-based
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scores and 4 boosted gene-based scores yielded conditionally significant binary annotations, but

their τ∗ were small (−0.02 to 0.09). Boosted versions of 3 of the remaining 5 additional scores and

20 of the remaining 23 baseline-LD model annotations had derived binary annotations that were

significantly enriched for disease heritability (after Bonferroni correction) but not conditionally

informative (Table S10).

We performed 3 secondary analyses. First, for the 31 additional boosted scores which were

marginally significant and for which the underlying published scores had < 100% of SNPs scored,

we restricted the boosted scores to previously unscored variants and assessed the informativeness of

the resulting binary annotations using S-LDSC. We determined that these annotations retained over

half of the overall signals (average of 55% of absolute τ∗; Table S11), implying that AnnotBoost

both imputes and denoises existing scores. Second, we again investigated which features of the

baseline-LD model contributed the most to the informativeness of the boosted annotations by

applying SHAP41. We determined that both conservation-related features (e.g. GERP scores) and

LD-related features (e.g. LLD-AFR; level of LD in Africans) often drove the predictions of the

boosted annotations, although results varied with the type of annotation (Figure S3). Third, we

repeated the analyses of Figure 3 without including the 8 Roadmap annotations. We determined

that the number of significant binary annotations increased (Table S12), confirming the importance

of conditioning on the 8 Roadmap annotations as an appropriate conservative step39. We further

verified that including the 8 Roadmap annotations did not impact results from previous sections

(Table S13).

Classification of fine-mapped disease SNPs

We assessed the accuracy of the published and boosted scores listed in Table 2 in classifying 8,294

fine-mapped SNPs for 21 autoimmune diseases from Farh et al.54 (defined by including all SNPs

in 95% credible sets) vs. all other ∼10 million common and low-frequency SNPs (see Methods).

We performed two analyses. In the first analysis (single-score analysis), we computed the AUROC

individually attained by each of the 82 published and 82 boosted scores, comparing results for

boosted scores vs. the corresponding published scores. In the second analysis (multi-score analysis),

we computed the AUROC jointly attained by the baseline-LD model, 11 marginally significant

published scores, and/or 53 marginally significant boosted scores (see Table 2), aggregated by
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training a gradient boosting model; we used odd (resp. even) chromosomes as training data to

make predictions for even (resp. odd) chromosomes (see Methods). We note that this gradient

boosting model uses disease data (fine-mapped SNPs), whereas AnnotBoost does not use disease

data to construct boosted pathogenicity scores.

Results of the single-score analysis are reported in Figure 4A and Table S14. We determined that

the boosted scores significantly outperformed the corresponding published scores, with an average

improvement in AUROC of 0.05. AUROC results for published and boosted scores were moderately

correlated with S-LDSC results for binary annotations derived from these scores, validating the S-

LDSC results (Table S15). We also computed values of AUPRC, which were close to 0 for both

SNP sets (Table S15), as expected since false discovery rate is much higher than false positive rate

in highly skewed data sets; this underscores the challenges of accurately classifying fine-mapped

disease SNPs without directly using disease data.

Results of the multi-score analysis are reported in Figure 4B and Table S16. For Farh et al.

SNPs, although the baseline-LD model (AUROC=0.844) was not significantly improved by adding

the 11 (marginally significant) published annotations (∆AUROC = 0.001, s.e. = 0.002, p = 0.36),

further adding the 53 (marginally significant) boosted annotations produced a slight but significant

improvement (∆AUROC = 0.011, s.e. = 0.002, p < 1e-6), further validating the added value of

boosted annotations, above and beyond non-linear interactions involving published annotations and

the baseline-LD model only. This improvement likely comes from non-linear interactions involving

the boosted annotations, published annotations, and the baseline-LD model. We note that the

high classification accuracy attained by the baseline-LD model could potentially be due to the LD-

and MAF-related annotations in the baseline-LD model, as Farh et al. fine-mapped SNPs are more

common (29% vs. 15%) with higher LD scores (132 vs. 120); we repeated the multi-score analysis

by matching the LD and MAF of positive and control sets of SNPs and obtained similar results

(Table S17). As in the single-score analysis, values of AUPRC were close to 0 for both SNP sets

(Table S16).

We performed 3 secondary analyses. First, we repeated the single-score analysis using 3 addi-

tional sets of fine-mapped or disease-associated SNPs: 1,851 fine-mapped SNPs for 47 UK Biobank

traits from Weissbrod et al.55 (stringently defined by causal posterior probability ≥ 0.95); 21,296

NHGRI GWAS SNPs56,57; and 1,591 de novo SNPs from the sequenced whole genomes of 1,790
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autism spectrum disorder simple families48 which also appeared as common or low-frequency SNPs

in the 1000 Genomes reference panel (see URLs). The boosted scores again significantly out-

performed the corresponding published scores in each case, with highest AUROC values for the

Weissbrod et al. fine-mapped SNPs (up to 0.875) (Figure S4 and Table S16). Second, we repeated

the multi-score analysis using the 3 additional sets of fine-mapped or disease-associated SNPs.

Adding the 53 boosted annotations to the baseline-LD model plus 11 published annotations pro-

duced a significant improvement in AUROC for the de novo SNPs, but not for the Weissbrod et al.

fine-mapped SNPs or NHGRI GWAS SNPs, perhaps because the AUROC was already very high

for the Weissbrod et al. fine-mapped SNPs (0.936) and because most NHGRI GWAS SNPs are

not causal SNPs (Figure S5 and Table S16). We repeated the multi-score analysis of Weissbrod et

al. fine-mapped SNPs using 1,853 SNPs that were fine-mapped without using functional informa-

tion55 (to ensure that results were not circular), and obtained similar results (Table S16). Third,

we repeated the multi-score analysis using all 35 published scores (excluding baseline-LD model

annotations) and 82 boosted scores from Table 2 (not just those that were marginally significant),

and obtained similar results for all 4 SNP sets (Table S16).

Combined joint model

We jointly analyzed the 64 binary annotations (derived from 11 published scores and 53 boosted

scores) that were marginally significant in our marginal analyses (Table 2) by performing forward

stepwise elimination to iteratively remove annotations that had conditionally non-significant τ∗

values after Bonferroni correction (P ≥ 0.05/500 = 0.0001) or τ∗ < 0.25, conditioned on the

baseline-LD model, the 8 Roadmap annotations, and each other (see ref. 26 and Methods). The

resulting combined joint model included 11 binary annotations derived from 3 published scores and

8 boosted scores (Figure 5, Table 2 and Table S18). These 11 annotations are each substantially

uniquely informative for common disease and include 5 boosted annotations with τ∗ > 0.5 (e.g.

boosted ReMM: τ∗ = 1.33 (s.e. 0.12)); annotations with τ∗ > 0.5 are unusual, and considered to be

very important40. We note that the top 0.5% of SNPs from REVEL↑6 had significantly negative

τ∗ (−0.95 (s.e. 0.08)), as the annotation was significantly enriched for disease heritability but less

enriched than expected based on annotations from the combined joint model.

We performed 3 secondary analyses. First, we computed genome-wide correlations between

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


the 11 jointly significant annotations and baseline-LD model annotations (Table S19). Several of

the jointly significant annotations were strongly correlated (up to 0.73) with conservation-related

annotations from the baseline-LD model, particularly binary GERP scores, consistent with our

SHAP results (Figure S1, Figure S2 and Figure S3). Second, we compared the informativeness

of the baseline-LD model and the combined joint model. We identified the addition of 11 jointly

significant annotations greatly reduced the informativeness of several existing baseline-LD anno-

tations, including conservation-related annotations (e.g. conserved primate, binary GERP scores)

and other annotations (e.g. coding, CpG content; see Figure S6 and Table S20), recapitulating the

informativeness of 11 jointly significant annotations. Third, we repeated our multi-score AUROC

analysis (Figure 4B and Table S16) using only the 3 published and 8 boosted scores that were

jointly significant, and obtained similar results for all 4 SNP sets (Table S16).
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Discussion

We analyzed the informativeness of a broad set of Mendelian pathogenicity scores across 41 in-

dependent common diseases and complex traits to show that several annotations derived from

published Mendelian pathogenicity scores were conditionally informative for common disease after

conditioning on the baseline-LD model. We further developed AnnotBoost, a gradient boosting-

based machine learning framework to impute and denoise existing pathogenicty scores. We deter-

mined that annotations derived from boosted pathogenicity scores were even more informative for

common disease, resulting in 11 jointly significant annotations in our combined joint model. Our

boosted pathogenicity scores also outperformed the corresponding published scores in classifying

disease-associated, fine-mapped SNPs, even when conditioning on the baseline-LD model. These

variant-level results are substantially different from previous studies of gene-level overlap between

Mendelian diseases and complex traits12–19.

We note three key differences between AnnotBoost and previous approaches that utilized gra-

dient boosting to identify pathogenic missense7 and non-coding variants9,10. First, AnnotBoost

uses a pathogenicity score as the only input and does not use disease data (e.g. ClinVar36 or

HGMD37). Second, AnnotBoost produces genome-wide scores, even when some SNPs are un-

scored by the input pathogenicity score. Third, AnnotBoost leverages 75 diverse features from the

baseline-LD model26,27, significantly more than previous approaches7,9,10. Indeed, we determined

that AnnotBoost produces strong signals even when conditioned on those approaches.

Our findings have several ramifications for improving our understanding of common disease.

First, it is of interest to assess the informativeness for common disease of Mendelian disease

pathogenicity scores that may be developed in the future, particularly after imputing and de-

noising these scores using AnnotBoost. Second, annotations derived from published and boosted

Mendelian pathogenicity scores can be used to improve functionally informed fine-mapping55,58,59,

as well as polygenic risk prediction60,61 and association mapping62. Third, elucidating specific

mechanistic links between Mendelian disease and common disease may yield important biological

insights.

We note several imitations of our work. First, while we showed that annotations derived from

Mendelian disease pathogenicity scores are informative for common disease, we focused on common
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and low-frequency variants and did not analyze Mendelian diseases. Second, S-LDSC is not well-

suited to analysis of annotations spanning a very small proportion of the genome, preventing the

analysis of a subset of published pathogenicity scores; nonetheless, our main results attained high

statistical significance. Third, the gene-based scores that we analyzed did not perform well, perhaps

because they were defined using 100kb windows, a crude strategy employed in previous work30,50,63;

better strategies for linking regulatory variants to genes64,65 could potentially improve upon those

results. Despite these limitations, the imputed and denoised pathogenicity scores produced by

our AnnotBoost framework have high potential to improve gene discovery and fine-mapping for

common disease.
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Methods

Genomic annotations and the baseline-LD model

We define a genomic annotation as an assignment of a numeric value to each SNP above a specified

minor allele frequency (e.g. minor allele count ≥ 5) in a predefined reference panel (e.g. 1000

Genomes28; see URLs). Continuous-valued annotations can have any real value. Probabilistic

annotations can have any real value between 0 and 1. Binary annotations can have value 0 or 1

only. A binary annotation can be viewed as a subset of SNPs (the set of SNPs with annotation

value 1); we note all annotations analyzed in this work are binary annotations. Annotations that

correspond to known or predicted function are referred to as functional annotations.

The baseline-LD model26 (v2.1) contains 86 functional annotations (see URLs). We use these

annotations as features of AnnotBoost (see below). These annotations include genomic elements

(e.g. coding, enhancer, promoter), conservation (e.g. GERP, PhastCon), regulatory elements

(e.g. histone marks, DNaseI-hypersensitive sites (DHS), transcription factor (TF) binding sites),

and linkage disequilibrium (LD)-related annotations (e.g. predicted allele age, recombination rate,

SNPs with low levels of LD).

Enrichment and τ ∗ metrics

We used stratified LD score regression (S-LDSC25,26) to assess the contribution of an annotation

to disease heritability by estimating the enrichment and the standardized effect size (τ∗) of an

annotation.

Let acj represent the (binary or probabilistic) annotation value of the SNP j for the annotation c.

S-LDSC assumes the variance of per normalized genotype effect sizes is a linear additive contribution

to the annotation c:

Var(βj) =
∑
c

acjτc (1)

where τc is the per-SNP contribution of the annotation c. S-LDSC estimates τc using the following
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equation:

E[χ2
j ] = N

∑
c

`(j, c)τc + 1 (2)

where N is the sample size of the GWAS and `(j, c) is the LD score of the SNP j to the annotation

c. The LD score is computed as follow `(j, c) =
∑

k ackr
2
jk where rjk is the correlation between the

SNPs j and k.

We used two metrics to assess the informativeness of an annotation. First, the standardized

effect size (τ∗), the proportionate change in per-SNP heritability associated with a one standard

deviation increase in the value of the annotation (conditional on all the other annotations in the

model), is defined as follows:

τc∗ =
τcsd(C)

h2g/M
(3)

where sd(C) is the standard deviation of the annotation c, h2g is the estimated SNP-heritability,

and M is the number of variants used to compute h2g (in our experiment, M is equal to 5,961,159,

the number of common SNPs in the reference panel). The significance for the effect size for each

annotation, as mentioned in previous studies26,30,50, is computed as ( τ∗

se(τ∗) ∼ N(0, 1)), assuming

that τ∗

se(τ∗) follows a normal distribution with zero mean and unit variance.

Second, enrichment of the binary and probabilistic annotation is the fraction of heritability

explained by SNPs in the annotation divided by the proportion of SNPs in the annotation, as

shown below:

Enrichment =
%h2g(C)

%SNP(C)
=

h2g(C)

h2g∑
j ajc
M

(4)

where h2g(C) is the heritability captured by the cth annotation. When the annotation is enriched for

trait heritability, the enrichment is > 1; the overlap is greater than one would expect given the trait

heritablity and the size of the annotation. The significance for enrichment is computed using the

block jackknife as mentioned in previous studies25,30,50,63.). The key difference between enrichment

and τ∗ is that τ∗ quantifies effects that are unique to the focal annotation after conditioning on
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all the other annotations in the model, while enrichment quantifies effects that are unique and/or

non-unique to the focal annotation.

In all our analyses, we used the European samples in 1000G28 (see URLs) as reference SNPs.

Regression SNPs were obtained from HapMap 366 (see URLs). SNPs with marginal association

statistics > 80 and SNPs in the major histocompatibility complex (MHC) region were excluded.

Unless stated otherwise, we included the baseline-LD model26 in all primary analyses using S-LDSC,

both to minimize the risk of bias in enrichment estimates due to model mis-specification25,26 and

to estimate effect sizes (τ∗) conditional on known functional annotations.

Published Mendelian pathogenicity scores

We considered a total 35 published scores: 11 Mendelian missense pathogenicity scores, 6 genome-

wide Mendelian pathogenicity scores, and 18 additional scores (see Table 1 and Table S9). Here,

we provide a short description for Mendelian missense and genome-wide Mendelian pathogenicity

scores. Details for 18 additional scores and the baseline-LD annotations are provided in Table S9.

Our curated pathogenicity scores are available online (see URLs).

For all scores, we constructed annotations using GRCh37 assembly limited to all 9,997,231

low-frequency and common SNPs (with minor allele frequency (MAF) >= 0.05%) found in 1000

Genomes28 European Phase 3 reference genome individuals (see URLs). Mendelian missense scores

were readily available from dbNSFP database67,68 using a rankscore (a converted score based on

the rank among scored SNPs); genome-wide Mendealian scores were individually downloaded and

used with no modification to original scores (see URLs). For each pathogenicity score, we con-

structed a binary annotation based on optimized threshold (See below). Short descriptions for each

pathogenicity score (excluding 18 additional scores and the baseline-LD annotations; provided in

Table S9) are provided below:

Mendelian missense pathogenicity scores:

PolyPhen-21,31 (HDIV and HVAR): Higher scores indicate higher probability of the missense mu-

tation being damaging on the protein function and structure. The default predictor is based on

a naive Bayes classifier using HumDiv (HDIV), and the other is trained using HumVar (HVAR),

using 8 sequence-based and 3 structure-based features.
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MetaLR/MetaSVM32: An ensemble prediction score based on logistic regression (LR) or support

vector machine (SVM) to classify pathogenic mutations from background SNPs in whole exome

sequencing, combining 9 prediction scores and one additional feature (maximum minor allele fre-

quency).

PROVEAN33,69: An alignment-based score to predict the damaging single amino acid substitu-

tions.

SIFT 4G5: Predicted deleterious effects of an amino acid substition to protein function based on

sequence homology and physical properties of amino acids.

REVEL6: An ensemble prediction score based on a random forest classifier trained on 6,182 mis-

sense disease mutations from HGMD37, using 18 pathogenicity scores as features.

M-CAP7: An ensemble prediction score based on a gradient boosting classifier trained on pathogneic

variants from HGMD37 and benign variants from ExAC data set38, using 9 existing pathogenicity

scores, 7 base-pair, amino acid, genomic region, and gene-based features, and 4 features from mul-

tiple sequence alignments across 99 species.

PrimateAI8: A deep-learning-based score trained on the amino acid sequence flanking the variant

of interest and the orthologous sequence alignments in other species and eliminating common mis-

sense variants identified in 6 non-human primate species.

MPC34 (missense badness, PolyPhen-2, and constraint): Logistic regression-based score to identify

regions within genes that are depleted for missense variants in ExAC data38 and incorporating

variant-level metrics to predict the impact of missense variants. Higher MPC score indicates in-

creased deleteriousness of amino acid substitutions once occured in missense-constrained regions.

MVP35: A deep-learning-based score trained on 32,074 pathogenic variants from ClinVar36, HGMD37,

and UniProt70, using 38 local context, constraint, conservation, protein structure, gene-based, and

existing pathogenicity scores as features.

Genome-wide Mendelian pathogenicity scores:

CADD2,43: An ensemble prediction score based on a support vector machine classifier trained to

differentiate 14.7 million high-frequency human-derived alleles from 14.7 million simulated variants,

using 63 conservation, regulatory, protein-level, and existing pathogenicity scores as features. We

used PHRED-scaled CADD score for all possible SNVs of GRCh37.
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Eigen/Eigen-PC3: Unsupervised machine learning score based on 29 functional annotations and

leveraging blockwise conditional independence between annotations to differentiate functional vs.

non-functional variants. Eigen-PC uses the lead eigenvector of the annotation covariance matrix

to weight the annotations. For both Eigen and Eigen-PC, we used PHRED-scaled scores and

combined coding and non-coding regions to make it as a single genome-wide score. Higher score

indicates more important (predicted) functional roles.

ReMM4 (regulatory Mendelian mutation): An ensemble prediction score based on a random for-

est classifier to to distinguish 406 hand-curated Mendelian mutations from neutral variants using

conservation scores and functional annotations. Higher ReMM score indicate greater potential to

cause a Mendelian disease if mutated.

NCBoost10: An ensemble prediction score based on a gradient boosting classifier trained on 283

pathogenic non-coding SNPs associated with Mendelian disease genes and 2830 common SNPs,

using 53 conservation, natural selection, gene-based, sequence context, and epigenetic features.

ncER9 (non-coding essential regulation): An ensemble prediction score based on a gradient boost-

ing classifier trained on 782 non-coding pathogenic variants from ClinVar36 and HGMD37, using 38

gene essentiality, 3D chromatin structure, regulatory, and existing pathogenicity scores as features.

AnnotBoost framework

AnnotBoost is based on gradient boosting, a machine learning method for classification; the Annot-

Boost model is trained using the XGBoost gradient boosting software29 (see URLs). AnnotBoost

requires only one input, a pathogenicity score to boost, and generates a genome-wide (probabilistic)

pathogenicity score. During the training, AnnotBoost uses decision trees, where each node in a tree

splits SNPs into two classes (pathogenic and benign) using 75 coding, conserved, regulatory, and

LD-related features from the baseline-LD model26 (excluding 10 MAF bins features; we obtained

similar results with or without MAF bins features; see Figure S7). The method generates training

data from the input pathogenicity scores without using external variant data; top 10% SNPs from

the input pathogenicity score are labeled as a positive training set, and bottom 40% SNPs are

labeled as a control training set; we obtained similar results with other training data ratios (see

Figure S8). As described in ref. 29, the prediction is based on T additive estimators (we use T =
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200 to 300; see below), minimizing the following loss objective function Lt at the t-th iteration:

Lt =
n∑
i=1

l(yi, ŷi
t−1 + ft(xi)) + γ(ft) (5)

where l is a differentiable convex loss function (which measures the difference between the prediction

(ŷi) and the target yi at the i-th instance), ft is an independent tree structure, and last term γ(ft)

penalizes the complexity of the model, helping to avoid over-fitting. The prediction (ŷi) is made by∑T
t=1 ft(xi) by ensembling outputs of multiple weak-learner trees. Odd (resp. even) chromosome

SNPs are used for training to score even (resp. odd) chromosome SNPs. The output of the classifier

is the probability of being similar to the positive training SNPs and dissimilar to the control training

SNPs.

We used the following model parameters: the number of estimators (200, 250, 300), depth of the

tree (25, 30, 35), learning rate (0.05), gamma (minimum loss reduction required before additional

partitioning on a leaf node; 10), minimum child weight (6, 8 ,10), and subsample (0.6, 0.8, 1);

we optimized parameters with hyperparamters tuning (a randomized search) with five-fold cross-

validation. Two important parameters to avoid over-fitting are gamma and learning rate; we chose

these values consistent with previous studies9,10. The model with the highest AUROCs on the

held-out data was selected and used to make a prediction.

To identify which feature(s) drives the prediction output with less bias, AnnotBoost uses Shap-

ley Addictive Explanation (SHAP41), a widely used tool to interpret complex non-linear models,

instead of built-in feature importance tool. SHAP uses the training matrix (features x SNP labels)

and the trained model to generate a signed impact of each baseline-LD features on the AnnotBoost

prediction.

To evaluate the performance of classifiers, we plotted receiver operating characteristic (ROC)

and precision-recall (PR) curves. As we train AnnotBoost by splitting SNPs into odd and even

chromosomes, we report the average out-of-sample area under the curve (AUC) of the odd and

even chromosomes classifier. We used the threshold of 0.5 to define a class; that is, class 1 includes

SNPs with the output probability > 0.5. We caution that high classification accuracy does not

necessarily translate into conditional informativeness for common disease39.
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Constructing binary annotations using top variants from published and boosted

scores

For published Mendelian missense pathogenicity scores, we considered five different thresholds to

construct binary annotations: top 50%, 40%, 30%, 20% or 10% of scored variants. For published

scores that produce Bonferroni-significant binary annotations, we report results for the binary

annotation with largest |τ∗| among those that are Bonferroni-significant. For published scores that

do not produce Bonferroni-significant binary annotations, we report results for the threshold with

most significant τ∗ (even though not Bonferroni-significant).

For all other published pathogenicity scores, we considered the top 10%, 5%, 1%, 0.5% or 0.1%

of scored variants to construct binary annotations; we used more inclusive thresholds for published

Mendelian missense pathogenicity scores due to the small proportion of variants scored (∼ 0.3%; see

Table 1). For published scores that produce Bonferroni-significant binary annotations, we report

results for the binary annotation with largest |τ∗| among those that are Bonferroni-significant. For

published scores that do not produce Bonferroni-significant binary annotations, we report results

for the top 5% of variants (the average optimized proportion among Bonferroni-significant binary

annotations); we made this choice because (in contrast to published Mendelian missense scores) for

many other published scores the most significant τ∗ was not even weakly significant.

For boosted pathogenicity scores, we considered the top 10%, 5%, 1%, 0.5% or 0.1% of scored

variants, as well as variants with boosted scores ≥ 0.5; we note that top 10% of SNPs does not

necessarily translate to 10% of SNPs, as some SNPs share the same score, and some genomic

regions (e.g. MHC) are excluded when running S-LDSC (see below). For boosted scores that

produce Bonferroni-significant binary annotations, we report results for the binary annotation with

largest |τ∗| among those that are Bonferroni-significant. For boosted scores that do not produce

Bonferroni-significant binary annotations, we report results for the top 5% of variants.

In all analyses, we excluded binary annotations with proportion of SNPs < 0.02% (the same

threshold used in ref. 50), because S-LDSC does not perform well for small annotations25.

In all primary analyses, we analyzed only binary annotations. However, we verified in a sec-

ondary analysis of the CDTS score44 that probabilistic annotations produced results similar to

binary annotations (see Figure S9).
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Classification of fine-mapped disease SNPs: single-score analysis

As a primary analysis, we analyzed 8,294 common and low-frequency SNPs (of 8,741 total SNPs)

fine-mapped for 21 autoimmune diseases from Farh et al.54. As a secondary analysis, we considered

3 other sets of SNPs: 1,851 common and low-frequency SNPs (of 2,225 SNPs, spanning 3,025

SNP-trait pairs) fine-mapped for 47 UK Biobank traits from Weissbrod et al.55; 21,296 common

and low-frequency SNPs (of 23,205 total SNPs) from the NHGRI GWAS catalog56,57 (2019-07-12

version; p-value < 5e-8); and 1,591 de novo SNPs (out of 127,140 non-repeat-region single nucleotide

variants) from the sequenced whole genomes of 1,790 autism spectrum disorder simple families48

which also appeared as common or low-frequency SNPs in the 1000 Genomes reference panel (see

URLs). We computed AUROCs for classifying each set of SNPs vs. all other ∼10 million common

and low-frequency SNPs in the reference panel (European samples from 100 Genomes Phase 328).

Classification of fine-mapped disease SNPs: multi-score analysis

We considered same 4 sets of SNPs as described above. We computed the AUROCs and AUPRCs

jointly attained by:

• Annotations from the baseline-LD model

• 11 marginally significant published scores

• 53 marginally significant boosted scores

• 11 marginally significant published score + 53 marginally significant boosted scores

• 3 jointly significant published scores

• 8 jointly significant boosted scores

• 3 jointly significant published scores + 8 jointly significant boosted scores

• baseline-LD model + 11 marginally significant published scores

• baseline-LD model + 53 marginally significant boosted scores

• baseline-LD model + 11 marginally significant published scores + 53 marginally significant

boosted scores

• baseline-LD model + 3 jointly significant published scores

• baseline-LD model + 8 jointly significant boosted scores

• baseline-LD model + 3 jointly significant published scores + 8 jointly significant boosted scores
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We aggregated these scores by training a gradient boosting model (features: aggregated scores,

labels: each of four sets of SNPs); we used odd (resp. even) chromosomes as training data to

make predictions for even (resp. odd) chromosomes. We used the same training parameters as

AnnotBoost (carefully selected to avoid over-fitting, consistent with the previous study9,10) with

hyperparameters tuned using a randomized search method with five-fold cross-validation. We report

the average AUROC and AUPRC of odd and even chromosome classifiers. We note that no disease

data (four sets of SNPs used as labels) was re-used in these analyses, as AnnotBoost uses only the

input pathogenicity scores to generate positive and negative sets of training data. We assessed the

significance of the difference between two AUROCs as in ref. 71 (see URLs). For the LD-matched

and MAF-matched analysis, we subsampled control SNPs to match the LD and MAF distribution

of the positive SNP set.
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URLs

AnnotBoost source code, published and boosted pathogenicity scores and binary annotations, and

SHAP results: https://data.broadinstitute.org/alkesgroup/LDSCORE/Kim_annotboost

S-LDSC software: https://github.com/bulik/ldsc

XGBoost: https://github.com/dmlc/xgboost

SHAP (SHapley Additive exPlanations) feature importance: https://github.com/slundberg/

shap

dbNSFP database: https://sites.google.com/site/jpopgen/dbNSFP

CADD scores: https://cadd.gs.washington.edu/download

Eigen/Eigen-PC scores: https://xioniti01.u.hpc.mssm.edu/v1.1/

ReMM scores: https://charite.github.io/software-remm-score.html

NCBoost scores: http://www.hli-opendata.com/noncoding/

ncER scores: http://www.hli-opendata.com/noncoding/

CDTS scores: http://www.hli-opendata.com/noncoding/

CCR scores: https://s3.us-east-2.amazonaws.com/ccrs/ccr.html/

DeepSEA (2018 version) scores: https://github.com/FunctionLab/ExPecto

DIS scores: Table S1. in ref. 48.

pLI scores: https://gnomad.broadinstitute.org/downloads

LIMBR scores: Table S1 in ref. 49.

Saha, Greene, InWeb, Sonawane network annotations:

https://data.broadinstitute.org/alkesgroup/LDSCORE/Kim_pathwaynetwork/

EDS scores: Table S1 in ref. 51.

baseline-LD (v.2.1) annotations: https://data.broadinstitute.org/alkesgroup/LDSCORE/

Significance of the difference in AUROCs calculator71: http://vassarstats.net/roc_comp.html

Ensembl biomart: https://www.ensembl.org/biomart

HapMap: ftp://ftp.ncbi.nlm.nih.gov/hapmap/

GWAS Catalog (Release v1.0): https://www.ebi.ac.uk/gwas.

1000 Genomes Project Phase 3 data: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/

20130502
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PLINK software: https://www.cog-genomics.org/plink2

BOLT-LMM software: https://data.broadinstitute.org/alkesgroup/BOLT-LMM

BOLT-LMM summary statistics for UK Biobank traits: https://data.broadinstitute.org/

alkesgroup/UKBB

UK Biobank: http://www.ukbiobank.ac.uk/

UK Biobank Genotyping and QC Documentation: http://www.ukbiobank.ac.uk/wp-content/

uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf
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M., Hochheiser, H., Washington, N. L., McMurry, J. A., et al. (2016). A whole-genome

analysis framework for effective identification of pathogenic regulatory variants in mendelian

disease. The American Journal of Human Genetics 99, 595–606.

5. Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M., and Ng, P. C. (2016). Sift missense

predictions for genomes. Nature protocols 11, 1.

6. Ioannidis, N. M., Rothstein, J. H., Pejaver, V., Middha, S., McDonnell, S. K., Baheti, S.,

Musolf, A., Li, Q., Holzinger, E., Karyadi, D., et al. (2016). Revel: an ensemble method

for predicting the pathogenicity of rare missense variants. The American Journal of Human

Genetics 99, 877–885.

7. Jagadeesh, K. A., Wenger, A. M., Berger, M. J., Guturu, H., Stenson, P. D., Cooper, D. N.,

Bernstein, J. A., and Bejerano, G. (2016). M-cap eliminates a majority of variants of

uncertain significance in clinical exomes at high sensitivity. Nature Genetics 48, 1581.

8. Sundaram, L., Gao, H., Padigepati, S. R., McRae, J. F., Li, Y., Kosmicki, J. A., Fritzilas,

N., Hakenberg, J., Dutta, A., Shon, J., et al. (2018). Predicting the clinical impact of human

mutation with deep neural networks. Nature Genetics 50, 1161.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


9. Wells, A., Heckerman, D., Torkamani, A., Yin, L., Sebat, J., Ren, B., Telenti, A., and di Iulio,

J. (2019). Ranking of non-coding pathogenic variants and putative essential regions of the

human genome. Nature communications 10, 1–9.

10. Caron, B., Luo, Y., and Rausell, A. (2019). Ncboost classifies pathogenic non-coding variants

in mendelian diseases through supervised learning on purifying selection signals in humans.

Genome biology 20, 32.

11. Eilbeck, K., Quinlan, A., and Yandell, M. (2017). Settling the score: variant prioritization

and mendelian disease. Nature Reviews Genetics 18, 599.

12. Peltonen, L., Perola, M., Naukkarinen, J., and Palotie, A. (2006). Lessons from studying

monogenic disease for common disease. Human molecular genetics 15, R67–R74.

13. Blair, D. R., Lyttle, C. S., Mortensen, J. M., Bearden, C. F., Jensen, A. B., Khiabanian, H.,

Melamed, R., Rabadan, R., Bernstam, E. V., Brunak, S., et al. (2013). A nondegenerate

code of deleterious variants in mendelian loci contributes to complex disease risk. Cell 155,

70–80.

14. Teslovich, T. M., Musunuru, K., Smith, A. V., Edmondson, A. C., Stylianou, I. M., Koseki,

M., Pirruccello, J. P., Ripatti, S., Chasman, D. I., Willer, C. J., et al. (2010). Biological,

clinical and population relevance of 95 loci for blood lipids. Nature 466, 707.

15. Kathiresan, S. and Srivastava, D. (2012). Genetics of human cardiovascular disease. Cell

148, 1242–1257.

16. Chong, J. X., Buckingham, K. J., Jhangiani, S. N., Boehm, C., Sobreira, N., Smith, J. D.,

Harrell, T. M., McMillin, M. J., Wiszniewski, W., Gambin, T., et al. (2015). The genetic

basis of mendelian phenotypes: discoveries, challenges, and opportunities. The American

Journal of Human Genetics 97, 199–215.

17. Zhu, X., Need, A. C., Petrovski, S., and Goldstein, D. B. (2014). One gene, many neuropsy-

chiatric disorders: lessons from mendelian diseases. Nature neuroscience 17, 773.

18. Katsanis, N. (2016). The continuum of causality in human genetic disorders. Genome biology

17, 233.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


19. Freund, M. K., Burch, K. S., Shi, H., Mancuso, N., Kichaev, G., Garske, K. M., Pan,

D. Z., Miao, Z., Mohlke, K. L., Laakso, M., et al. (2018). Phenotype-specific enrichment of

mendelian disorder genes near gwas regions across 62 complex traits. The American Journal

of Human Genetics 103, 535–552.

20. Zeng, J., De Vlaming, R., Wu, Y., Robinson, M. R., Lloyd-Jones, L. R., Yengo, L., Yap,

C. X., Xue, A., Sidorenko, J., McRae, A. F., et al. (2018). Signatures of negative selection

in the genetic architecture of human complex traits. Nature genetics 50, 746.

21. Zhang, Y., Qi, G., Park, J.-H., and Chatterjee, N. (2018). Estimation of complex effect-size

distributions using summary-level statistics from genome-wide association studies across 32

complex traits. Nature genetics 50, 1318.

22. Zhu, X. and Stephens, M. (2018). Large-scale genome-wide enrichment analyses identify new

trait-associated genes and pathways across 31 human phenotypes. Nature communications

9, 4361.

23. Schoech, A. P., Jordan, D. M., Loh, P.-R., Gazal, S., O’Connor, L. J., Balick, D. J., Palamara,

P. F., Finucane, H. K., Sunyaev, S. R., and Price, A. L. (2019). Quantification of frequency-

dependent genetic architectures in 25 uk biobank traits reveals action of negative selection.

Nature communications 10, 790.

24. O’Connor, L. J., Schoech, A. P., Hormozdiari, F., Gazal, S., Patterson, N., and Price, A. L.

(2019). Extreme polygenicity of complex traits is explained by negative selection. The

American Journal of Human Genetics 105, 456–476.

25. Finucane, H. K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.-R., Anttila,

V., Xu, H., Zang, C., Farh, K., et al. (2015). Partitioning heritability by functional annotation

using genome-wide association summary statistics. Nature Genetics 47, 1228.

26. Gazal, S., Finucane, H. K., Furlotte, N. A., Loh, P.-R., Palamara, P. F., Liu, X., Schoech, A.,

Bulik-Sullivan, B., Neale, B. M., Gusev, A., et al. (2017). Linkage disequilibrium–dependent

architecture of human complex traits shows action of negative selection. Nature Genetics 49,

1421.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


27. Gazal, S., Marquez-Luna, C., Finucane, H. K., and Price, A. L. (2019). Reconciling s-ldsc

and ldak functional enrichment estimates. Nature Genetics 51, 1202–1204.

28. 1000 Genomes Project Consortium et al. (2015). A global reference for human genetic

variation. Nature 526, 68.

29. Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings

of the 22nd acm sigkdd international conference on knowledge discovery and data mining

ACM pp. 785–794.

30. Hormozdiari, F., Gazal, S., van de Geijn, B., Finucane, H. K., Ju, C. J.-T., Loh, P.-R.,

Schoech, A., Reshef, Y., Liu, X., O’Connor, L., et al. (2018). Leveraging molecular quantita-

tive trait loci to understand the genetic architecture of diseases and complex traits. Nature

Genetics 50, 1041–1047.

31. Adzhubei, I., Jordan, D. M., and Sunyaev, S. R. (2013). Predicting functional effect of

human missense mutations using polyphen-2. Current protocols in human genetics 76, 7–20.

32. Dong, C., Wei, P., Jian, X., Gibbs, R., Boerwinkle, E., Wang, K., and Liu, X. (2014).

Comparison and integration of deleteriousness prediction methods for nonsynonymous snvs

in whole exome sequencing studies. Human molecular genetics 24, 2125–2137.

33. Choi, Y., Sims, G. E., Murphy, S., Miller, J. R., and Chan, A. P. (2012). Predicting the

functional effect of amino acid substitutions and indels. PloS one 7, e46688.

34. Samocha, K. E., Kosmicki, J. A., Karczewski, K. J., O’Donnell-Luria, A. H., Pierce-Hoffman,

E., MacArthur, D. G., Neale, B. M., and Daly, M. J. (2017). Regional missense constraint

improves variant deleteriousness prediction. BioRxiv pp. 148353.

35. Qi, H., Chen, C., Zhang, H., Long, J. J., Chung, W. K., Guan, Y., and Shen, Y. (2018).

Mvp: predicting pathogenicity of missense variants by deep learning. bioRxiv pp. 259390.

36. Landrum, M. J., Lee, J. M., Benson, M., Brown, G., Chao, C., Chitipiralla, S., Gu, B.,

Hart, J., Hoffman, D., Hoover, J., et al. (2015). Clinvar: public archive of interpretations of

clinically relevant variants. Nucleic acids research 44, D862–D868.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


37. Stenson, P. D., Mort, M., Ball, E. V., Evans, K., Hayden, M., Heywood, S., Hussain, M.,

Phillips, A. D., and Cooper, D. N. (2017). The human gene mutation database: towards a

comprehensive repository of inherited mutation data for medical research, genetic diagnosis

and next-generation sequencing studies. Human genetics 136, 665–677.

38. Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T.,

O’Donnell-Luria, A. H., Ware, J. S., Hill, A. J., Cummings, B. B., et al. (2016). Anal-

ysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285.

39. Dey, K. K., Van de Geijn, B., Kim, S. S., Hormozdiari, F., Kelley, D. R., and Price, A. L.

(2019). Evaluating the informativeness of deep learning annotations for human complex

diseases. bioRxiv pp. 784439.

40. Hormozdiari, F., van de Geijn, B., Nasser, J., Weissbrod, O., Gazal, S., Ju, C. J.-T.,

O’Connor, L., Hujoel, M. L., Engreitz, J., Hormozdiari, F., et al. (2019). Functional disease

architectures reveal unique biological role of transposable elements. Nature communications

10.

41. Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predictions.

In Advances in Neural Information Processing Systems pp. 4765–4774.

42. Davydov, E. V., Goode, D. L., Sirota, M., Cooper, G. M., Sidow, A., and Batzoglou, S.

(2010). Identifying a high fraction of the human genome to be under selective constraint

using gerp++. PLoS computational biology 6, e1001025.

43. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J., and Kircher, M. (2018). Cadd:

predicting the deleteriousness of variants throughout the human genome. Nucleic acids

research 47, D886–D894.

44. Di Iulio, J., Bartha, I., Wong, E. H., Yu, H.-C., Lavrenko, V., Yang, D., Jung, I., Hicks,

M. A., Shah, N., Kirkness, E. F., et al. (2018). The human noncoding genome defined by

genetic diversity. Nature Genetics 50, 333.

45. Havrilla, J. M., Pedersen, B. S., Layer, R. M., and Quinlan, A. R. (2019). A map of

constrained coding regions in the human genome. Nature Genetics 51, 88–95.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


46. Zhou, J. and Troyanskaya, O. G. (2015). Predicting effects of noncoding variants with deep

learning–based sequence model. Nature methods 12, 931.

47. Zhou, J., Theesfeld, C. L., Yao, K., Chen, K. M., Wong, A. K., and Troyanskaya, O. G.

(2018). Deep learning sequence-based ab initio prediction of variant effects on expression

and disease risk. Nature Genetics 50, 1171.

48. Zhou, J., Park, C. Y., Theesfeld, C. L., Wong, A. K., Yuan, Y., Scheckel, C., Fak, J. J.,

Funk, J., Yao, K., Tajima, Y., et al. (2019). Whole-genome deep-learning analysis identifies

contribution of noncoding mutations to autism risk. Nature Genetics 51, 973.

49. Hayeck, T. J., Stong, N., Wolock, C. J., Copeland, B., Kamalakaran, S., Goldstein, D. B.,

and Allen, A. S. (2019). Improved pathogenic variant localization via a hierarchical model

of sub-regional intolerance. The American Journal of Human Genetics 104, 299–309.

50. Kim, S. S., Dai, C., Hormozdiari, F., van de Geijn, B., Gazal, S., Park, Y., O’Connor, L.,

Amariuta, T., Loh, P.-R., Finucane, H., et al. (2019). Genes with high network connectivity

are enriched for disease heritability. The American Journal of Human Genetics 104, 896–913.

51. Wang, X. and Goldstein, D. B. (2018). Enhancer redundancy predicts gene pathogenicity

and informs complex disease gene discovery. bioRxiv pp. 459123.

52. Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kherad-

pour, P., Zhang, Z., Wang, J., Ziller, M. J., et al. (2015). Integrative analysis of 111 reference

human epigenomes. Nature 518, 317.

53. Trynka, G., Sandor, C., Han, B., Xu, H., Stranger, B. E., Liu, X. S., and Raychaudhuri, S.

(2013). Chromatin marks identify critical cell types for fine mapping complex trait variants.

Nature Genetics 45, 124.

54. Farh, K. K.-H., Marson, A., Zhu, J., Kleinewietfeld, M., Housley, W. J., Beik, S., Shoresh,

N., Whitton, H., Ryan, R. J., Shishkin, A. A., et al. (2015). Genetic and epigenetic fine

mapping of causal autoimmune disease variants. Nature 518, 337.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


55. Weissbrod, O., Hormozdiari, F., Benner, C., Cui, R., Ulirsch, J., Gazal, S., Schoech, A. P.,

Van De Geijn, B., Reshef, Y., Marquez-Luna, C., et al. (2019). Functionally-informed

fine-mapping and polygenic localization of complex trait heritability. BioRxiv pp. 807792.

56. MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Junkins, H., McMahon,

A., Milano, A., Morales, J., et al. (2016). The new nhgri-ebi catalog of published genome-wide

association studies (gwas catalog). Nucleic Acids Research 45, D896–D901.

57. Buniello, A., MacArthur, J. A. L., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone, C.,

McMahon, A., Morales, J., Mountjoy, E., Sollis, E., et al. (2018). The nhgri-ebi gwas catalog

of published genome-wide association studies, targeted arrays and summary statistics 2019.

Nucleic acids research 47, D1005–D1012.

58. Kichaev, G., Yang, W.-Y., Lindstrom, S., Hormozdiari, F., Eskin, E., Price, A. L., Kraft,

P., and Pasaniuc, B. (2014). Integrating functional data to prioritize causal variants in

statistical fine-mapping studies. PLoS genetics 10, e1004722.

59. Chen, W., McDonnell, S. K., Thibodeau, S. N., Tillmans, L. S., and Schaid, D. J. (2016). In-

corporating functional annotations for fine-mapping causal variants in a bayesian framework

using summary statistics. Genetics 204, 933–958.

60. Hu, Y., Lu, Q., Powles, R., Yao, X., Yang, C., Fang, F., Xu, X., and Zhao, H. (2017).

Leveraging functional annotations in genetic risk prediction for human complex diseases.

PLoS computational biology 13, e1005589.

61. Marquez-Luna, C., Gazal, S., Loh, P.-R., Kim, S. S., Furlotte, N., Auton, A., Price, A. L.,

23andMe Research Team, et al. (2019). Modeling functional enrichment improves polygenic

prediction accuracy in uk biobank and 23andme data sets. bioRxiv.

62. Kichaev, G., Bhatia, G., Loh, P.-R., Gazal, S., Burch, K., Freund, M. K., Schoech, A.,

Pasaniuc, B., and Price, A. L. (2019). Leveraging polygenic functional enrichment to improve

gwas power. The American Journal of Human Genetics 104, 65–75.

63. Finucane, H. K., Reshef, Y. A., Anttila, V., Slowikowski, K., Gusev, A., Byrnes, A., Gazal,

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


S., Loh, P.-R., Lareau, C., Shoresh, N., et al. (2018). Heritability enrichment of specifically

expressed genes identifies disease-relevant tissues and cell types. Nature Genetics 50, 621.

64. Jung, I., Schmitt, A., Diao, Y., Lee, A. J., Liu, T., Yang, D., Tan, C., Eom, J., Chan,

M., Chee, S., et al. (2019). A compendium of promoter-centered long-range chromatin

interactions in the human genome. Nature genetics 51, 1442–1449.

65. Fulco, C. P., Nasser, J., Jones, T. R., Munson, G., Bergman, D. T., Subramanian, V.,

Grossman, S. R., Anyoha, R., Doughty, B. R., Patwardhan, T. A., et al. (2019). Activity-

by-contact model of enhancer–promoter regulation from thousands of crispr perturbations.

Nature Genetics 51, 1664–1669.

66. International HapMap 3 Consortium et al. (2010). Integrating common and rare genetic

variation in diverse human populations. Nature 467, 52.

67. Liu, X., Jian, X., and Boerwinkle, E. (2011). dbnsfp: a lightweight database of human

nonsynonymous snps and their functional predictions. Human mutation 32, 894–899.

68. Liu, X., Wu, C., Li, C., and Boerwinkle, E. (2016). dbnsfp v3. 0: A one-stop database

of functional predictions and annotations for human nonsynonymous and splice-site snvs.

Human mutation 37, 235–241.

69. Choi, Y. and Chan, A. P. (2015). Provean web server: a tool to predict the functional effect

of amino acid substitutions and indels. Bioinformatics 31, 2745–2747.

70. UniProt Consortium. (2018). Uniprot: a worldwide hub of protein knowledge. Nucleic acids

research 47, D506–D515.

71. Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a receiver

operating characteristic (roc) curve. Radiology 143, 29–36.

72. Loh, P.-R., Bhatia, G., Gusev, A., Finucane, H. K., Bulik-Sullivan, B. K., Pollack, S. J.,

de Candia, T. R., Lee, S. H., Wray, N. R., Kendler, K. S., et al. (2015). Contrasting genetic

architectures of schizophrenia and other complex diseases using fast variance-components

analysis. Nature Genetics 47, 1385.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


73. Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P., and Price, A. L. (2018). Mixed-model

association for biobank-scale datasets. Nature Genetics 50, 906–908.

74. Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Loh, P.-R., Duncan,

L., Perry, J. R., Patterson, N., Robinson, E. B., et al. (2015). An atlas of genetic correlations

across human diseases and traits. Nature Genetics 47, 1236.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables

Score Description
Coverage

(% SNPs scored)
Ref.

PolyPhen-2 Impact of missense variants using protein sequence and structure using HumDiv 0.28% 1,31
PolyPhen-2-HVAR Impact of missense variants using protein sequence and structure using HumVar 0.28% 1,31
MetaLR Deleterious missense mutations using ensemble scoring (logistic regression) 0.32% 32
MetaSVM Deleterious missense mutations using ensemble scoring (support vector machine) 0.32% 32
PROVEAN Impact of an amino acid change on protein function 0.31% 33,69
SIFT 4G Impact of an amino acid change on protein function 0.31% 5
REVEL Pathogenic missense variants using ensemble scoring 0.32% 6
M-CAP Pathogenic rare missense variants 0.03% 7
PrimateAI Impact of missense variants using deep neural networks 0.26% 8
MPC Regional missense constraint 0.10% 34
MVP Impact of missense variants using deep neural networks 0.29% 35

CADD Predicted deleterious variants using ensemble scoring 100% 2,43
Eigen Putatively causal variants using unsupervised learning 83.79% 3
Eigen-PC Putatively causal variants using unsupervised learning using the lead eigenvector 83.79% 3
ReMM Pathogenic regulatory variants using ensemble scoring 100% 4
NCBoost Pathogenic non-coding variants using ensemble scoring 28.55% 10
ncER Essential regulatory variants using ensemble scoring 61.94% 9

Table 1. 11 Mendelian missense and 6 genome-wide Mendelian pathogenicity scores. For each
of 17 Mendelian disease pathogenicity scores analyzed, we provide a description and report the coverage (%
of SNPs scored) and corresponding reference. The first 11 annotations are scores for missense variants, and
the last 6 annotations are genome-wide scores. Annotations are ordered first by type and then by the year
of publication.

Score # scores
# marginally significant

annotations
# significant annotations
in a combined joint model

published boosted published boosted

Mendelian missense 11 2* 10 1* 2

Genome-wide Mendelian 6 3 6 2 3

Additional scores 18 6** 13 0** 0

Baseline-LD model annotations 47 n/a 24 n/a 3

Table 2. Summary of informativeness for common disease of annotations derived from 82
published scores and corresponding boosted scores For each category of scores, we report the number
of scores; the number of marginally conditionally informative annotations (S-LDSC τ∗ p < 0.0001, conditional
on the baseline-LD model; and the number of jointly conditionally informative annotations in a combined
joint model (S-LDSC τ∗ p < 0.0001 and |τ∗| ≥ 0.25, conditional on the baseline-LD model and each other).
*Based on 9/11 published Mendelian missense scores analyzed, as binarized annotations were too small to
analyze for the remaining 2 published Mendelian missense scores. **Based on 16/18 published additional
scores analyzed, as binarized annotations were too small to analyzed for the remaining 2 published additional
scores.
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Figures

Figure 1. Informativeness for common disease of binary annotations derived from 11 Mendelian
missense scores and corresponding boosted scores. We report (A) heritability enrichment of binary
annotations derived from published and boosted Mendelian missense scores, meta-analyzed across 41 in-
dependent traits; (B) marginal τ∗ values, conditional on the baseline-LD model (for annotations derived
from published scores) or the baseline-LD model and corresponding published annotations (for annotations
derived from boosted scores). We report results for 10 Mendelian missense scores (of 11 analyzed) for which
annotations derived from published and/or boosted scores were marginally significant; the published M-CAP
score spanned too few SNPs to be included in the S-LDSC analysis. The percentage under each bar de-
notes the proportion of SNPs in the annotation; the proportion of top SNPs included in each annotation
was optimized to maximize informativeness (largest |τ∗| among Bonferroni-significant annotations, or most
significant p-value if no annotation was Bonferroni-significant). Error bars denote 95% confidence intervals.
In panel (B), * denotes marginally conditionally significant annotations. Numerical results are reported
in Table S2. Results for standardized enrichment, defined as enrichment times the standard deviation of
annotation value (to adjust for annotation size), are reported in Table S4.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2020. ; https://doi.org/10.1101/2020.01.02.890657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.02.890657
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Informativeness for common disease of binary annotations derived from 6 genome-
wide Mendelian scores and corresponding boosted scores. We report (A) heritability enrichment
of binary annotations derived from published and boosted genome-wide Mendelian scores, meta-analyzed
across 41 independent traits; (B) marginal τ∗ values, conditional on the baseline-LD model (for annotations
derived from published scores) or the baseline-LD model and corresponding published annotations (for
annotations derived from boosted scores). We report results for 6 genome-wide Mendelian scores (of 6
analyzed) for which annotations derived from published and/or boosted scores were marginally significant.
The percentage under each bar denotes the proportion of SNPs in the annotation; the proportion of top SNPs
included in each annotation was optimized to maximize informativeness (largest |τ∗| among Bonferroni-
significant annotations, or top 5% if no annotation was Bonferroni-significant; top 5% was the average
optimized proportion among significant annotations). Error bars denote 95% confidence intervals. In panel
(B), * denotes marginally conditionally significant annotations. Numerical results are reported in Table S7.
Results for standardized enrichment, defined as enrichment times the standard deviation of annotation value
(to adjust for annotation size), are reported in Table S4.
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Figure 3. Informativeness for common disease of binary annotations derived from 18 additional
genome-wide scores + 47 baseline-LD model annotations and corresponding boosted scores.
We report (A) heritability enrichments of binary annotations derived from published and boosted additional
genome-wide scores, meta-analyzed across 41 independent traits; (B) marginal τ∗ values, conditional on
the baseline-LD model and 8 Roadmap annotations (for annotations derived from published scores) or
the baseline-LD model, 8 Roadmap annotations, and corresponding published annotations (for annotations
derived from boosted scores); (C) heritability enrichments of binary annotations derived from published and
boosted baseline-LD model annotations; and (D) marginal τ∗ values of binary annotations derived from
published and boosted baseline-LD model annotations. In (A) and (B), we report results for the 10 most
informative additional genome-wide scores (of 18 analyzed). In (C) and (D), we report results for the 10
most informative baseline-LD model annotations (of 47 analyzed). The percentage under each bar denotes
the proportion of SNPs in the annotation; the proportion of top SNPs included in each annotation was
optimized to maximize informativeness (largest |τ∗| among Bonferroni-significant annotations, or top 5% if
no annotation was Bonferroni-significant; top 5% was the average optimized proportion among significant
annotations). Error bars denote 95% confidence intervals. In panels (B) and (D), * denotes marginally
conditionally significant annotations. Numerical results are reported in Table S10. Results for standardized
enrichment, defined as enrichment times the standard deviation of annotation value (to adjust for annotation
size), are reported in Table S4.
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Figure 4. Classification of fine-mapped disease SNPs using published and boosted scores.
(A) (single-score analysis) We report the classification accuracy (AUROC) of each of the 82 boosted scores
compared to the corresponding published score. We highlighted three scores: the score with the highest
AUROC(published) (CpG content), the score with the highest AUROC(boosted) (Super-enhancer), and the
score with the largest difference between AUROC(boosted) and AUROC(published) (Promoter). Scores
with AUROC < 0.5 are displayed as AUROC = 0.5. (B) (multi-score analysis) We report the true positive
rate vs. false positive rate and the classification accuracy (AUROC) of four aggregated scores. Numerical
results are reported in Table S14 and Table S16.
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Figure 5. Informativeness for common disease of 11 jointly significant binary annotations from
combined joint model. We report (A) heritability enrichment of 11 jointly significant binary annotations,
meta-analyzed across 41 independent traits; (B) joint τ∗ values, conditioned on the baseline-LD model,
8 Roadmap annotations, and each other. We report results for the 11 jointly conditionally informative
annotations in the combined joint model (S-LDSC τ∗ p < 0.0001 and |τ∗| ≥ 0.25). The percentage under
each bar denotes the proportion of SNPs in the annotation. Error bars denote 95% confidence intervals.
Numerical results are reported in Table S18. Results for standardized enrichment, defined as enrichment
times the standard deviation of annotation value (to adjust for annotation size), are reported in Table S4.
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