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Gut microbial communities can respond to antibiotic perturbations by rapidly 
altering their taxonomic and functional composition. However, little is known about 
the strain-level processes that drive this collective response. Here we characterize 
the gut microbiome of a single individual at high temporal and genetic resolution 
through a period of health, disease, antibiotic treatment, and recovery.	We used 
deep, linked-read metagenomic sequencing to track the longitudinal dynamics of 
thousands of single nucleotide variants within 36 species, which allowed us to 
contrast these genetic dynamics with the ecological fluctuations at the species 
level. We find that antibiotics can drive rapid shifts in the genetic composition of 
individual species, often involving incomplete genome-wide sweeps of pre-existing 
variants. Interestingly, genetic changes frequently occur in species without 
obvious changes in relative species abundance, emphasizing the importance of 
monitoring diversity below the species level. Our results provide new insights into 
the population genetic forces that shape individual microbiomes on therapeutically 
relevant timescales, with potential implications for personalized health and disease.  
 
Introduction  
 
The composition of the gut microbiome varies among human populations and individuals, 
and it is thought to play a key role in maintaining health and reducing susceptibility to 
different diseases (1-4). Understanding how this microbial ecosystem changes from week 
to week–through periods of health, disease and treatment–is important for personalized 
health management and design of microbiome-aware therapies (5).  
 
Many studies have investigated intra-host dynamics at the species or pathway level (6-
16). Among other findings, these studies have shown that oral antibiotics can dramatically 
influence the composition of the gut microbiome over a period of days, while the 
community often regains much of its initial composition in the weeks or months after 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.21.886093doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.21.886093
http://creativecommons.org/licenses/by-nc/4.0/


2 
 

antibiotics are removed (7-9). This suggests an intriguing hypothesis, in which the long-
term composition of a healthy gut community is buffered against brief environmental 
perturbations. 
 
However, the mechanisms that enable this ecological robustness remain poorly 
understood. Does species composition recover because external strains are able to 
recolonize the host? Or do resident strains persist in refugia and expand again once 
antibiotics are removed? In the latter case, do the resident populations also acquire 
genetic differences during this time, either due to population bottlenecks or to new 
selection pressures that are revealed during treatment? To address these questions, it is 
necessary to map the fine scale genetic diversity below the species or pathway level, and 
follow how it changes during periods of health, disease, and treatment.  
 
Advances in strain-resolved metagenomics and isolate sequencing (17-19) have made it 
possible to detect DNA sequence variants within species, and to track how they change 
within and between hosts. These studies have shown that gut bacteria can acquire genetic 
differences over time even in healthy human hosts, and that these differences arise from 
a mixture of external replacement events (18, 20, 21) and the evolution of resident strains 
(21-23). However, because these studies are based on relatively few timepoints per host, 
or shallow sampling of their microbiota, the population genetic processes that drive these 
strain-level dynamics remain poorly characterized. Understanding how the forces of 
mutation, recombination, selection, and genetic drift operate within hosts is critical for 
efforts to forecast personalized responses to drugs or other therapies.  
 
To bridge this gap, we used deep metagenomic sequencing to follow the genetic diversity 
within a single host microbiome at approximately weekly intervals over a period of five 
months. This longitudinal study included periods of infectious disease and the oral 
administration of broad-spectrum antibiotics. In contrast to conventional metagenomic 
studies, we used a linked-read sequencing technique to generate and analyze each of our 
metagenomic samples. Large molecules of bacterial DNA were isolated in millions of 
emulsified droplets, digested into shorter fragments, and labelled with a corresponding 
DNA barcode to follow linked reads from the droplet. Previous work has shown that the 
linkage information encoded in these barcoded “read clouds” can improve genome 
assembly (24) and taxonomic assignment (25) from human gut metagenomes. Here, we 
hypothesized that longitudinal applications of linked read sequencing could also aid the 
detection and interpretation of genetic changes that occur within individual species.  
 
We developed new statistical methods that leverage these data to simultaneously 
measure the ecological and evolutionary dynamics across multiple species during the 
course of antibiotic treatment. We find that natural selection can drive rapid shifts in the 
genetic composition of individual species, often via incomplete genome-wide sweeps of 
linked sequence variants. Interestingly, these within-species dynamics can occur even 
without large changes in the relative abundance of the species, emphasizing the 
importance of monitoring diversity below the species level. Moreover, we find that many 
sweeping variants were already segregating in their respective populations before 
exposure to antibiotics, and quickly revert to their original state once antibiotics are 
removed, echoing previous observations of robustness at the species level. Together, 
these results provide new insights into the population genetic forces that shape the gut 
microbiota of individual hosts, which has important implications for personalized health 
and disease.   
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Results  
 
Longitudinal linked read sequencing of a human gut microbiome during disease 
and treatment    
 
Generation of linked reads requires the preparation of long DNA fragments. We therefore 
developed an optimized protocol for extracting high-molecular weight DNA from human 
stool samples (Methods). We used this approach to perform linked read sequencing (10X 
Genomics) on 19 stool samples collected from a single individual over a period of 5 months 
(Fig. 1A, B, Table S1). During this time, the individual was diagnosed with Lyme disease 
and received a two-week course of broad-spectrum oral antibiotics (doxycycline). We 
generated deep sequencing data for each sample (ranging from ~8-160 Gbp), so that a 
typical read was present in a “read cloud” (Fig. 1C) containing ~4-30 other read pairs (Fig. 
1D, Fig. S1). Consistent with previous studies (25), we observed high rates of read cloud 
“impurity”, with each read cloud containing fragments from ~5-10 different species (Fig. 
1D). To overcome this issue, we used a two-stage approach, which leverages the hybrid 
nature of the linked read protocol. We first ignored barcodes and used short-read, 
reference-based methods to track species and sub-species diversity over time (21, 22, 
26). We then developed a statistical model for linking genomic regions based on higher 
than expected rates of barcode sharing given the level of barcode impurity in our data 
(Methods). Using this hybrid approach, we documented the ecological and evolutionary 
responses of the gut microbial community before, during, and after antibiotic treatment.  
 
Consistent with previous studies (20, 26-30), we observed a substantial perturbation in 
species-level composition during and immediately after antibiotic treatment, followed by a 
return to near baseline values by the end of the sampling interval (Fig. 1B). However, only 
a few species dramatically declined in relative abundance during this period: of the 48 
species that started with a baseline relative abundance greater than 0.1%, only 9 
experienced more than a 10-fold reduction in relative abundance by the end of the 
treatment window. Notable examples include Alistipes finegoldii or Butyrivibrio crossotus 
(Fig. 2A). The small number of such examples suggests that a large fraction of the 
community may have been able to maintain high absolute abundance during treatment, 
e.g. due to reduced antibiotic sensitivity. Consistent with this hypothesis, we observed a 
high baseline proportion of doxycycline-related resistance genes among our metagenomic 
reads (~200 per million mapped), which increased ~2-fold during treatment (Fig. S2). In 
addition, we found that the Bacteroides vulgatus population maintained a high replication 
origin peak-to-trough ratio (PTR), a proxy for bacterial growth rate, during the antibiotic 
treatment period (Fig. S3). Since doxycycline is a translation inhibitor, the high PTR values 
suggest that the B. vulgatus population, and by extension, the other species that 
maintained similar relative abundances during treatment, may have reduced sensitivity to 
the effects of doxycycline. This is consistent with previous observations of tetracycline 
resistance in isolates of several Bacteroides species (31).  
 
Deep longitudinal sequencing reveals shifts in the genetic composition of 36 
species in the same host.  
 
The general pattern of persistence and recovery at the species level is shared by many 
other classes of antibiotics (28). Yet, the strain-level dynamics that give rise to this long-
term stability remain poorly understood. Do the species that persist through disease and 
treatment remain stable genetically? Or does this general pattern of robustness mask a 
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larger flux of genetic changes occurring within individual species? Our approach allows us 
to address these questions by tracking genetic variation within species over time.  
 
We first tracked the genetic composition of each species throughout the time course by 
aligning our short sequencing reads to a panel of reference genomes and estimating the 
population frequency of single nucleotide variants (SNVs) at each timepoint (Methods). 
The high sequencing coverage enabled at least ~10-fold coverage per timepoint for 
species with abundance >0.3%, and coverages as high as ~500x in some of the most 
abundant species (Fig. S4). This allowed us to simultaneously monitor SNV dynamics 
within 36 species that passed our coverage thresholds (Methods), and to contrast these 
“evolutionary” responses with the “ecological” dynamics observed at the species level 
(Figs. 2, 3, S5, S6).  
 
This strain-level analysis revealed striking differences in the genetic composition of 
different species. Consistent with previous work (18, 20, 21, 27), the initial levels of genetic 
diversity vary widely between species. Some common species, such as Bacteroides 
vulgatus and Bacteroides uniformis, have more than ~10,000 SNVs at intermediate 
frequencies whereas other species, e.g. Bacteroides coprocola or Alistipes sp, have fewer 
than ~100 detectable SNVs (Fig. 2B). Of particular interest are those SNVs that undergo 
large changes in frequency between the initial and later timepoints (e.g. from <20% to 
>80%, with FDR<0.1, see Methods); these indicate a nearly complete “sweep” within the 
species of interest. We observe a similarly wide range in the number of SNV differences 
during and immediately after antibiotic treatment, from more than ~10,000 in some species 
(e.g. Eubacterium eligens) to ~10 (or even 0) in others (Fig. 2C). Of the 36 populations in 
Fig. 2C, more than half accumulated at least one SNV difference during this period, and 
more than 80% accumulated SNV differences in at least one portion of the study.  
 
Similar within-host changes have recently been observed in metagenomic analyses from 
healthy hosts (21-23), though at a significantly lower rate (Fisher’s exact test, P<0.001). A 
major challenge in these earlier studies has been to demonstrate that the temporally 
variable SNVs are truly linked to their inferred genomic background, and are not simply 
read mapping artifacts (e.g., from another temporally fluctuating species that shares some 
parts of the genome). Read cloud sequencing provides an opportunity to address this 
question. For each SNV difference reported in Fig. 2C, we examined the patterns of 
barcode sharing with genes in the “core” genomes of our reference genome panel, which 
provides a proxy for the true genomic background (Methods). This analysis yields positive 
confirmation for ~80% of the SNV differences in Fig. 2C (where both alleles share read 
clouds with a core gene in the target species), and negative confirmation for <1% (Fig. 
S7). We conclude that the majority of these SNVs represent true genetic changes within 
their respective populations.   
 
The variable genetic responses in different species are not easily explained by their 
phylogenetic relatedness or their relative abundance trajectories. As an example, Fig. 3 
shows the full species abundance and SNV frequency trajectories for six example species, 
which are chosen to illustrate the range of observed behaviors. This set includes three 
different members of the Alistipes genus that coexist within this particular host. The first 
two species, A. sp and A. finegoldii, experience dramatic reductions in relative abundance 
during treatment, but we observe genetic differences in only one of the populations (A. 
finegoldii) when the they recover to their initial levels. In A. onderdonkii, by contrast, the 
relative abundance remains high at the end of the treatment phase, but we observe rapid 
changes in the frequencies of several SNVs within this species during the same time 
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period (P<0.001, Methods). These examples show that species abundances alone are not 
sufficient to predict genetic response within species: relatively constant species 
abundance trajectories can mask interesting genetic shifts within a species, and vice 
versa.  
 
Quantifying genetic linkage between SNVs using barcoded read clouds 
 
We next sought to quantify the population genetic processes that could give rise to the 
SNV changes in Figs. 2 and 3. A key question is the extent of genetic linkage within a 
species: is recombination sufficiently frequent that genetic drift and natural selection act 
independently on different SNVs? Or are SNV trajectories tightly correlated because they 
are linked together on a small number of clonal backgrounds? This question is particularly 
relevant for species with high levels of SNV diversity like B. vulgatus (Fig. S8), where it 
can mean the difference between ~10^4 evolutionary trajectories (if SNVs are 
independent) or possibly only one (if SNVs derive from a mixture of two clonal strains). 
 
Previous analyses of gut bacteria suggest that recombination can efficiently decouple 
SNVs over long timescales (i.e., millions of bacterial generations) (21, 32), but the extent 
of genetic linkage within hosts remains unclear. The additional information provided by 
linked read sequencing now allows us to investigate this question. We developed a 
statistical approach for detecting linkage between pairs of SNVs (Fig. 4A), which accounts 
for the substantial coverage variation across different species and read clouds (Methods). 
Fig. 4B shows how the overall levels of read cloud sharing depend on the coordinate 
distance between the two SNVs on the reference genome. Consistent with the fragment 
length estimates from our HMW DNA extraction protocol (Fig. S9), we observed an 
enrichment of shared read clouds barcodes for SNVs within ~10kb of each other, though 
the overall fraction of long-range read clouds remains modest (~10%). For the subset of 
SNVs pairs with significant read cloud sharing, we further quantified genetic linkage by 
examining the combinations of major and minor alleles that are observed in the same read 
clouds. In particular, we estimated the number of allelic combinations (or haplotypes) that 
are observed for each pair of SNVs as a function of their coordinate distance on the 
reference genome (Fig. 4A). According to the four-gamete test (33), three or fewer 
haplotypes are consistent with clonal evolution, but the presence of all four haplotypes 
indicates a possible recombination event between the two SNVs (Methods). Fig. 4D shows 
that the vast majority of the SNV pairs across species are consistent with clonal evolution: 
of the ~4 million SNV pairs we examined that were separated by more than 2kb (Fig. 4C), 
only ~600 showed significant evidence for all four haplotypes (q<0.05, Methods). Most of 
these four-haplotype pairs are concentrated in just a few species, with high values of 
linkage disequilibrium between the two SNVs (Fig. S10). This suggests that to a first 
approximation, the SNV dynamics within species in this time course reflect a competition 
between a few clonal haplotypes, rather than independent alleles. This is consistent with 
previous indirect evidence from the clustering of allele frequencies within hosts (21, 29, 
34).  
 
For populations with sufficiently high SNV density (>1 per kb), the patterns of read cloud 
sharing can inform efforts to cluster SNVs into smaller numbers of competing haplotypes 
(Fig. S8). However, many interesting temporal changes occurred in populations with much 
lower SNV density (<1 per 10kb, Fig 2). Figure 4 suggests that SNVs will not typically 
share read clouds in these populations, except in rare cases where they are located in 
nearby regions of the genome. We therefore used a heuristic approach to infer clusters of 
perfectly linked SNVs clusters (or multi-SNV haplotypes) based on similarities in their 
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allele frequency trajectories (Methods). The inferred haplotypes are indicated by the 
coloring scheme in Fig. 3.  
 
Temporal dynamics of haplotypes reveal cryptic phenotypic differences within 
species 

We next investigated the role of natural selection in driving the genetic changes we 
observed within species. Many studies assume that intra-host dynamics are dominated by 
selection pressures that act at the level of species or functional guilds, while genetic 
variants within a species are mostly interchangeable. In this “neutral” scenario, any shifts 
in the genetic composition of individual species must be driven by stochastic demographic 
processes (e.g.  genetic drift) (35, 36). Other studies have argued that environmental shifts 
like antibiotics could reveal previously hidden within-species differences, leading to rapid 
shifts in the frequencies of different genetic variants (37).  
 
The high levels of genetic linkage make it difficult to distinguish between these scenarios 
using traditional approaches, since selection acts on extended haplotypes rather than 
individual alleles. For example, the SNV clusters in Fig. 3 contain many synonymous 
variants (Fig. 5), which are presumably hitchhiking alongside the true causative mutations. 
These driver mutations may even be missing if they arise from structural variants, mobile 
elements, or other accessory genes that are not present in our reference genome (23, 24, 
38-40).   
 
To overcome these limitations, we focused on the residual information encoded in the 
shapes of the SNV trajectories in Fig. 3. We developed a new statistical test to determine 
whether the SNV trajectories in Fig. 3 were consistent with a neutral model with a constant 
but unknown strength of genetic drift (Methods). This test leverages the fact that, under a 
constant genetic drift model, the changes in frequency along a single trajectory must be 
statistically similar to each other, so that a large change in one time-interval is unlikely to 
be followed by a small change in another interval. The observed trajectories often violate 
this prediction, and we find significant evidence against the constant genetic drift model 
for 4 of the 5 species in Fig. 3 (Table S3). 

A second possibility is that genetic drift is elevated only during antibiotic treatment, e.g. 
due to a transient population bottleneck. This could be a particularly plausible hypothesis 
for the A. finegoldii population in Fig. 3A, where the genetic changes coincided with a 
dramatic reduction in the relative abundance of that species. While it is difficult to rule out 
similar bottlenecks at unobserved timepoints for the other species in Fig. 3, we still observe 
significant departures from the constant genetic drift model when the antibiotic timepoints 
are excluded (Table S3). Closer inspection of the trajectories reveals the likely source of 
this signal: many of the SNV clusters continue to change in frequency, but in the opposite 
direction, even after antibiotic treatment has concluded. This behavior, which is 
recapitulated across the larger set of species in Fig. 2E, cannot be explained by a simple 
bottleneck during treatment. Instead, we conclude that the initial increases and later 
reversals are most likely caused by time-dependent selection pressures that act on 
different haplotypes within these populations. 

The high temporal resolution of the SNV clusters yields additional information about the 
fitness differences between the different haplotypes. For example, the frequency reversals 
after treatment in Fig. 3 occurred over ~30-40 days, implying a fitness difference about 
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~10% per day (Methods). The increases in frequency during antibiotics can be even more 
rapid. In E. eligens, the minority haplotype increased from 7% to 90% in just two days, 
requiring a corresponding fitness difference of at least ~250% per day. We also observe 
a ~20% increase in the PTR-estimated growth rate  between these two timepoints (Fig. 
S2). This suggests that the dramatic fitness difference arises from a higher growth rate of 
the sweeping haplotype, rather than an increased death rate of the declining strain.  

Statistics of sweeping SNVs reveal strain replacement, evolutionary modification, 
and selection on standing variation  

After demonstrating that genetic changes occur within species, and that these changes 
are likely driven by selection on linked haplotypes and not necessarily associated with 
changes in species abundance, we next sought to investigate the origin of these within-
host sweeps. A key question is whether the temporally variable SNVs arose de novo within 
the host (evolutionary modification) or whether they reflect the invasion of pre-existing 
strains that diverged for many generations before colonizing the host (strain replacement). 
Following previous work (21), we distinguished between these two scenarios by examining 
three additional features of the SNV trajectories in Fig. 3: (i) the protein-coding impact of 
these mutations, (ii) their prevalence across other hosts in a large reference panel 
(Methods), and (iii) the retention of private marker SNVs (i.e., high-frequency alleles that 
are unique to the present host). Figure 5 illustrates these quantities for the six example 
species in Fig. 3, which were chosen to cover the full range of different behaviors we 
observed. 
 
The E. eligens population provides a striking example of strain replacement. The sweeping 
haplotype in this species contains more than 10,000 SNVs that are widely distributed 
across the genome (Supplementary Data 1), consistent with the typical genetic differences 
between E. eligens strains in different hosts (18, 20, 21). Few private marker SNVs are 
retained from the initial timepoint (Fig. 5D), which is again consistent with replacement by 
a distantly related strain. Similar examples of strain replacement have been observed 
previously (6, 10, 18, 21, 39)  but our densely sampled timecourse provides new 
information about the dynamics of this process. The SNV frequency trajectories in Fig. 3D 
show that the distantly related strain was already present at substantial frequencies (~5%) 
long before its dramatic fitness difference was revealed. Fig. 2D shows that this is also the 
case for the four other putative replacements in Fig. 2. This indicates that the replacement 
events we observe here are caused by the sudden increase of previously colonizing 
strains, rather than the contemporary invasion of new strains from outside the host.  
 
At the opposite extreme, the Phascolarctobacterium population in Fig. 3E provides a 
prototypical illustration of an evolutionary modification. In this case, a cluster of just 6 SNVs 
(including 5 amino acid changes, all in non-contiguous genes in the reference genome 
that are unlinked in our read clouds, Supplementary Data 1 and 2) nearly swept to fixation 
during antibiotic treatment (f>99.8%, S>30% per day), only to decline in frequency later in 
the study. Unlike the replacement event above, this sweep shared all 42 of the private 
marker SNVs from the dominant strain at the initial timepoint (Fig. 5E), suggesting that 
they recently descended from a common ancestor. Interestingly, however, we again 
observe evidence that the minority haplotype was segregating at substantial frequencies 
(~1-10%) before treatment, a finding which is recapitulated for several other non-
replacement examples in Fig. 2D. This suggests that frequency-dependent selection may 
have initially driven these mutant lineages to intermediate frequencies – and maintained 
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them there – before antibiotics or other environmental changes (or subsequent mutations) 
caused them to sweep through the rest of the population.   

In addition to these extreme cases, we also observed a third category of events that seem 
to bridge the divide between strain replacement and evolutionary modification. For 
example, in the Alistipes finegoldii population in Figs. 3A and 5A, a cluster of ~80 SNVs 
swept to high frequency when the species recovered from antibiotic treatment, potentially 
consistent with a population bottleneck. While the high rates of private marker SNVs 
sharing (52/55) suggest that the sweeping haplotype is a modification of the dominant 
strain from the initial timepoint, the large fraction of synonymous mutations (dN/dS=0.16), 
many of which are shared across other hosts, is more consistent with a strain replacement 
event. In contrast to the two examples above, the A. finegoldii SNVs fall into a smaller 
number of contiguous genes in the reference genome and are often linked together in the 
same read clouds (Supplementary Data 1 and 2). These same SNVs are also frequently 
co-inherited in “haplotype blocks” among the other hosts in our reference panel (Fig. S11). 
Taken together, these lines of evidence suggest that the SNVs in Fig. 3A were likely 
transferred onto their current genetic background through recombination. Similar to the E. 
eligens and Phascolarctobacterium examples above, the sweeping haplotype in A. 
finegoldii was already segregating as a minor variant (f~20%) before antibiotic treatment, 
suggesting that the original recombination event (and its initial rise to observable 
frequencies) predated the current sampling period. 

The Bacteroides coprocola population in Figs. 3F and 5F provides another interesting 
example. In this case, a cluster of 37 SNVs (including reversions of 11 of the 167 private 
marker SNVs) was already in the process of sweeping through the population before 
treatment began. In this case, however, the mutations are scattered across many non-
contiguous genes in the B. coprocola reference genome and are seldom observed in other 
hosts, so recombination no longer provides a parsimonious explanation. The fraction of 
synonymous mutations (dN/dS=0.7) also lies somewhere between the typical between-
host values (dN/dS~0.1) and within-host hitchhiking (dN/dS>=1). This suggests that the 
lineages may have coexisted with each other for a much longer period of time. 

Discussion 

The response of gut microbial communities to antibiotics plays a crucial role in their 
susceptibility to pathogens (7, 41, 42), the spread of antibiotic resistance genes (43, 44), 
and their long-term stability (8, 45, 46). Numerous studies have documented the resilience 
of these communities at the taxonomic or pathway level (7-16). Yet the strain-level 
dynamics that give rise to this ecological robustness remain poorly characterized. 
 
In this study, we sought to characterize these within-species dynamics by following the 
gut microbiome of a single individual through a period of health, disease, and the oral 
administration of doxycycline. We used linked read metagenomic sequencing to track the 
dynamics of single nucleotide variants within 36 different species, and to contrast these 
within-species dynamics with the broader ecological shifts at the species level. Consistent 
with our expectations, we found that antibiotic perturbations can lead to widespread shifts 
in the genetic composition of individual species, and at a higher overall rate than observed 
in healthy hosts (21-23). However, this genetic response was rarely consistent with the 
traditional picture of extinction and subsequent recolonization. Instead, we found that 
genetic responses varied widely across species, with some species accumulating 
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thousands of SNV differences at the population level, and others accumulating only a 
handful. These genetic changes were frequently observed in species without large 
changes in relative abundance in the sampled timepoints, and conversely, large 
abundance fluctuations were not always accompanied by widespread genetic changes. 
Furthermore, some of the most dramatic fluctuations at both the species and SNV level 
occurred in the weeks following the competition of treatment. Together, these findings 
suggest that the response to antibiotics is not driven by discrete recolonization events, but 
rather, by the subtler processes of strain-level competition and evolution within the host.   
 
At this population genetic level, our observations revealed qualitative departures from the 
simplest models of neutral evolution, or the spread of antibiotic resistance phenotypes via 
classic selective sweeps. The observed genetic responses were much more dynamic: we 
often observed partial genome-wide sweeps containing multiple linked genetic variants, 
many of which were segregating at observable frequencies before the onset of treatment. 
Although their frequencies could increase dramatically on daily or weekly timescales, few 
of these variants ever fixed in their respective populations. Instead, we observed frequent 
reversion of sweeps at the single base pair level, consistent with temporally varying 
selection pressures and strong pleiotropic tradeoffs. These reversions rarely ended in 
extinction, and more commonly stabilized close to the initial pre-treatment frequency. 
Together, these dynamics suggest that the sweeping haplotypes may be stably 
maintained in their respective populations over time, e.g. due to metabolic or spatial 
niches. This provides a potential explanation for the “oligo-colonization” structure 
observed in a variety of within-host microbial populations (18, 21, 47). Interestingly, our 
data show that similar dynamics can occur for mixtures of distantly related strains, as well 
as for haplotypes that likely evolved de novo within the host. This suggests that ongoing 
ecological diversification could play an important role in shaping the genetic structure of 
resident populations, echoing a previous finding in B. fragilis (23) .  
 
There are several important limitations to our study. Since we have focused primarily on 
single nucleotide variants in well-behaved regions of reference genomes, we are likely 
missing many of the true targets of selection, particularly in the case of antibiotic resistance 
where mobile elements (40, 48) and other structural rearrangements (38) are known to 
play an important role. This makes it difficult to know what fraction of genetic changes are 
a direct response to antibiotics, as opposed to indirect responses produced by fluctuations 
in the abundances of other species. It is even possible that nearly all of the mutations that 
we observe are simply passenger mutations that are hitchhiking alongside the true 
causative variants. The situation could potentially be improved by combining our approach 
with de novo assembly, similar to previous studies (39, 49, 50). However, given the high 
levels of genetic linkage we observed, it would be difficult to pinpoint individual selection 
pressures even with an exhaustive list of mutations, since one can only observe the net 
effects of selection across entire haplotypes. Our reference-based approach is effectively 
using this limitation to our advantage, by relying on the dynamics of linked passengers to 
provide information about the net selection pressures on their corresponding haplotypes.  
 
In addition to these methodological constraints, a second key limitation is our focus on a 
single host microbiome. While the concentrated resources allowed us to observe a variety 
of different responses across individual species in the same community, further work will 
be required to establish the prevalence of these different patterns across larger cohorts, 
and among different classes of antibiotics. Our high-resolution time course provides a 
valuable set of templates that can inform these future classification efforts in larger, but 
lower resolution studies.  
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In summary, by tracking a host microbiome through periods of disease, treatment, and 
recovery, we uncovered new evidence that the ecological resilience of microbial 
communities might extend all the way down to the genetic level. Understanding how this 
resilience arises from the complex interplay between host genetic, epigenetic, and lifestyle 
factors, as well its implications for broader evolution of the microbiome, remains an 
exciting avenue for future work.   
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FIGURE CAPTIONS 

Figure 1: Read cloud sequencing of the gut microbiome of a single individual during 
disease, antibiotic treatment, and recovery. a, Study design. Linked read metagenomic 
sequencing was performed on 19 fecal samples collected from a single individual over a 
period of 5 months. During this time, the individual was diagnosed with Lyme disease and 
received an oral course of doxycycline. b, Species-level dynamics over time, estimated 
from shotgun metagenomic reads (Methods). The “-2yr'' sample is taken from a previous 
study of the same host (27) c, Schematic of linked read sequencing with the 10X 
Genomics platform. High molecular weight metagenomic DNA is partitioned into millions 
of microfluidic droplets. Amplification and ligation reactions are performed within each 
droplet, yielding millions of short-read libraries that are tagged with droplet-specific DNA 
barcodes. The resulting “read clouds” are then pooled together and sequenced on an 
Illumina instrument. d, Observed statistics of read clouds from the first three timepoints. 
The top panel shows total number of read pairs contributed by read clouds as a function 
of the number of read pairs they contain. The bottom panel shows a measure of the 
effective number of species that are detected in each read cloud as a function of the 
number of read pairs it contains (Methods). Many read clouds contain fragments from 
several different DNA molecules. 
 
Figure 2: Varied ecological and genetic responses across 36 abundant species in 
the same host. a, Relative abundances of species through time, partitioned according to 
the epochs defined in Table S1. Each timepoint is indicated by a point, and the timepoints 
from the same epoch are connected by a vertical line to aid in visualization. For 
comparison, the grey distribution shows the corresponding values from the Human 
Microbiome Project (51) cohort (Methods). Species whose relative abundance drops by 
more than 10-fold between baseline and antibiotic timepoints are indicated with a single 
star. Only a minority of the most abundant species experience such reductions in relative 
abundance during treatment. b, Within-species nucleotide diversity for each timepoint, as 
measured by the fraction of core genome sites with intermediate allele frequencies 
(0.2<f<0.8, Methods). Points are plotted according to the same scheme as in (a). c, The 
total number of single nucleotide (SNV) differences between a baseline timepoint and 
each of the later epochs (Methods). The height of the white area indicates the total number 
of polymorphic SNVs that were tested for temporal variation. Different species display a 
range of different behaviors, which can be partitioned into putative cases of competition 
between distantly related strains, and evolution within a dominant resident strain. d, Initial 
frequencies of alleles identified in (c). For species with more than 10 SNV differences, the 
data are summarized by the median initial frequency (square symbol) and the interquartile 
range (line). Many alleles have nonzero frequency before the sweep occurs. e, Fraction 
of SNV differences in (c) that are retained at the final timepoint (f>0.7). In many species, 
only a minority of SNV differences gained during disease or treatment are retained. 
 
Figure 3: Ecological and genetic dynamics in six example species. A subset of the 
species in Fig. 2 were chosen to illustrate a range of characteristic behaviors (a-f). For 
each of the six species, the top panel shows the relative abundance of that species over 
time, while the bottom panel shows the frequencies of single nucleotide variants (SNVs) 
within that species. Colored lines indicate SNVs that underwent a significant shift in 
frequency over time (Methods), while a subset of non-significant SNVs are shown in light 
grey for comparison. The colors of temporally varying SNVs are assigned by a hierarchical 
clustering scheme, which is also used to determine their polarization (Methods).  
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Figure 4: High levels of linkage disequilibrium (LD) in many resident populations. 
a, Schematic of read cloud sharing between two SNVs separated by coordinate distance 
ℓ on the same reference contig. Three or fewer haplotypes are consistent with clonal 
evolution, while four haplotypes indicate a possible recombination event. b, Observed 
fraction of shared read clouds as a function of ℓ for SNVs in the six example species in 
Fig. 3. c, Total number of linked SNV pairs (i.e., those with significantly elevated levels of 
read cloud sharing) for species in Fig. 2 with sufficient coverage (Methods). For each 
species, the three bars denote SNV pairs with ℓ<200bp, 200bp< ℓ<2kb, and ℓ>2kb, 
respectively. SNVs are included only if the minor allele has frequency f>0.1. d, Observed 
proportion of SNV pairs in (c) that fall each of the LD categories illustrated in (a). Across 
species, only a small fraction of SNV pairs provide evidence for recombination.  
 
Figure 5: Signatures of strain replacement and evolutionary modification. a-f, 
Statistical properties of temporally varying SNVs from the six example species in Fig. 3. 
For each species, the bars on the left show the relative proportion of SNVs with different 
protein coding effects (left) and allele prevalence across other hosts in a larger cohort 
(right) (Methods). SNVs that are not observed in other hosts are shaded in light red or 
blue. For each species, the pie chart indicates the relative proportion of private marker 
SNVs that are preserved or disrupted throughout the sampling interval (Methods). Large 
fractions of disrupted marker SNVs indicate a strain replacement event.  
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Figure 1: Read cloud sequencing of the gut microbiome of a single individual during disease, antibiotic
treatment, and recovery.
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Figure 2: Varied ecological and genetic responses across 36 abundant species in the same host.
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Figure 3: Ecological and genetic dynamics in six example species.
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Figure 4: High levels of linkage disequilibrium (LD) in many resident populations.
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Figure 5: Signatures of strain replacement and evolutionary modification.
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