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Abstract: 

Drug resistance threatens the effective prevention and treatment of an ever-increasing 

range of human infections. This highlights an urgent need for new and improved drugs 

with novel mechanisms of action to avoid cross-resistance. Current cell-based drug 

screens are, however, restricted to binary live/dead readouts with no provision for 

mechanism of action prediction. Machine learning methods are increasingly being used 

to improve information extraction from imaging data. Such methods, however, work 

poorly with heterogeneous cellular phenotypes and generally require time-consuming 

human-led training. We have developed a semi-supervised machine learning approach, 

combining human- and machine-labelled training data from mixed human malaria 

parasite cultures. Designed for high-throughput and high-resolution screening, our semi-

supervised approach is robust to natural parasite morphological heterogeneity and 

correctly orders parasite developmental stages. Our approach also reproducibly detects 

and clusters drug-induced morphological outliers by mechanism of action, 

demonstrating the potential power of machine learning for accelerating cell-based drug 

discovery. 

 

One Sentence Summary: A machine learning approach to classifying normal and aberrant cell 

morphology from plate-based imaging of mixed malaria parasite cultures, facilitating clustering 

of drugs by mechanism of action. 
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Cell-based screens have significantly advanced our ability to find new drugs (1). However, most 

screens are unable to predict the mechanism of action (MoA) of identified hits, necessitating 

years of follow up post-discovery. In addition, even the most complex screens frequently 

discover hits against cellular processes that are already targeted (2). Limitations in finding new 

targets is becoming especially important in the face of rising antimicrobial resistance across 

bacterial and parasitic infections. This rise in resistance is driving increasing demand for 

screens that can intuitively find new antimicrobials with novel MoAs. Demand for innovation in 

drug discovery is exemplified in efforts targeting Plasmodium falciparum, the parasite that 

causes malaria. Malaria disease continues to be a leading cause of childhood mortality, killing 

nearly half a million children each year (3). Drug resistance has emerged to every major 

antimalarial to date including rapidly emerging resistance to frontline artemisinin-based 

combination therapies (4). Whilst there is a healthy pipeline of developmental antimalarials, 

many target common processes (5) and may therefore fail quickly because of prevalent cross-

resistance. Thus, solutions are urgently sought for the rapid identification of new drugs that have 

a novel MoA at the time of discovery.  

Parasite cell morphology within the human red blood cell (RBC) contains inherent MoA 

predictive capacity. Intracellular parasite morphology can distinguish broad stages along the 

developmental continuum of the asexual parasite (responsible for all disease pathology). This 

developmental continuum includes early development (early and late ring form), feeding 

(trophozoite), genome replication or cell division (schizont) and extra-cellular emergence 

(merozoite) (see (6) for definitions). As such, drugs targeting a particular stage should manifest 

a break in the continuum. Morphological variation in the parasite cell away from the continuum 

of typical development may also aid drug MoA prediction if higher information granularity can be 

generated during a cell-based screen. Innovations in automated fluorescence microscopy have 

markedly expanded available data content in cell imaging (7). By using multiple intracellular 
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markers, an information-rich landscape can be generated from which morphology and 

potentially drug MoA can be deduced. This increased data content is, however, currently 

inaccessible both computationally and because it requires manual expert-level analysis of cell 

morphology. Thus, efforts to use cell-based screens to find drugs and define their MoA in a time 

efficient manner are still limited. 

Machine learning (ML) methods offer a powerful alternative to manual image analysis, 

particularly deep neural networks (DNNs) that can learn to represent data succinctly. To date, 

supervised ML has been the most successful application for classifying imaging data, commonly 

based on binning inputs into discrete, human-defined outputs. Supervised methods using this 

approach have been applied to study mammalian cell morphologies (8, 9) and host-pathogen 

interactions (10). However, discrete outputs are poorly suited for capturing a continuum of 

morphological phenotypes, such as those that characterize either malaria parasite development 

or compound induced outliers, since it is difficult or impossible to generate labels of all relevant 

morphologies a priori. A cell imaging approach is therefore needed that can function with 

minimal discrete human-derived training data before computationally defining a continuous 

analytical space, which mirrors the heterogeneous nature of biological space. 

Here we have created a semi-supervised model that discriminates diverse morphologies across 

the asexual lifecycle continuum of the malaria parasite Plasmodium falciparum. By receiving 

input from a Deep Metric Network (11) trained to represent similar consumer images as nearby 

points in a continuous coordinate space (an embedding). Our DNN can successfully define 

unperturbed parasite development with a much finer information granularity than human 

labelling alone. Importantly, the same DNN can quantify anti-malarial drug effects both in terms 

of lifecycle distribution changes (e.g. killing specific parasite stage(s) along the continuum) and 

morphological phenotypes or outliers not seen during normal asexual development. Combining 

lifecycle and morphology embeddings enabled the DNN to group compounds by their MoA 
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without directly training the model on these morphological outliers. This DNN analysis approach 

towards cell morphology therefore addresses the combined needs of high-throughput cell-based 

drug discovery that can rapidly find new hits and predict MoA at the time of identification. 

 

Results: 

Using machine learning (ML), we set out to develop a high-throughput, cell-based drug screen 

that can define cell morphology and drug mechanism of action (MoA) from primary imaging 

data. From the outset we sought to embrace asynchronous (mixed stage) asexual cultures of 

the human malaria parasite, Plasmodium falciparum, devising a semi-supervised deep neural 

network (DNN) strategy that can analyse fluorescence microscopy images. The workflow is 

summarised in Figure 1a-c.  

Overview of the approach: Gathering human labels 

The P. falciparum lifecycle commences when free micron-sized parasites (called merozoites) 

target and invade human red blood cells (RBCs). During the first 8-12 hours post-invasion, the 

parasite is referred to as a “ring”, describing its diamond ring-like morphology (Figure 1b, left). 

The parasite then feeds extensively (trophozoite-stage, (Figure 1b, middle)), undergoing 

rounds of DNA replication and eventually divides into ~20 daughter cells (the schizont-stage 

(Figure 1b, right)), which precedes merozoite release back into circulation (6). This discrete 

categorisation belies a continuum of morphologies between the different stages. 

The morphological continuum of asexual development represents a challenge when teaching 

ML models, as definitions of each stage will vary between experts (Figure 1d). To embrace this, 

multiple human labels were collected. High resolution 3D images of transgenic 3D7 parasites 

were acquired using a widefield fluorescence microscope (see Materials and Methods), 

capturing brightfield, DNA (DAPI [4′,6-diamidino-2-phenylindole]), cytoplasm (constitutively 
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expressed GFP), mitochondria (MitotrackerTM) and the RBC membrane (fluorophore conjugated 

Wheat Germ Agglutinin, WGA). 3D datasets were converted to 2D images using maximum 

intensity projection. Brightfield was converted to 2D using both maximum and minimum 

projection, resulting in 6 channels of data for the ML. 5382 labels were collected from human 

experts, populating the categories of ring, trophozoite, schizont, merozoite, cluster-of-

merozoites (multiple extracellular merozoites attached post RBC rupture), or debris. For initial 

validation and as a test of reproducibility between experts, an additional 448 parasites were 

collected, each labelled by 5 experts (Figure 1d).  

Overview of the approach: Learning a data-driven representation of malaria phenotypes 

Image patches containing parasites within the RBC or after merozoite release were transformed 

into input embeddings using the Deep Metric Network architecture originally trained on 

consumer images (11) and previously shown for microscopy images (12). Embeddings are 

vectors of floating-point numbers representing a position in high-dimensional space, trained so 

related objects are located closer together. For our purposes, each image channel was 

individually transformed into an embedding of 64 dimensions before being concatenated to yield 

one embedding of 384 dimensions per parasite image.  

Embeddings generated from parasite images were next transformed using a two-stage workflow 

to represent either On-cycle (for mapping the parasite lifecycle continuum) or Off-cycle effects 

(for mapping morphology or drug induced outliers). Initially, an ensemble of fully connected two-

layer DNN models was trained on the input embeddings to predict the categorical human 

lifecycle labels for DMSO controls. This training gave the DNN robustness to control for sample 

heterogeneity and, as such, sensitivity for identifying unexpected results (outliers). The 

ensemble was built from three pairs of fully supervised training conditions (six total models). 

Each network pair was trained on separate (non-overlapping) parts of the training data, 

providing an unbiased estimate of the model prediction variance.  
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After initial training, the supervised DNN predicted its own labels (i.e. pseudolabels) for 

previously unlabelled examples. As with human derived labels, DNN pseudolabelling was 

restricted to DMSO controls (with high confidence) to preserve the model’s sensitivity to Off-

cycle outliers (which would not properly fit into On-cycle outputs). High confidence was defined 

as images given the same label prediction from all six models and when all models were 

confident of their own prediction (defined as twice the random probability). 

A new ensemble of models was then trained using the combination of human-derived labels and 

DNN pseudolabels. The predictions from this new ensemble were averaged to create the semi-

supervised model. 

 

Validation of the Plasmodium falciparum lifecycle continuum 

The semi-supervised model was first used to represent the normal (On-cycle) lifecycle 

continuum. We selected the subset of dimensions in the unnormalized final prediction layer that 

corresponded to merozoites, rings, trophozoites, and schizonts. This was projected into 2D 

space using principal component analysis (PCA) and shifted such that its centroid was at the 

origin. This resulted in a continuous variable where angles represent lifecycle stage 

progression, referred to as Angle-PCA. This Angle-PCA approach permitted the full lifecycle to 

be observed as a continuum with example images (Figure 2a) and 2D projection (Figure 2b) 

following the expected developmental order of parasite stages. Importantly, this ordered 

continuum manifested itself without specific constraints being imposed, except those provided 

by the categorical labels from human experts (see Supplemental Note 1).  

To validate the accuracy of the continuous lifecycle prediction, pairs of images were shown to 

human labellers to define their developmental order (earlier/later) with the earliest definition 

being the merozoite stage. Image pairs assessed also included those considered 
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indistinguishable (i.e. ‘too close to call’). Of the 295 pairs selected for labelling, 276 measured 

every possible pairing between 24 parasites while the remaining 19 pairs were specifically 

selected to cross the trophozoite/schizont boundary. Human expert agreement with the majority 

consensus was between 89.5% and 95.8%, with parasite pairs called equal (too close to call) 

25.7% to 44.4% of the time. These paired human labels had more consensus than the 

categorical (merozoite, ring, trophozoite, schizont) labels which had between 60.9-78.4% 

agreement between individual human labels and the majority consensus.  

The Angle-PCA projection results provide an ordering along the lifecycle continuum, allowing us 

to compare this sort-order to that by human experts. With our ensemble of six models, we could 

also evaluate the consensus and variation between angle predictions for each example. The 

consensus between models for relative angle between two examples was greater than 96.6% 

(and an area under the precision-recall curve score of 0.989), and the median angle variation 

across all labelled examples was 0.11 radians. The sensitivity of this measurement can be 

tuned by selecting a threshold for when two parasites are considered equal, resulting in a 

precision-recall curve (Figure 2c). When we use the median angle variation of the model as the 

threshold for examples that are too close to call, we get performance (light blue point) that is 

representative of the human expert average.  

These results demonstrate that our semi-supervised model successfully identified and 

segregated asynchronous parasites and infected RBC’s from images which contain >90% 

uninfected RBCs (i.e. < 10% parasitaemia) and classifies parasite development logically along 

the P. falciparum asexual lifecycle. 

 

Quantifying On-cycle drug effects  
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Having demonstrated the semi-supervised model can classify asynchronous lifecycle 

progression consistently with fine-granularity, the model was next applied to quantify on-cycle 

differences (i.e. lifecycle stage-specific drug effects) in asynchronous, asexual cultures treated 

with known anti-malarial drugs. Two drug treatments were initially chosen that give rise to 

aberrant cellular development: the ATP4ase inhibitor KAE609 (also called Cipargamin) (13); 

and the mitochondrial inhibiting combinational therapy of atovaquone and proguanil (14) (herein 

referred to as AP). KAE609 reportedly induces cell swelling (15) while AP reduces mitochondrial 

membrane potential (16). Drug treatments were first tested at standard screening 

concentrations (2µM) for two incubation periods (6 hrs and 24 hrs). Next drug dilutions were 

carried out to test the semi-supervised model's sensitivity to lower concentrations, using IC50’s 

of each compound (Supp. Table 1). IC50 and 2µM datasets were processed through the semi-

supervised model and overlaid onto DMSO control data as a histogram, to explore on-cycle 

drug effects (Figure 3). KAE609 treatment exhibited a consistent skew towards ring stage 

parasite development (8-12 hrs post-RBC-invasion, Figure 3) without an increase within this 

stage of development, while the AP treatment led to reduced trophozoite stages (~12-30 hrs 

post-RBC-invasion Figure 3). This demonstrates the fine-grained continuum has the sensitivity 

to detect whether drugs affect specific stages of the parasite lifecycle. 

 

Identifying Off-cycle drug effects on parasite morphology 

The improved information granularity was extended to test if the model could identify drug-

based morphological phenotypes (off-cycle), towards determination of MoA. Selecting the 

penultimate 32-dimensional layer of the semi-supervised model meant, unlike the Angle-PCA 

model, outputs were not restricted to discrete on-cycle labels, but instead represented both on- 

and off-cycle changes. This 32-dimensional representation is referred to as the morphology 

embedding.  
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Parasites were treated with one of 11 different compounds, targeting either PfATP4ase (ATP4) 

or mitochondria (MITO) plus DMSO controls (Supp. Table 1). The semi-supervised model was 

used to evaluate three conditions: random; where compound labels were shuffled, Angle-PCA; 

where the two PCA coordinates are used, and full embedding; where the 32-dimensional 

embedding was combined with the Angle-PCA. To add statistical support that enables 

compound level evaluation, a bootstrapping of the analysis was performed, sampling a 

subpopulation of parasites 100 times.  

As expected, the randomized labels led to low accuracy (Figure 4a), serving as a baseline for 

the log odds (probability). When using the 2-dimensional Angle-PCA (on-cycle) information, 

there was a significant increase over random in the log odds ratio (Figure 4a). This represents 

the upper-bound information limit for binary live/dead assays due to their insensitivity to parasite 

stages. When using the combined full embedding, there was a significant log odds ratio 

increase over both the random and Angle-PCA conditions (Figure 4a). To validate that this 

improvement was not a consequence of having a larger dimensional space compared to the 

Angle-PCA, an equivalent embedding from the fully supervised model trained only on expert 

labels (and not on pseudolabels) demonstrated approximately the same accuracy and log odds 

ratio as Angle-PCA. Thus, our semi-supervised model can create an embedding sensitive to the 

phenotypic changes under distinct MoA compound treatment. 

To better understand drug MoA, we evaluated how the various compounds were grouped 

together by the three approaches (random, Angle-PCA, and morphology embedding), 

performing a hierarchical linkage dendrogram (Figure 4b-d). The random approach shows, as 

expected, the different compounds do not reveal MoA similarities. For the Angle-PCA output, 

the MITO inhibitors Atovaquone and Antimycin are grouped similarly, but the rest of the clusters 

are a mixture of compounds from the two MoA groups. Finally, the morphology embedding gave 

rise to an accurate separation between the two groups of compounds having different MoA. One 
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exception for grouping was Atovaquone (when used alone), which was found to poorly cluster 

with either group (branching at the base of the dendrogram) (Figure 4d). This result is likely 

explained by the drug dosages used, as Atovaquone is known to have a much-enhanced 

potency when used in combination with Proguanil (16). 

The semi-supervised model was able to consistently cluster MITO inhibitors away from 

ATP4ase compounds in a dimensionality that suggested a common MoA. Our semi-supervised 

model can therefore successfully define drug efficacy in vitro and simultaneously assign a 

potential drug MoA from asynchronous (and heterogeneous) P. falciparum parasite cultures, 

using an imaging-based screening assay with high-throughput capacity. 

 

Discussion: 

Driven by the need to accelerate novel antimalarial drug discovery with defined mechanism of 

action (MoA) from phenotypic screens, we applied machine learning (ML) to images of 

asynchronous P. falciparum cultures. This semi-supervised ensemble model could identify 

effective drugs and cluster them according to MoA, based on lifecycle stage (on-cycle) and 

morphological outliers (off cycle). 

Recent image-based ML approaches have been applied to malaria cultures but have, however, 

focussed on automated diagnosis of gross parasite morphologies from either Giemsa or 

Leishman-stained samples (17-19), rather than phenotypic screening for drug MoA. ML of 

fluorescence microscopy images have reported malaria identification of patient-derived blood 

smears (20) and the use of nuclear and mitochondrial specific dyes for stage categorization and 

viability (21), though without an AI approach. Previous unsupervised and semi-supervised ML 

approaches have been applied to identify phenotypic similarities in other biological systems, 

such as cancer cells (12, 22-24), but none have addressed the challenge of capturing the 
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continuum of biology within the heterogeneity of control conditions. We therefore believe our 

study represents the first time that high-resolution imaging data has been used beyond 

diagnostics to predict the lifecycle continuum of a cell type (coping with biological 

heterogeneity), as well as using this information to indicate drug-induced outliers and 

successfully group these towards drug MoA. 

Through semi-supervised learning, only a small number of human-derived discrete but noisy 

labels from asynchronous control cultures were required for our DNN method to learn and 

distribute data as a continuous variable, with images following the correct developmental order. 

By reducing expert human input, which can lead to image-identification bias (see Supplemental 

Note 1), this approach can control for inter-expert disagreement and is more time efficient. This 

semi-supervised DNN therefore extends the classification parameters beyond human-based 

outputs, leading to finer information granularity learned from the data automatically through 

pseudolabels. This improved information, derived from high resolution microscopy data, permits 

the inclusion of subtle but important features to distinguish parasite stages and phenotypes that 

would otherwise be unavailable. 

Our single model approach was trained on lifecycle stages through embedding vectors, whose 

distribution allows identification of two readouts, on-cycle (sensitive to treatments which slow the 

lifecycle or kill a specific parasite stage) and off-cycle (sensitive to treatments which cluster 

away from control distributions). We show that this approach with embeddings was sensitive to 

stage specific effects at IC50 drug concentrations (Figure 3), much lower than standard 

screening assays. Drug based outliers were grouped in a MoA-dependent manner (Figure 4), 

with data from similar compounds grouped closer than data with unrelated mechanisms. 

The simplicity of fluorescence imaging means this method could be applied to different sub-

cellular parasite features, potentially improving discrimination of cultures treated with other 

compounds. Additionally, imaging the sexual (gametocyte) parasite stages with and without 
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compound treatments will build on the increasing need for drugs which target multiple stages of 

the parasite lifecycle (25). Current efforts to find drugs targeting the sexual stages of 

development are hampered by the challenges of defining MoA from a non-replicating parasite 

lifecycle stage (25). This demonstrates the potential power of a mechanism of action approach, 

applied from the outset of their discovery, based simply on cell morphology. 

In the future, we envisage on-cycle effects could elucidate the power of combinational 

treatments (distinguishing treatments targeting different lifecycle stages) for a more complete 

therapy. Using off-cycle this approach could identify novel combinational treatments based on 

MoA. Due to the sample preparation simplicity, this approach is also compatible with using drug 

resistant parasite lines.  

New drugs against malaria are seen as a key component of innovation required to ‘bend-the-

curve’ towards the disease’s eradication or risk a return to pre-millennium rates (3, 26). Seen in 

this light, application of ML-driven screens should enable the rapid, large scale screening and 

identification of drugs with concurrent determination of predicted MoA. Since ML-identified drugs 

will start from the advanced stage of predicted MoA, these should bolster the much-needed 

development of new chemotherapeutics for the fight against malaria. 
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FIGURES AND TABLES 

 

Figure 1: Experimental workflow. A) To ensure all lifecycle stages were present during imaging and analysis, two transgenic 

malaria cultures were combined (see Methods), these samples were incubated with or without drugs before being fixed and stained 

for automated multi-channel high-resolution, high-throughput imaging. Resulting datasets (B) contained parasite nuclei (blue), 

cytoplasm (not shown) and mitochondrion (green) information, as well as the red blood cell plasma membrane (red) and brightfield 

(not shown). These images were processed for machine learning analysis (C) with parasites segregated from full field of views using 

the nuclear stain channel, before transformation into embedding vectors. Two networks were used; the first (green) was trained on 

canonical examples from human labelled imaging data, providing machine learning derived labels (pseudolabels) to the second 

semi-supervised network (grey) which predicted lifecycle stage and compound phenotype. Example images from human labelled 

datasets (D) shows disagreement can occur between human labellers when categorising parasite stages (s = schizont, t = 

trophozoite, r = ring, m = merozoite). Scale bar = 5µm 
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Figure 2: Machine learning continuum of parasite stages. After learning from canonical human-labelled examples 

and filtering debris and other outliers, the remaining lifecycle data from asynchronous cultures was successfully 

ordered by the model. The parasites shown are randomly selected DMSO control parasites from multiple imaging 

runs, sorted by Angle-PCA (A). The coloured, merged images show red blood cell membrane (red), mitochondria 

(green) and nucleus (blue). For a subset of parasites on the right, the coloured merged image plus individual 

channels are shown: (i) merged, (ii) brightfield min projection, (iii) nucleus, (iv) cytoplasm, (v) mitochondria, (vi) red 

blood cell membrane (brightfield max projection was also used in ML but not shown here). The model sorts the 

parasites in lifecycle stage order, despite heterogeneity of signal due to nuances such as imaging differences 

between batches. The order of the parasites within the continuum seen in (A) is calculated from the angle within the 

circle created by projecting model outputs using principal component analysis, creating a 2D scatterplot (B). This 

represents a progression through the life-cycle stages of the parasite, from merozoite (purple) through rings (yellow), 

trophozoites (green), schizonts (dark green) and finishing with cluster of merozoites (blue). The precision-recall curve 

(C) shows that human labellers and the model have equivalent accuracy in determining the earlier/later parasite in 

pairs. The consensus of the human labellers was taken as ground truth, with individual labellers (orange) agreeing 

with the consensus on 89.5-95.8% of their answers. Sweeping through the range of 'too close to call' values with the 

ML model yields the ML curve shown in black. Setting this threshold to 0.11 radians, the median angle variance 

across the individual models used in the ensemble, yields the blue dot. 
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Figure 3: Quantifying on-cycle drug effects. Asynchronous Plasmodium falciparum cultures were treated with the ATPase4 inhibitor 

KAE609 or the combinational mitochondrial treatment of atovaquone and proguanil (AP) with samples fixed and imaged 6 hr (A) and 

24 hrs (B) after drug additions. Top panels show histograms indicating the number of parasites across lifecycle continuum. 

Compared to DMSO controls (topmost black histogram) both treatments demonstrated reduced parasite numbers after 24 hr. 

Shown are four drug/concentration treatment conditions: low dose AP (yellow), high dose AP (orange), low dose KAE609 (light 

blue), high dose KAE609 (dark blue). Box plots below demonstrate life-cycle classifications in the DMSO condition of images from 

merozoite (purple) through rings (yellow), trophozoites (green) and finishing with schizonts (dark green). 
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Figure 4: Quantifying off-cycle drug effects. To better define drug effect on Plasmodium falciparum cultures, 5 mitochondrial (red 

text) and 5 PfATP4ase (blue text) compounds were used, after a 24 hr incubation images were collected and analysed by the semi-

supervised model. To test performance various conditions were used (A). For random, images and drug names were scrambled, 

leading to the model incorrectly grouping compounds based on known mechanism of action (B). Using life-cycle stage definition (as 

with Figure 3) the model generated improved grouping of compounds (C) versus random. Finally, by combining the life-cycle stage 

information with the penultimate layer (morphological information, prior to life-cycle stage definition) of the model led to correct 

segregation of drugs based on their known mechanism of action (D). 
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