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ABSTRACT 

The IκB kinase (IKK) - NF-κB pathway is activated as part of the DNA damage response 

and controls both resistance to apoptosis and inflammation. How these different 

functions are achieved remained unknown. We demonstrate here that DNA double 

strand breaks elicit two subsequent phases of NF-κB activation in vivo and in vitro, 

which are mechanistically and functionally distinct. RNA-sequencing reveals that the 

first phase controls anti-apoptotic gene expression, while the second drives expression 

of senescence-associated secretory phenotype (SASP) genes. The first, rapidly 

activated phase is driven by the ATM-PARP1-TRAF6-IKK cascade, which triggers 

proteasomal destruction of IκB and is terminated through IκBα (NFKBIA) re-

expression. The second phase is activated days later in senescent cells but is 

independent of IKK and the proteasome. An altered phosphorylation status of p65, in 

part driven by GSK3β, results in transcriptional silencing of NFKBIA and IKK-

independent, constitutive activation of NF-κB in senescence. Collectively, our study 

reveals a novel physiological mechanism of NF-κB activation with important implications 

for genotoxic cancer treatment. 
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INTRODUCTION 
 
Chemo- and radiotherapies, activated oncogenes and shortened telomeres trigger via 

the DNA damage response (DDR) a terminal proliferative arrest called cellular 

senescence (Blagosklonny, 2014; Lasry & Ben-Neriah, 2015; Lee & Schmitt, 2019; 

Salama et al, 2014). The associated alterations include formation of senescence 

associated heterochromatin foci (SAHF), increased expression of cell-cycle inhibitors, 

including p21 (CDKN1A) and p16 (CDKN2A) and of inflammatory cytokines and 

chemokines that constitute the senescence associated secretory phenotype (SASP) 

and a related, low-grade inflammation termed senescence inflammatory response (SIR) 

that affects surrounding tissues in a paracrine manner (Lasry & Ben-Neriah, 2015; 

Shelton et al, 1999). The epigenetically controlled cell-cycle cessation serves as a cell-

autonomous barrier to tumor formation (Braig et al, 2005; Collado et al, 2005; Reimann 

et al, 2010). Therefore, induction of senescence was considered as important in treating 

cancer and other pathologies. The inflammatory response, however, comprises factors 

that may instigate oncogenic transformation, cell migration, and cancer stemness 

(Acosta et al, 2013; Acosta et al, 2008; Chien et al, 2011; Freund et al, 2011; Hoare et 

al, 2016; Jing et al, 2011; Milanovic et al, 2018; Reimann et al, 2010; Salama et al, 

2014).  

The majority of SASP factors are transcriptional targets of NF-κB (Acosta et al, 2008; 

Chien et al, 2011; Freund et al, 2011; Jing et al, 2011; Kuilman et al, 2008; Lasry & 

Ben-Neriah, 2015). Although it is well established that NF-κB drives inflammatory gene 

expression in senescence, whether it also contributes to cell-cycle arrest remained 

unclear. DNA double strand breaks lead to rapid activation of NF-κB RelA/p65-p50, the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.19.882225doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.882225


 4 

most prevalent heterodimer (Smale, 2012). A signaling cascade that is activated by 

ataxia telangiectasia mutated (ATM) and poly(ADP-Ribose) polymerase 1 (PARP1), and 

also depends on TNFR-associated factor 6 (TRAF6), converges on the IκB kinase (IKK) 

complex (Hinz et al, 2010; Stilmann et al, 2009; Wu et al, 2006). The latter is composed 

of the regulatory IKKγ subunit and the kinases IKKα and IKKβ (Hayden & Ghosh, 2012; 

Hinz & Scheidereit, 2014), which phosphorylate IκBα, targeting it for degradation by the 

26S proteasome. Liberated NF-κB translocates to the nucleus and activates 

transcription of its target genes, including NFKBIA, encoding IκBα (Hinz et al, 2012). 

This negative feedback loop ensures that NF-κB activation is transient. Replication-, 

oncogene- and therapy-induced senescence is associated with unresolved DNA 

damage and with constitutive NF-κB activation (Chien et al, 2011; Freund et al, 2011; 

Jing et al, 2011; Rodier et al, 2009).  

Using cells of epithelial origin, both from transgenic mouse models and from 

human primary and cancer cell lines, we demonstrate here that DNA damage triggers 

two functionally distinct phases of NF-κB activation. Whereas the first, immediately 

activated phase is IKK- and proteasome-dependent and activates anti-apoptotic gene 

expression, the second NF-κB activation phase, occurring days later in senescence, is 

caused by a permanent silencing of NFKBIA transcription and is thus IKK- and 

proteasome-independent. We show that this second, IKK-independent phase of NF-κB 

is responsible for SASP, but not for the cell cycle arrest. Furthermore, SASP expression 

profile is generated in vivo and ex vivo in the absence of DNA damage solely by 

depletion of IκB.  
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RESULTS 

DNA damage activates NF-B d in two distinct phases: A transient anti-apoptotic 

first and a persistent inflammatory second phase 

To investigate the kinetics of activation of NF-κB, we first examined the establishment of 

senescence and SASP over time in human diploid fibroblasts (HDFs) and cancer cell 

lines that experienced DNA damage. Onset of senescence was marked by senescence-

associated -galactosidase (SA--gal) activity and elevated p21CIP1 expression (Fig 

1A and Appendix Fig S1A). Proliferation ceased 1-2 days following irradiation (IR), as 

expected, and cells entered a lasting senescent state (Appendix Fig S1B and data not 

shown). Unresolved DNA damage, evidenced by H2AX foci, peaked within minutes 

and persisted through all time points (Appendix Fig S1C). Strikingly, the single dose IR 

generated a biphasic NF-B activation, with two temporally separate phases of nuclear 

translocation and DNA binding, first, within hours and then days later (Fig 1B, and 

Appendix Fig S1C-E). An RNA-seq analysis revealed distinct transcriptomes in both NF-

κB phases (Fig 1C and Tables EV1A-C). During the first phase, 289 transcripts showed 

significant upregulation (Table EV1A), which included direct targets of NF-B, such as 

early response genes and negative feedback inhibitors of the pathway (NFKBIA and 

TNFAIP3; see Table EV1B). This transcript group was enriched for GO terms “cell cycle 

arrest” and “regulation of apoptotic process” (Table EV2A). In contrast, the 2,979 

transcripts upregulated during the second phase were enriched for GO terms 

“inflammatory response”, “immune response”, and “response to wounding” (Fig 1C and 

Table EV2B). The biphasic NF-B response thus coincided with two distinct 

transcriptomes, an anti-apoptotic first phase and a pro-inflammatory second phase. 
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We next analyzed murine tissues for IR-induced expression of the representative first- 

and second- phase target genes of NF-κB, Nfkbia and Il6, respectively. IR strongly 

activated NF-κB in kidney and skin (unpublished data). Indeed, IR significantly induced 

Nfkbia mRNA in both tissues only at early and Il6 mRNA only at late time points, 

representing the first and second NF-κB phases (Fig 1D). 

To ensure that the expression of SASP during the second phase depends on NF-κB, we 

analyzed primary kidney cells from irradiated mice, which ubiquitously express the NF-

κB super-repressor IκBαΔN (Krappmann et al, 1996; Schmidt-Ullrich et al, 2001). 

Compared to littermate controls, expression of Cxcl2 and Il6 in the second phase was 

abolished, whereas Cdkn1a and Cdkn2a upregulation was unaffected (Fig 1E). These 

in vivo results further reveal that DNA damage activates NF-B that drives SASP, but 

NF-B is not essential for the proliferative arrest observed in senescence. 

A strong response was seen in hair follicles (HF), which require NF-κB activation for 

development and morphogenesis (Schmidt-Ullrich et al, 2001). Upregulation of Nfkbia 

mRNA and IκBα protein was restricted to the first phase of NF-B activation in HF 

following whole body IR (Fig 1F and 1G). At 7 days post IR, IBα expression in the 

proximal HF was strongly reduced, concomitant with an increase in IL-6 expression in 

the same region (Fig 1G). These results demonstrate that two distinct, subsequent NF-

κB transcriptomes also occur in vivo. Because IκBα is required to terminate NF-κB 

signaling, we postulated that loss of IκBα in senescence could trigger SASP.   

 

Loss of IBα expression in senescence triggers the second phase of NF-B 

activation and generates SASP  
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IBα expression was either undetectable or strongly reduced in senescence in the 

different epithelial cancer- and non-transformed cell lines tested (Fig 2A and Appendix 

Fig S2A-D). Likewise, NFKBIA mRNA was upregulated only in the first phase (Fig 2A, 

right panel; Appendix Fig S2E), despite robust activation of NF-B in both phases (Fig 

2B, lanes 2 and 4). Repeated IR treatment of senescent cells restored neither NFKBIA 

mRNA nor IBα protein expression (Fig 2A left, lane 5, and right panel).  

Activated oncogenes cause DNA strand breaks and induce DDR signaling, thereby 

promoting cellular senescence similar to cells exposed to DNA-damaging agents 

(Acosta et al, 2008; Coppe et al, 2008; Kuilman et al, 2008). Inducible activation of 

oncogenic RASV12 led to activation of NF-B and expression of the representative 

SASP factor IL-8 (encoded by CXCL8) that negatively correlated with IBα expression 

(Appendix Fig S2F-G). In summary, these data show that different pro-senescent 

triggers lead to loss of NFKBIA mRNA expression together with the onset of an NF-B-

driven SASP.   

To investigate if experimental NFKBIA depletion would mimic the second phase NF-κB 

activation and SASP type gene expression, we performed NFKBIA knockdown 

experiments (Fig 2B and Appendix Fig S2H-I). Proliferation of cells was unaffected by 

knockdown of NFKBIA (Appendix Fig S2J). However, untreated NFKBIA-depleted cells 

that had not experienced DNA damage, revealed increased NF-B DNA-binding activity 

(Fig 2B, compare lanes 1 and 5), comparable to the levels observed in irradiated, 

senescent cells at day 6 (compare lanes 4 and 5). IBα rescue through ectopic 

overexpression of proteasome-insensitive mutant S32AS36A blocked the induction of 
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the bona-fide SASP factors (Fig S2J), consistent with the conclusion that loss of IBα 

drives expression of SASP.  

Remarkably, the transcriptome of non-irradiated NFKBIA-depleted cells shared a strong 

overlap and the same GO terms with that of the second phase, senescent cells (Fig 2C 

and D, and Table EV2B-C). Thus, loss of IBα in the absence of DNA damage is 

sufficient to generate SASP. Secretion of a set of the identified cytokines and 

chemokines was confirmed by an antibody array (Appendix Fig S3A). Some of these, 

including IL-6 and GM-CSF, activate monocytes and migration of macrophages 

(Bachelerie et al, 2014). In fact, supernatants from either senescent or IBα-depleted 

cells induced migration of macrophages (Appendix Fig S3B). 

We next asked whether knockout of Nfkbia would also trigger SASP in vivo. Since 

ubiquitous loss of IBα expression causes early postnatal lethality (Beg et al, 1995; 

Klement et al, 1996), we generated intestinal epithelium-restricted (villin-Cre x floxed 

Nfkbia) knockout mice. The expression of selected typical SASP factors, including 

known NF-B targets Ccl20, ICcam1, Il6 and Tnfa, was indeed activated in the small 

intestines of knockout compared to control villin-Cre littermates (Fig 2E), confirming our 

conclusion in an in vivo setting.  

 

IBα loss in senescence is mediated by posttranslational modifications of p65  

Since we observed distinct NF-B targets as upregulated during the two phases (Table 

EV1B), we next knocked down p65 to determine whether the same family member is 

responsible for both transcriptomes. All NF-B targets, including SASP, showed 

decrease in expression, in cells bearing shRNA against RELA/p65 (Fig 3A). 
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Nevertheless, knockdown of RELA did not rescue cells from senescence (Fig 3B), 

indicating that it does not contribute to cell cycle arrest. 

Since loss of IBα in the second phase resulted from decline of mRNA expression, we 

investigated its regulation by p65. We found that p65 was recruited to the NFKBIA 

(IBα) promoter in both first- and second-phases of activation with similar efficiencies 

(Appendix Fig S4A). We next investigated the phosphorylation status of p65 during the 

two phases (Fig 4A). Phosphorylation on p65 Ser536, the substrate site of IKK, peaked 

during the first phase and declined in the second. Unlike phosphorylation of p65 at S536 

and S267, which enhance the p65 transactivation potential, phosphorylation at S468 is 

inhibitory and is mediated in part by GSK3 (Buss H, 2004; Christian F, 2016). Of note, 

GSK3β exhibits increased kinase activity in senescence to activate formation of SAHF, 

through downregulation of Wnt signaling (Ye et al, 2007). Indeed, nuclear 

phosphorylation on S468 increased in senescence (Fig 4A left and right panels). To 

determine if phosphorylation on S468 repressed expression of IBα, we overexpressed 

p65 bearing a S468A mutation in cells where endogenous p65 was knocked down. 

Overexpression of p65 S468A rescued IκBα expression. Similar results were observed 

with ectopic expression of wildtype p65, likely due to the abundance of the substrate in 

relation to the S468 kinase(s). As a negative control, we transfected the S267A mutant. 

Since acetylation at S267 is required for p65 activity (Christian F, 2016), as expected, its 

overexpression did not rescue IBα in senescence (Fig 4B).  

To determine directly to which extent GSK3β contributes to phosphorylation of S468, we 

knocked down GSK3 or inhibited GSK3β by lithium chloride. Both modes of 

interference diminished S468 phosphorylation and led to a partial restoration of IBα 
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expression in senescence (Fig 4C and D). These data show that changes in p65 

phosphorylation contribute to an attenuation of IBα expression in senescence.   

 

Second phase NF-κB activation in senescence is independent of IKK-signaling 

and the proteasome 

We next investigated the contribution of the known regulators of the genotoxic stress 

induced IKK pathway (Fig 5A) in the two NF-κB phases. The activation of ATM and IKK 

correlated only with the first NF-κB phase, with rapid IR-induction in the first hours 

followed by a decline afterwards (Fig 5B). We also found that TRAF6 depletion only 

abrogated activation of the first, but not the second NF-κB phase (Fig 5C). Expression 

of target genes of NF-B, IL6 and IL1A, in the second phase were completely 

unaffected by depletion of PARP1 or ATM (Appendix Fig S4B and data not shown). 

Furthermore, the proteasome inhibitors Bortezomib and MG132 inhibited IR-induced 

IκBα destruction in the first NF-κB phase, but not loss of IκBα in the second phase (Fig 

5B). In line with this, upregulation of the bona-fide SASP component IL-1α was not 

affected by proteasome inhibition (Fig 5D).  

We eliminated IKKβ expression using CRISPR/Cas9 (Fig 5E). Loss of IKK impeded 

only first phase NF-B activation (Fig 5E, lanes 2 and 6). Remarkably, IKK was not 

required for the second phase of NF-B activation (Fig 5E, lanes 4 and 8). Likewise, 

siRNA-mediated IKKγ depletion only diminished p65 nuclear translocation at 1.5 h, but 

not 5 days following IR (Appendix Fig S4C).  

Our conclusion was further corroborated by identification of genes that depended on 

p65 expression (Fig 3), yet showed unaltered expression in senescent cells with 
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CRISPR mediated knockout of IKBKB (Fig 5F). These IKK-independent genes included 

many bona fide SASP factors, such as IL-1α, IL-1β, IL-6, IL8 (Fig 5F, lower half of the 

panel). All these data substantiate that only the first phase of NF-κB depends on the IKK 

cascade induced by DNA damage and on proteasomal destruction of IκBα.  

 

DISCUSSION 

Most NF-κB activation pathways depend on IκB kinases (Hinz & Scheidereit, 2014; 

Hoffmann & Baltimore, 2006). Here we provide a physiologically relevant context for 

IKK-independent activation of NF-κB both in human cells lines and in murine models in 

vivo. We found that in DNA damage induced senescence of epithelial cells, two 

interconnected events comprising a decline in IKK phosphorylation and a drop in 

transcription of the inhibitor of the pathway, NFKBIA(IκBα), initiate a persistent, IKK-

independent activation of NF-κB (Fig 6).  

We and others have previously shown that irreparable DNA damage leads to cellular 

senescence and to SASP driven by NF-κB (Chien et al, 2011; Jing et al, 2011; Rodier et 

al, 2009). However, since DNA damage triggers prompt activation of NF-κB, whose 

immediate transcriptional targets do not feature SASP, it was not clear how NF-κB could 

be responsible for two such drastically different transcriptomes arising from the same 

initial stimulus. Here we demonstrated both in vivo and ex vivo that a single dose of 

DNA damage sequentially activates two temporally and functionally distinct 

transcriptomes of NF-κB, separated by a span of several days. An anti-apoptotic first 

phase is driven by an ATM-, PARP-1- and TRAF6-dependent IKK signaling cascade 

(Hinz et al, 2010; Stilmann et al, 2009), resulting in proteasomal destruction of IκBα. A 
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pro-inflammatory second phase occurs in senescence, and comprises SASP (Fig 6). 

Importantly, we demonstrate that the second phase of NF-κB and expression of the 

majority of the SASP genes are both IKK- and proteasome-independent. A fraction of 

transcripts that were IKK-dependent in senescence could be regulated in an alternative 

manner that does not require phosphorylation in the activation loop of IKKβ. Indeed, we 

have recently shown that basal activity of IKKβ suffices for its interaction with EDC4 

(Enhancer of Decapping 4) and for post-transcriptional stabilization and destabilization 

of scores of transcripts, including of CXCL8 and TNFA (Mikuda et al, 2018). It is 

therefore possible that IKK-dependent regulation of some SASP genes occurs at the 

level of their RNA stability. It is also possible that additional phosphorylation sites on 

IKK, not analyzed in this paper, contribute to its activation and to regulation of IKK-

dependent genes expressed in senescence.  

Interestingly, absence of IKK at the instant of DNA damage abolishes only the first 

phase of NF-κB activation, but does not affect the second phase (Fig 5E). This suggests 

that the first phase is not required for the second, and that the changes accumulated 

over time activate distinct signaling pathways that enable the second phase of NF-κB. In 

accordance with this, we show that post-translational modifications on p65 contribute to 

the two distinct transcriptomes.  IKK phosphorylates p65 on serine 536 within minutes 

following DNA damage (Fig 4), however in senescence a switch in phosphorylation from 

serine 536 to 468 leads to repression of NFKBIA. GSK3β, which is hyperactive in 

senescence (Ye et al, 2007), phosphorylates p65 at Ser 468. However, inhibition of 

GSK3β did not completely reinstate IκBα expression, indicating that additional kinases 
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and/or epigenetic changes may contribute to downmodulation of NFKBIA expression in 

senescence. 

Silencing of NFKBIA in senescence results in IKK-independent and persistent activation 

of NF-κB (Fig 6). Consequently, the second phase can be mimicked without induction of 

DNA damage by inactivation of the NFKBIA gene, as we have shown in human cell 

cultures and the murine knockout model (Fig 2). Nonetheless, the gene expression 

repertoire of NFKBIA knockout or knockdown cell lines does not encompass the entire 

senescent inflammatory response (Fig 2C and Table EV1A) likely because full-featured 

senescence relies on activation of additional regulators including TORC1, MAPK, Toll 

Like Receptors, Notch1/TGF-, and C/EBP, and also on epigenetic changes that firmly 

establish proliferative arrest (Herranz et al, 2015; Hoare et al, 2016; Kolesnichenko et 

al, 2012; Narita et al, 2011; Serrano, 2012).  

It was previously suggested that in addition to promoting SASP, p65 reinforces cell 

cycle arrest in senescent Eμ-myc lymphomas expressing the anti-apoptotic protein Bcl-

2 (Chien et al, 2011). However, Bcl-2 was also shown to attenuate cell cycle 

progression independently of its anti-apoptotic functions (Zinkel et al, 2006). Our 

findings clearly demonstrate that although NF-κB negatively regulates expression of 

several cell cycle genes, knockdown of p65 does not disturb the established cell cycle 

arrest in epithelial cells and murine model described here (Table EV1A-C and data not 

shown). Furthermore, we did not observe establishment of senescence either in human 

cell lines bearing knockdown or knockout of NFKBIA, or in the murine mouse model. 

We therefore conclude that NF-κB mediates only the inflammatory phenotype, but not 

the cell cycle arrest in senescence.  
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NF-κB is constitutively activated in a variety of cancer types (Ben-Neriah & Karin, 2011). 

Deletion of the NFKBIA gene or low expression of IκBα protein serves as a major 

mechanism of permanent NF-κB activation in a non-classical form of glioblastoma, 

where it is associated with poor prognosis in patients and resistance to bortezomib and 

IKK inhibitors in clinical trials (Idbaih et al, 2011; Kinker et al, 2016; Raizer et al, 2016; 

Takeuchi & Nawashiro, 2011). Importantly, classical SASP factors and NF-κB targets, 

such as IL-8, IL-6 and metalloproteinases are constitutively expressed in these tumors, 

where they are suggested to fuel tumor growth and invasion (Puliyappadamba et al, 

2014). Our results imply that in the milieu of established senescence and concomitant 

loss of IκBα, inhibition of the IKK-signalosome or the proteasome would be ineffective in 

suppressing SASP in tumor therapies.   
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MATERIALS AND METHODS: 

Transfection/Transduction:  

pTRIPz clones IκBα, p65, IKKβ, and IKKy and Scrambled or pGIPZ-IκBα and pGIPZ-

scrambled (Dharmacon, Lafayette, USA) were transfected into HEK293T cells and 

supernatant used for transduction as described in manufacturer’s protocol 

(http://dharmacon.gelifesciences.com/uploadedfiles/resources/ptripz-inducible-lentiviral-

manual.pdf). Clonal selection was performed using puromycin. Doxycycline 

hydrochloride was added daily (2 µg/ml, Sigma). Unless specified otherwise, dox 

treatment was done for 5-6 days prior to harvest. As controls, cells inducibly expressing 

scrambled shRNAs were treated with dox.   

CRISPR knockout cells were generated as described previously(Mikuda et al, 2018).  

Preparation of murine tissues from in vivo experiments: All mouse protocols in this study 

followed the regulatory standards of the governmental review board (Landesamt Berlin), 

Reg. G007/08, G 0082/13, G0358/13 and X9013/11). B6;129P2-Nfkbiatm1Kbp and Tg(Vil-

cre)20Syr) mice were sacrificed at 5 or 7 weeks of age. Additionally, 6 to 8 weeks old 

C57Bl6/N mice were sacrificed either one hour or 7 days post whole-body IR (5Gy). 

Control group was left untreated.   

Nuclear Cytoplasmic Fractionation, Western Blot analysis, and EMSA: performed as 

described previously(Mikuda et al, 2018). 

In situ hybridization: was performed as described previously (Schmidt-Ullrich et al, 

2001).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.19.882225doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.882225


 16 

Antibody Array: Proteome profiler (R&D Systems) antibody array was performed on 1ml 

of culture medium according to manufacturer’s protocol. Quantitation was performed 

with FusionCapt Advanced software.  

Quantitative RT-PCR was performed using a minimum of two reference genes (TBP, 

Rpl13a, HRTP1) as controls, according to the manufacturer’s protocol (Promega).  

RNA-Seq: RNA samples were prepared in quintuplicates and extracted using Trizol 

reagent according to manufacturer’s instructions (Thermo Fisher). Stranded mRNA 

sequencing libraries were prepared with 500 ng total RNA according to manufacturer’s 

protocol (Illumina). The libraries were sequenced in 1 x 100 +7 manner on HiSeq 2000 

platform (Illumina). 
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FIGURE LEGENDS 
 

1. NF-κB is activated in two distinct phases in response to DNA damage 

corresponding to anti-apoptotic and pro-inflammatory gene programs 

(A) SA-β-gal staining of U2-OS cells, harvested at indicated times post irradiation (IR); 

h, hours; D, days; UT, untreated. N=3. 

(B) Nuclear fractions from U2-OS cells were harvested at indicated time points post IR 

(10 Gy) as in (A). Top panel: NF-κB DNA binding was analyzed by EMSA. Lower 

panels: Western blot of indicated NF-κB subunits and PARP1 as loading control. The 

two phases of nuclear translocation and DNA binding are indicated.  

(C) Gene expression analysis of two NF-κB phases following damage. RNA-Seq 

analysis (quintuplicate samples) of U2-OS cells, either untreated or analyzed 1.5 hours 

or 7 days after irradiation (10 Gy), as indicated. The heatmap shows significantly 

regulated genes (log2 value > 0.5 and p value < 0.05).  

(D) Mice (triplicate per condition) were irradiated (5 Gy) and sacrificed after 1 hour (first 

phase), 7 days (second phase) or left untreated. Skin or renal tissue RNA was analyzed 

by qRT-PCR, shown as a mean +/- SD. Significance was confirmed by unpaired T test * 

< p 0.05 for skin and SD * = p < 0.05, ** = p < 0.01 for kidney samples, respectively. 

(E) Kidney cells from IκBαΔN mice (ΔN, N=2) or control littermates (Wt, N=2) were 

irradiated either 1.5h or six days prior to harvest or left untreated (ut). RNA was 

analyzed by qRT-PCR for indicated genes.  

(F) In situ hybridization using an IκBα mRNA probe on skin sections from mice treated 

as in (D) for the time indicated. For abbreviations, see (F). 
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(G) Skin sections as in (D) analyzed by immunofluorescence with IκBα (red) or IL-6 

antibody (green) and nuclear DAPI staining (blue). Dotted lines delineate hair follicles, 

Bu, bulge region, HS, hair shaft, IFE, interfollicular epidermis, SG, sebaceous gland.  

 

Figure 2. Knockdown of NFKBIA in epithelial cells and knockout in vivo mimics 

second phase NF-κB activity and triggers SASP  

(A) Left panel: IκBα western blot of U2-OS cells. Lane 1, untreated (ut); Lanes 2-4, 

single IR (20 Gy) at indicated time points prior to harvest; Lane 5, IR at 5 days plus 1.5 

hours prior to harvest. Right panel: Samples treated as above, analyzed by qRT-PCR.  

(B) NFKBIA knockdown by dox-inducible shRNA in U2-OS cells. Cells were irradiated or 

not, as indicated and described above. NF-κB activity was analyzed by EMSA. ns, non-

specific band. 

(C) Venn diagram of RNA-Seq analysis of genes activated following irradiation in the 

first and second NF-κB activity phases or following shRNA-mediated NFKBIA 

knockdown in non-irradiated cells (as in B). 

(D) Top GO terms obtained using DAVID Functional Annotation Bioinformatics 

Microarray 6.7 for first and second phase genes and genes activated upon NFKBIA 

knockdown, as in (C), as indicated.  

(E) qRT-PCR analysis of indicated genes was performed using RNA extracted from the 

duodenum of 5 and 8 weeks old control villin-Cre (N=6) or villin-Cre x floxed IκBα mice 

(N=6). Expression is shown as fold change between littermates, paired T-test. * P< 0.05  

** = P < 0.01, and # P = 0.05. 
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Figure 3. RelA regulates SASP but not cell cycle arrest 

(A) Expression of SASP targets of NF-κB obtained from RNA-seq analysis 

(Supplemental Table 1B), was quantitated using qRT-PCR from the shRNA (RELA) 

stably expressing U2-OS cells. Cells were treated with doxycycline (Dox) to induce 

knockdown of p65. Heatmap represents targets normalized to the untreated Scrambled 

control. Expression is shown as log2 change with p values < 0.05. First-wave and 

second-wave samples were irradiated 90 minutes and seven days prior to harvest, 

respectively. 

(B) Cell duplication was measured at time points indicated in U2-OS cells bearing either 

scrambled control or Dox-inducible shRNA against RELA (biological triplicates). 

Treatment with Dox was initiated at two days prior to IR (10 Gy) or after IR.   

 

Figure 4. p65 Ser 468 phosphorylation in senescence inhibits NFKBIA expression 

(A) Nuclear, N, and cytoplasmic, C, fractions of U2-OS cells were analyzed at the times 

after IR exposure, as indicated, by SDS-PAGE western blotting. PARP1 and LDH are 

fractionation controls and phospho-specific p65 signals are indicated. Right panel: 

quantitation of nuclear p65 and phosphorylated p65 species. Fold changes compared to 

untreated samples (ut) and time points post IR are indicated on Y and X axes, 

respectively.  

(B) U2-OS cells treated with dox to deplete endogenous p65, were irradiated (20 Gy) 

and transfected with plasmids encoding p65, p65-S276A or p65-S468A, as indicated. 

Nuclear (N) and cytoplasmic (C) lysates were analyzed by SDS-PAGE at day seven 

post IR.  
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Figure 5. The second phase is IKK- and proteasome-independent  

(A) Diagram showing DNA double strand break induced first phase NF-κB activation 

through an ATM/TRAF6 and PARP1/PIASy dependent IKK activation mechanism (Hinz 

et al, 2010; Stilmann et al, 2009; Wu et al, 2006).  

(B) SDS-PAGE western blot analysis of whole cell lysates of U2-OS cells irradiated at 

time points indicated prior to harvest. Molecular weight markers are indicated. ut, 

untreated. LDH, lactate dehydrogenase.  

(C) U2-OS cells transfected with TRAF6 siRNA or scrambled control siRNA and TRAF6 

and IKKβ levels analyzed by western blotting (top panels). Molecular weight marker 

positions are indicated. NF-κB activity was determined by EMSA in untreated cells (ut) 

and after IR at indicated time points (lower panel). ns, unspecific band. 

(D) U2-OS cells were exposed to IR at indicated time points prior to harvest and 

analyzed by western blotting for levels of IκBα, NIK, IL-1α and PARP1. Treatment with 

proteasomal inhibitors MG132 or bortezomib started 4 hours prior to harvest. NIK 

serves as positive control for efficient proteasome inhibition. Molecular weight marker 

positions are indicated.  

(E) U2-OS CRISPR IKBKB knockout and control cell lines were irradiated (20 Gy) and 

harvested at indicated time points. NF-κB activity was analyzed by EMSA (upper panel). 

Asterisk indicates an unspecific band. Lower panel, western blot analysis of actin and 

IKKβ. Molecular weight markers are indicated to the left. 
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(F) Irradiated U2-O2 control and IKBKB knockout cells (as above) were analyzed by 

qRT-PCR at the time points indicated for expression of NF-κB target genes identified by 

RNA-Seq (Table EV1).  

 (C) U2-OS cells were transfected with siRNA against GSK3 or scrambled control (Scr) 

and further untreated (ut) or irradiated 7 days before harvesting, as indicated. Whole 

cell lysates were analyzed by SDS-PAGE and western blotting.  

(D) U2-OS cells were left untreated or exposed overnight to 10 mM LiCl, with or without 

prior irradiation, as indicated, and analyzed as in (D).  

 

Figure 6. Schematic model of the two-phase NF-B activation after DNA damage.  
 
DNA damage triggers two phases of NF-κB activation and two distinct transcriptomes: 

anti-apoptotic and inflammatory. NF-κB is rapidly activated through the known genotoxic 

stress-induced IKK cascade, resulting in proteasome-dependent IκBα degradation and 

expression of first phase targets genes, including IκBα. NF-κB activation in senescence 

is caused by a loss of IκBα expression through a largely IKK- and proteasome-

independent mechanism and drives SASP expression.  
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