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8 Abstract

9 Immune system is crucial for the development and progression of immune-mediated and non-
10  immune mediated complex diseases. Studies have shown that multiple complex diseases are
11  associated with several immunologically relevant genes. Despite such growing evidence, the
12 effect of disease associated genes on immune functions has not been well explored. Here, we
13 curated the largest immunome (transcriptome profiles of 40 different immune cells) and
14  integrated it with disease gene networks and drug-gene database, to generate a Disease-gene
15  IMmune cell Expression network (DIME). We used the DIME network to: (1) study 13,510
16  genes and identify disease associated genes and immune cells for >15,000 complex diseases;
17 (2) study pleiotropy between various phenotypically distinct rheumatic and other non-
18 rheumatic diseases; and (3) identify novel targets for drug repurposing and discovery. We
19 implemented DIME as a tool (https://bitbucket.org/systemsimmunology/dime) that allows
20  users to explore disease-immune-cell associations and disease drug networks to pave way for

21 future (pre-) clinical research.
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22 Introduction

23  The genetic and epigenetic heterogeneity has been known to play a major role in the
24  development and progression of complex diseases. The past two decades have seen a major
25 surge in studies that characterize genes and loci associated with disease. The use of high-
26  throughput omics technology and functional screenings have boosted our knowledge about
27  genetic, epigenetic and metabolic factors underlying complex diseases’. As a result of these
28  genetic and epigenetic screenings, we now know that the majority of complex diseases and
29 genedloci have a many-to-many relationship meaning that a complex disease is linked to

30  many different genes and agene/loci is associated with many different genes™.

31  Large high-throughput screening studies have typically used bulk tissue or whole blood to
32  study disease associated genes (DAGs). However, the expression of each gene is known to
33 vary between tissues and cell types®®. Thus, bulk tissue- or blood-based studies on DAGs do
34  not consider the role played by different cells and tissues in the disease biology. To improve
35 the understanding and molecular basis of complex diseases, a large number of research
36 groups and consortiums have started to functionally identify disease associated cells (DACs)
37  or tissue types®’. The Genotype-Tissue Expression (GTEX) is one such vauable project,
38 which maps gene expression profiles of 54 different human tissue types and the
39 corresponding expression quantitative trait loci (eQTLs)>. Furthermore, the growth of single
40  cell technologies have advanced our understanding of DACs and have helped in identifying
41 cell types associated with complex diseases including cancer®, Alzheimer's®, rheumatoid

42 arthritis', among others.

43  The immune system is known to play a key role in the development and progression of
44  immune-mediated as well as non-immune mediated chronic diseases. A large number of
45  association and functional studies have shown that multiple DAGs are expressed in immune
46  cells and perturbing these DAGs can modulate immune cell functions™. However, very few
47  studies have explored the impact of DAGs on specific cell types and even fewer on immune
48  cells, many of which focus on limited number of cell subsets*™°. Recently Schmiedel et al.
49  studied the effect of genetic variants on the expression of genes in 13 different immune cell
50 types". However, this study largely focused on the analysis of genetic variants and their
51 impact on atotal of 13 immune cell types: monocytes (classical and non-classical), NK cells,

52  naive B-cells and nine sub-populations of T-cells.
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53 Inthis study, we mapped the largest available and expert curated disease-gene network (from
54  the DisGeNet curated from 16 different databases) on the largest immunome data curated by
55  uscomprising gene expression profiles of 40 different immune cell types. We then quantified
56  the effects of 13,510 DAGs on the immunome, to identify DACs for 15,367 different diseases
57 inthe DisGeNet. Using the DACs and the DAGs, we constructed the Disease-gene IMmune
58  cell Expression (DIME) network. We use the DIME network to: (1) study the underlying cell-
59  specific mechanisms of complex diseases; (2) identify cell-specific targets for complex
60 disease; (3) identify networks of genes and cells that are commonly associated with different
61 pairs of diseases, and (4) predict drug repurposing targets towards identified disease
62  mechanisms shared between different diseases. We further built a user-friendly shinyapp
63  caled DIME (https://bitbucket.org/systemsimmunology/dime), which can be used to identify
64 DACs and construct DIME network for: (1) diseases from the DisGeNet, (2) diseases from
65 the EBI genome wide association study (GWAS) catalogue, or (3) custom set of genes
66  defined by the user.

67
68 Methods

69  Transcriptomedata - |mmunome

70  The transcriptome data consists of RNA-sequencing datasets of 40 different immune cell
71 types curated using 316 samples from a total of 27 publicly available datasets (see
72 Supplementary Table 1 for list of GEO datasets and samples used). The 40 different
73 immune cells cover the entire hematopoietic stem cell differentiation tree comprising of 9
74  progenitors, 19 lymphoid, and 12 myeloid cell types. The samples used here were manually
75  curated considering only the unstimulated (except for macrophages, that were monocyte
76  derived) immune cells that were sorted using Fluorescence-activated cell sorting (FACS) and
77  were isolated from either blood, bone marrow or cord blood from healthy donors. All the
78  selected datasets were downloaded as FASTQ files using the fastg-dump tool from
79  sraoolkit’®. The “—split-files’ option was given if the library type was paired end
80  sequencing. FASTQ files were then aligned to reference genome (GRCH.Hg38.79) using
81  STAR aligner™. The result is a SAM file which was then converted into a sorted BAM file
82  using the samtools program®. These were then used to calculate the count of aigned reads

83  using the HTSeq program®* with the mode option “intersection non-empty”. HTSeq was run
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84  for all possible stranded mode options, the count file with the maximum counts was chosen as

85  therespective count file for the sample.

86  The data was then filtered by removing all genes that had less than 20 read counts in 95
87  percent of the samples using R programming. The filtered data was then lane normalized
88  using the “betweenLaneNormalization” function from the RUV Seq package”. The RUVr
89 method from RUV Seq was used to identify residual factors contributing to the batch effect.
90  The resulting filtered, batch corrected and normalized data had expression for 34,906 genes
91 that was void of any observable batch effect. We calculated counts per million (cpm) for the
92 filtered genes and used cpm as the gene expression measure. We then used the median gene
93  expression for each cell type for the rest of the analysis. This processed, batch corrected,
94 normalized and median representative data of 40 immune cells is referred to as the

95  immunome.
96
97  Disease gene networ k from DisGeNet

98  The full disease gene association network from DisGeNet® was downloaded from the

99 DisGeNet database (www.disgenet.org/downloads). All HLA associated genes was removed
100 from the network, this was done to ensure that bias towards myeloid cells and B cells are
101  removed, since the HLA genes are largely expressed by these cells. The resulting network
102 was further filtered to include only those genes that were present in the immunome. The final
103  network comprised of 15367 diseases and 13510 DAGs.

104 The DisGeNet consists of expert curated disease-gene interactions from 16 different
105 databases: UNIPROT, CGl, ClinGen, Genomics England, CTD, PsyGeNET, Orphanet, RGD,
106 MGD, CTD, Human Phenotype Ontology, Clinvar, GWAS catalogue, GWAS DB, LHDGN
107  and BeFree. The DisGeNet is the largest and most comprehensive disease-gene association
108  network available in the literature that was known to us. We also tested our methods on more
109  gpecific disease networks such as those from the EBI GWAS database.

110
111 Other disease gene networks - EBI GWAS data

112 In addition to the DisGeNet, we also used a refined GWAS based dataset from the EBI?*. The
113  GWAS catalogue of Version 1.0, €89, was downloaded from the EBI website, which
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114  contained information on the disease associated SNP for about 1900 diseases/traits. The
115  reported p-value of all the disease associated SNPin the catalogue was < 0.05. The catalogue
116  also provided the corresponding mapped gene information for all the SNPwhich was used to
117  construct the disease to gene association network. We further filtered this network using the
118  same filtering criteria that was used for the DisGeNet. The EBI GWAS dataset was used to
119  infer SNP based disease cell associations.

120
121 Mapping disease gene networ k to | mmunome data

122  For a given disease D and its DAGp, we first extracted the corresponding Immunome
123 expression matrix. This expression matrix (Xp) comprised the gene expression of the DAGp
124  across the 40 cells forms as the input data upon which further analysis was performed. Thus,

125  thedimension of each Xp was given as:
126 dim(Xp) = length(DAGp) x 40,

127  where, length(DAGp) is the number of DAGs in disease D and 40 corresponds to the number

128  of cell typesin the immunome data.
129
130 Using NMF to cluster Xp intok classes

131 We used the NMF package® in R and applied the non-negative matrix factorization method
132 using Brunet’s® algorithm to the expression matrix (Xp) to factor it into two matrices namely
133 Wp and Hp such that.

134 Xp =Wp Hp,

135 where, Wp and Hp are the basis and coefficient matrices computed by the NMF. The

136  dimensions of Wp and Hp are given as:
137 dim(Wb) = length(DAGp) x K,
138 dim(Hp) = kx 40,

139  where, k is the number of classes/clusters that splits the data, such that it satisfies the above
140 NMF equation. The Wp matrix comprises of the weights of the DAGs across the k clusters (in

141 each column) and the Hp matrix comprises of the weights of the cells in the corresponding k
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142 clusters (in each row). We used Brunet et al. method to identify the ideal k value using the

143 cophenetic correlation coefficient method.
144
145  ldentifying the key DAGp and DACp from Wp and Hp

146  The NMF agorithm clusters the data into k clusters such that, in each cluster ‘i’, wherei |
147 (1, ..., k), the genes that have high values in w), are constitutively expressed by the cells that
148 have high values in hl,. Where, w} is the i column of W and h}, is the i row of Hp. For
149  each cluster i, we chose the cell-gene pairs that were in the top 25™ percentile range of their
150  corresponding w) and hy values. These cells and their corresponding gene pairs are regarded
151  as the key DACp and DAGp respectively. The cell-gene pairs were extracted from all the
152 clusters and were compiled together. The resulting cell-gene pairs of all the clusters form the
153  edges of the Disease-gene to | M mune cell Expression network, hereby referred as the DIME

154  network.
155
156 ldentifying the key cluster

157  We then identified the largest weighted cluster among the k clusters identified by the NMF.
158  That is, the subset of genes and cells of Xp that can capture most of its expression pattern. We
159  did this by using the following approach.

160  Since Xp, Wp and Hp can be represented as below:

1
I I B
~ |l w2 k[|— ho —|o vk i p
161 Xp=WpHp=|wp wh .. wp / = )izqawp hp.
| R W -
162

163  We calculated the Frobenius norm of each w},hifor all values of i. We then identified the
164  cluster (represented as c) for which ||whhb|| - IS the maximum. This can be mathematically

165  represented as.

166 c= argmax(||w[i,hf)||p); ie{l,..,k}

167
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168  where, the ¢ cluster represents that cluster which maximally captures/represents the
169  expression matrix Xp. We used the wj, as the scores for the DAGp and h§ as the scores for the
170 DACo.

171 DAGp score = w§,
172 DACp score = hj,

173 The scores were scaled between 0 and 1, with 1 representing the cell or gene with the highest

174  score.
175
176  Pleiotropic associations

177 To identify common mechanisms between two diseases, we looked at their overlapping cell-
178  gene connections in their corresponding DIME networks. Jaccards’ index (JI) was used to
179  measure the overlap between the two diseases with Fisher’'s exact test (FET) used to obtain
180  confidence p-value for the given overlap. The overlapping genes were used to calculate JI and
181  statistical significance of overlap using FET. The pleiotropy based overlapping cell-gene
182  network between the two diseases is referred to as the DIME-pleiotropy network.

183
184  Integrating drug-gene network

185  The drug to gene target database from DGldb was downloaded®. The data was filtered to
186  contain only the CHEMBL interactions and only those pertaining to the drugs approved by
187  the food and drug administration (FDA) of USA. This FDA approved drug to gene target
188 interaction serves as the drug-gene network in this study. To identify potential drug
189  candidates from the drug-gene network for disease D, we choose its key DAGp as identified
190 inthe previous step and extracted its corresponding target drugs from the drug-gene network.
191  This network between the drugs and the key DAGp is referred to as the DIME-drug network
192  for disease D. The DIME-drug network represents all the drugs that target the key DAGp
193 identified in the given DIME network. To identify potential common acting drugs between
194  different diseases, we used their corresponding DIME-pleiotropy network and extracted the
195  drug-gene connections between the cell-gene and the drugs in drug-gene network. The drugs
196 identified using this approach represent those that act on the common mechanisms between

197  thetwo diseases and can be potential candidates for drug repurposing.
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198
199 Rationalefor restricting analysisto only diseaseswith > 100 DAGs

200 The filtered disease-gene network of the DisGeNet comprised of DAGs for about 15,367
201  diseases. This could make the pleiotropy analysis between diseases extremely cumbersome,
202  with the number of disease-to-disease comparisons reaching as large as 118,064,661.
203  Additionally, to have sufficient number of DAC-DAG associations in the DIME-pleiotropy
204  network and aso have sufficient number of drug-target gene associations in the DIME-drug
205  network, we used a smaller subset of diseases but with larger DAGs associated to them. We
206 found by looking at the distribution of DAGs across the diseases, that the number of diseases
207  with > 100 DAGs were fewer in number, i.e., 613 diseases. This was sufficiently large DAC-
208 DAG associations for the pleiotropy analysis and less cumbersome to anayze the
209 comparisons (187,578). Hence, we choose those diseases with > 100 DAGs. All anaysis

210  presented in this study have been performed on this disease subset.
211
212 DIME shinyapp

213 To construct the DIME and DIME-drug network for other diseases not mentioned in this
214  study or using a custom gene input, we built a tool in R/Bioconductor called DIME that is
215 available as a shiny app (https://bitbucket.org/systemsimmunology/dime). The app can be
216  used to identify the key DAC, DAG and the DIME-drug network for the diseases from the
217  DisGeNet, the EBI-GWAS catalogue or for custom set of genes from the user.

218
219 Reaults

220 Theam of this study isto identify disease associated cell types (DACs) based on the existing
221  disease gene network, and to further identify disease associated gene (DAG) subsets that may
222 perturb the associated immune cells. To achieve this, we integrated our immunome data with
223  the disease network from DisGeNet and used the non-negative matrix factorization (NMF)
224  method to identify those subsets of genes and cells that maximally represent the Disease gene
225 IMmune cell Expression (DIME) network, as illustrated in Figure 1A. The constructed
226  immunome dataset comprises 40 different cell types and is the largest bulk RNASeq meta-

227  dataset of the immune cell types known to us. The filtered disease-gene network from
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228 DisGeNet consists of associations between 15,367 diseases and 13,510 DAGs. In this
229 massive disease network, numerous DAGs were found to be common between both
230  phenotypicaly similar and distinct diseases. We explore these common DAG patterns in

231  more detail in the next section.
232
233  Common DAGs of phenotypically distinct diseases

234  The 15,367 diseases in the DisGeNet belong to 29 different disease MeSH (Medical Subject
235  Headings) terms (Figure 1B). The MeSH-MeSH network in Figure 1B depicts the
236  connections between the different MeSH terms, where the thickness of the connections
237  represents the number of DAGs common between the different MeSH terms. The neoplasm
238 MeSH term was the most well connected disease category in the network. The highest
239  number of common DAGs (6,959 DAGSs) between two different MeSH terms was observed
240  between neoplasm and digestive system diseases. Other top MeSH-MeSH connections that
241 had more than 5,000 common DAGs include those between neoplasm and that of the skin and
242  connective tissue, nervous system, congenital, endocrine system, and female urogenital
243  diseases and pregnancy complications. Thus, the MeSH-MeSH gene network revealed the
244  shared DAGs across phenotypically distinct diseases belonging to different MeSH terms.

245  We further studied the DAG patterns across MeSH terms and found that TP53 was
246  preferentialy associated with diseases categorized under the neoplasm MeSH term (Figure
247  1C). Interestingly, TP53 was also associated with numerous diseases from various other
248 MeSH terms such as immune system diseases, nervous system diseases, and skin and
249  connective tissue diseases. Similarly, TNF was associated with numerous diseases from
250 various MeSH terms including immune system diseases (Figure 1D). APOE was largely
251  associated with nervous system diseases, and ACE was largely associated with cardiovascular
252 diseases (Figure 1E and F). TLR4 and CXCL8 were prevalently associated to several MeSH
253  terms (Figure 1G and H). The above-mentioned genes (Figure 1C-1F) are those that are
254  either the top represented (degree) genes across all diseases or for disease within specific
255  MeSH terms. More examples of DAGs associated with specific MeSH terms and their degree
256  can be found in the Supplementary Figure 1. Mgority of the DAGs mapped to two or more
257 MeSH terms (Figure 11) or diseases (Figure 1J) aso hinting towards shared disease
258  mechanisms between phenotypically distinct diseases. These genes that are associated to

259  many diseases’MeSH terms (i.e. having high degree) were regarded as the hub genes of the
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260  disease-gene network. We ranked the DAGs based on their degree and found TP53, TNF,
261  VEGFA, BCL2, IL1B as the top 5 DAGs each being associated with >750 diseases (Figure
262 1K and Supplementary Figure 1).

263
264  Relevance of theimmune system

265  We further evaluated the expression of the hub genes identified in the previous step, in the
266  immunome data. The rationale was to assess if the hub genes representing the core of the
267  disease-gene network were important to the immune system. Indeed, we found that many of
268  the hub genes of the disease-gene network were expressed constitutively by either all immune
269  cells or by some specific immune cells, as seen in Figure 1K. For example, the nervous
270  system associated gene, APOE, important to many of neurological diseases such as
271 Alzheimer's and Parkinson® were found to be expressed specifically by macrophages, as
272 seenin Figure 1L. Studies have shown that genetic polymorphisms in APOE protein leads to
273 defective clearance of the AB plagues by macrophages®™=>". Thus, conferring macrophages as
274  one of the key players of the disease. Such links between DAGs, to observing altered
275  function in a cell type, questions the need to study DAGs by integrating cell-specific

276  expression information.
277
278  ldentifying disease associated cell types

279  We further identified such disease associated cells (DACs) based on the DAGs and report
280 DACs for about 600 diseases in the disease-gene network (see Methods). The immune cells
281  can be broadly categorized as myeloids, lymphoids and progenitors. Using the DAC profiles
282  of about 600 diseases, we observed that in most diseases, DAGs do not associate with all
283  immune cells but tend to associate with specific immune cells or with specific category of
284  immune cells (Supplementary Figure 2). We observed from these DAC profiles that several
285  phenotypically different diseases had similar DAC profiles. For example, diseases such as
286  skin carcinoma, muscle degeneration, juvenile arthritis, epilepsy, etc. clustered together,
287  showing progenitors as their top DACs. Similarly, peripheral T-cell lymphoma, celiac
288  disease, atopic dermatitis, malignant glioma, basal cell carcinoma, etc. clustered together,
289  with lymphoid cells as the top DACSs. Interestingly, systemic lupus erythematosus (SLE),

290  heart failure, myocardial infarction, colitis, type 1 diabetes, etc. cluster together showing

10
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291 myeloid cells as their top DACs. Thus the DAC profiles like the DAG profiles showed that
292 phenotypically different diseases had similar DAC pattern.

293  We constructed the DIME network for different diseases individualy, the DIME network
294  consists of the top DACs and their respective DAGSs, (see methods). The DIME network
295  represents the key cell-gene mechanisms that can be drawn from the given set of DAGs. As
296  proof of concept, we present here the DIME network of lymphoid leukemia (Figure 2A), a
297  group of blood cancer that typically affects the lymphocytes. The DIME network reveaed 4
298 DAC clusters for lymphoid leukemia. The key DAC cluster comprised of lymphoid
299  progenitor cells as well as myeloid progenitor cells. The key DAGs contributing to this
300 cluster included genes associated with hematopoiesis such as RPS14, HSP90OAAL1, MPO,
301 ETV6, ATF4 and TALL. The other key DAC cluster comprised of all the subsets of T cells,
302 primarily the CD4" T cells. The key DAGs contributing to this cluster included ETSI,
303 CXCR4, IKZF1, ATM, LCK, and KMT2A. The pathway enrichment (Supplementary
304 Figure 4B) of these genes revealed pathways associated to TCR and BCR signaling and
305 PISK/AKT signaling. Interestingly, these pathways have been shown to be important for
306 survival of cancer cells and are targets for anti-cancer drugs in acute and chronic lymphoid
307 leukemia®. Thus the DIME network of lymphoid leukemia revealed the key DAGs and
308 DACsimplicated in the disease.

309  We then explored the DIME network of different kinds of rheumatic and/or fibrotic diseases,
310 such as systemic scleroderma (MeSH: skin disease), pulmonary fibrosis (MeSH: respiratory
311  tract disease) and SLE (MeSH: immune system disease). M oreover, we aimed to characterize
312 the disesses on the basis of the DAGs, DACs and the accompanying DIME networks. The
313  DIME network of systemic scleroderma, an autoimmune rheumatic condition with chronic
314 inflammation and fibrotic phenotype, revealed a complex relationship between their DAGs
315 and their DACs (Figure 2B). For systemic scleroderma, myeloid cells (neutrophils,
316  granulocytes, BDCA1'CD14", and CD11c myeloid dendritic cells), and lymphoid cells (NK,
317 CD4" T regulatory, ILC3, and ILC2) were identified as key cluster of DACs (see methods).
318  The key DAGs contributing to this cluster included PTPRC, FOS, SRRM2, MSN, JUNB,
319 CXCR4, ITGB2, and TNFAIP3 genes. For systemic scleroderma, the other key DAC cluster
320 comprised myeloid cells (macrophages and pDCs) and myeloid progenitor cells. The key
321 DAGs contributing to this cluster included HSP90OAB1, SPP1, HSPO0AAL, MMPO, WNK1,
322  HIF1A and IRF8. The two systemic scleroderma associated DAC clusters together were
323  enriched in DAGs from interleukin signaling, TGF beta signaling, TLR signaling, ECM

11
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324  organization and neutrophil degranulation pathways (Supplementary Figure 3A). Of which,
325 evidently, TGF beta is known to play an essential role in the pathogenesis of fibrosis™.
326  Likewise, the neutrophil degranulation pathway or otherwise known as NETosis, is the
327  mechanism by which neutrophils exhibit defensive mechanisms to trap and kill foreign
328 bodies*. And this pathway has been found to be implicated in other autoimmune diseases,
329 and isnow being currently investigated in clinical trials®. Interestingly, we found neutrophils
330 and its NETosis associated genes to be in the top cluster of the DIME network for systemic

331 scleroderma

332 We then constructed the DIME network of another fibrotic disease, pulmonary fibrosis. The
333 DIME network revealed 4 DAC clusters for pulmonary fibrosis (Figure 2C). Similar to
334  systemic scleroderma, we found a DAC cluster comprising of T-cells and NK cells enriched
335 in DAGs associated with TGF beta signaling (Supplementary Figure 3B). Interestingly, we
336 adso found that for pulmonary fibrosis neutrophils-granulocytes, macrophages,
337 BDCAL1'CD14" cells, pDCs and myeloid progenitors were among the top DACs similar to
338 that of systemic scleroderma, (Supplementary Figure 3B). We also found an enrichment of
339 NLRP3 pathway genes, which are known to play a role in the collagen deposition

340  mechanisms commonly dysregulated in fibrosis®.

341  We then studied the DIME network of SLE, an autoimmune disease. The DIME network
342 revealed 2 DAC clusters for SLE (Figure 2D). The key cluster comprised of myeloid cells
343 like neutrophils-granulocytes, macrophage M1, BDCA1'CD14" and monocytes as the DACSs.
344 The key DAGs contributing to this cluster included CD74, FOS, LYZ, SOD2 and
345  HSPOOABL. The other cluster comprised of CD4" TEMRA, CD4" TEM, CD4" TCM and
346 CD4" TH1 astheir DACs. The key DAGs contributing to this cluster included B2M, IGHGS3,
347 IL7R, ETS1, RPS19, and TNFAIP3. The pathway enrichment for the SLE DIME network
348  includes pathways that are heavily described in the literature for SLE, such as the neutrophil

s interleukin 4 and interleukin 13 signaling**, TLR

349  degranulation pathways or NETosi
350 signaling pathway®, translocation of ZAP70 to immunological synapsis™, and immune-
351 regulatory interactions between lymphoid and non-lymphoid cells (Supplementary Figure

352 4A).

353 The DIME networks revealed immune system mediated mechanisms for the different
354  diseases. As observed in the Figure 2, Supplementary Figure 3 and 4, the rheumatic and/or

355  fibrotic diseases such as SLE and SSc, had overlap in specific cell-gene mechanisms

12


https://doi.org/10.1101/2019.12.12.874321
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.12.874321; this version posted December 13, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

356 including those related to the neutrophil degranulation, degradation of ECM, interleukin and
357 TGF beta signaling pathways. These pathways and common mechanisms observed in the
358 DIME networks could serve as additional layers to understand the pathogenesis of these type
359 | interferon driven diseases™. We further explored such common mechanisms based on the

360  cell-gene relationships in the next section.
361
362 Pleiotropy based on DIME

363  Pleiotropy is when one gene affects two or more diseases’’. Pleiotropy has been observed in
364 several studies for many different diseases based on gene mutation to phenotype
365 associations™. Unlike most pleiotropy studies performed in the past that looks at only the
366 common DAGs between two diseases, we used a different approach. Since the DIME
367 networks from the previous analysis (for example, between SSc and pulmonary fibrosis)
368 revealed several overlapping cell-gene connections, we extended this approach to look for
369  cell-gene connections that are common between the DIME networks of all possible pairs of
370  diseases. Hence, we define pleiotropy in this study as the cell-gene connections that are found
371 in one or more diseases. Using this approach, we constructed the pleiotropy network as
372 shown in Figure 3A. The pleiotropy network consists of diseases as nodes. The nodes are
373 connected if there exists a significant (JI > 0.1and FET p-value < 0.01) number of common
374  cell-gene connections between their corresponding DIME networks, (see methods). The
375 network shown in Figure 3A is trimmed to contain only those nodes with degree > 2. The
376  node colors represent the MeSH term (as shown in Figure 1B) of the disease. The grey
377  colored nodes represent those diseases for which the MeSH term ontology was not available
378 from the DisGeNet. As seen from Figure 3A, several cancer related diseases (shown by
379  orange color for neoplasm MeSH term) cluster together. Same can be observed for the eye
380 related disease (shown by green color MeSH term) and the chemically induced disorders
381  (shown by pink and yellow color MeSH terms) seen in the bottom of the network Figure 3A.
382  These clusters together highlight the similar mechanisms (cell-gene connections) between

383  these diseases.

384  Within this pleiotropy network, we further looked at diseases that belong to different MeSH
385  terms and searched for common cell-gene mechanistic patterns between them. To do so, we
386  constructed the DIME-pleiotropy network of several pairs of phenotypically distinct

387 rheumatic diseases within the pleiotropy network. We present here some examples of the
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388  DIME-pleiotropy network that had a JI similarity of > 0.1. In the DIME-pleiotropy network
389  (Figure 3B) of Crohn’s disease (MeSH: digestive system disease) and psoriasis (MeSH: skin
390  disease), we found cell-gene networks of lymphoid (CD4", NK and ILC’s) and myeloid cells.
391  The pathway enrichment of the DAGs in this DIME-pleiotropy network revealed pathways
392 related to TCR signaling, interleukin signaling, neutrophil degranulation and regulation of
393 TLR (Supplementary Figure 5A). As observed in the DIME-pleiotropy network (Figure
394  3B), CD4" TH1 cells have been implicated in the pathogenesis of both Crohn’s disease and
395 psoriasis™®. Likewise, in the DIME-pleiotropy network (Figure 3C) of SSc (MeSH: skin
396 disease) and pulmonary fibrosis (MeSH: respiratory tract disease), we found cell-gene
397  networks between progenitors and pDCs, NK cells, CD4" TEMRA and CD4" T regulatory,
398 and other myeloid cells. The pathway enrichment of the DAGs in this DIME-pleiotropy
399 network reveded pathways (Supplementary Figure 5B) related to TGF beta receptor
400 signaling, interleukin, ECM and integrin cell surface interactions. Both of these being fibrotic
401  diseases, the involvement of TGF beta signaling and ECM is well represented in the DIME-
402  pleiotropy network and known to be implicated in literature®™ ™. Interestingly, we also
403  observed cell-gene network between macrophages and genes like TGF-B1, MMP9 and
404  TIMPL. Evidently, macrophages may exacerbate pulmonary fibrosis by TGF beta production
405  or cause ECM degradation via matrix metalloproteinase (MMP) activities™. The DIME-
406  pleiotropy network has captured the intricate network of these key DAGs and the cells
407  (macrophages) accurately.

408  Patients with rheumatoid arthritis (RA) have an increased risk of cancer due to the severe
409  regimen of disease modifying anti-rheumatic drugs™. However, RA patients seem to have
410  lower risk of colon cancer in comparison to the general population®™°. To explore the factors
411  responsible for the protective effect against colon cancer in RA patients, we constructed the
412  DIME-pleiotropy network (Figure 3D) of RA (MeSH: immune system) and colon carcinoma
413 (MeSH: neoplasm). We found cell-gene networks of CD4" T cells and many of the myeloid
414  cells. The pathway enrichment of the DAGs in this DIME-pleiotropy network revealed
415  pathways (Supplementary Figure 5C) related to TLR signaling, interleukin signaling,
416  neutrophil degranulation, ECM organization, FCER1 and EGFR signaling. Although clear
417  dSignatures of the protective effect were not observed, we did find the presence of PTGS1 and
418 PTGS2 (also known as COX1 and COX?2) in the DIME-pleiotropy network of RA and colon
419  carcinoma. These genes are targets of the non-steroidal anti-inflammatory drugs (NSAIDs)

420 that are frequently taken by RA patients. Evidently, NSAIDs like aspirin have been shown to
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421  confer protective affect against colorectal cancer even in lower doses®. Perhaps the missing
422 link in the protective effect of RA in colon cancer lies in the anti-inflammatory role of the
423 NSAIDs taken by the RA patients that target the pro-inflammatory mediators® such as
424  PTGS1 and PTGS2 in both diseases, thus conferring protection.

425  These DIME-pleiotropy analyses highlighted the common cell-gene relationships between
426  the different diseases (Figure 3B-D). Thus, making such pleiotropic relationships less
427  “ubiquitous’® but rather based on the similar cell-gene mechanism implicated between the
428  two diseases. We used this to further capture the plausible drug targets based on the immune

429  system mechanism as we identified with RA and colon cancer.
430
431 Immunome mediated drug repur posing

432 Using our immunome data, the DisGeNet and the NMF, we constructed the DIME network
433 and the DIME-pleiotropy network (as described before and as depicted in Figure 4A, part 1
434  and 2). We extended this approach to construct drug-gene network to identify drug targets
435  based on the DIME network (Figure 4A, part 3), which are referred to as the DIME-drug
436 network. We then used the pleiotropy method used before to then identify common drug
437  targets between the diseases (Figure 4A, part 4) based on the DIME-drug networks, which
438  forms the basis of the immunome mediated drug repurposing, (see methods). Figure 4B
439 shows an example of the DIME-drug network of Crohn's disease that represents the
440  connections between the top DAGs of Crohn’s disease as the potential drug targets and their
441  associated drugs. The DIME-drug network of Crohn’s disease identified some known drugs
442 like the corticosteroids (such as prednisone, methylprednisolone, hydrocortisone and
443  budesonide, targets of NR3C1l) and the aminosalicylates (such as sulfasalazine and
444  mesalamine, targets of PTGS2 and ALOXD5) that are current line of drugs used in treatment of
445  Crohn’s disease™. In addition to the known drugs and drug targets, the DIME-drug network
446  of Crohn's disease also revealed some novel and potentially interesting drugs and drug
447  targets, such as lifitegrast that target the integrins, ITGB2 and ITGAL. This is particularly
448  interesting because integrin based therapies (such as natalizumab and vedolizumab) are
449  dready in use for Crohn’s disease™. Exploring other integrin based therapies for Crohn’s
450  disease may be beneficial since both ITGAL and ITGB2 show in the top DAGs and are also

451  implicated in Crohn's disease™®?.
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452 As we discovered common cell-gene mechanisms in the DIME-pleiotropy network in the
453  previous analysis (Figure 3), we extended this approach to discover plausible drugs and drug
454  targets between the disease pair comparison to find new candidates for drug repurposing, we
455  refer to these analysis as the pleiotropy-drug network analysis (Figure 4A, part 4). In
456  addition to the drug targets revealed from the DIME-drug network of Crohn's disease, the
457  pleiotropy drug network of Crohn's disease and psoriasis (Figure 4C), comprised some
458  known drug targets such as IL6R for psoriasis and IL1B for Crohn’s disease. The associated
459  drug of ILBR, tocilizumab is known to be used in the treatment for psoriasis®*. Interestingly,
460  anti 1L6 therapy has been shown to have promising clinical response for Crohn’s disease as
461 well®®. Similarly, anti-IL1 therapies have also been explored for psoriasis and have shown
462 beneficial clinical outcome®. Thus, DIME-network identifies established and novel potential
463  targetsfor drug repurposing.

464  Studying the pleiotropy-drug network of fibrotic disease systemic scleroderma and
465  pulmonary fibrosis (Figure 4D), we found the DNMT1 (a DNA methyl transferase enzyme)
466  targeting drugs decitabine and azacitidine. Epigenetic modulation as a therapy has been
467 explored as a treatment option in SSc®. Similarly, in the pleiotropy drug network of SSc and
468  myocardial infarction (MeSH: Cardiovascular), Figure 4E, we found canakinumab an IL1B
469  targeting drug. Anti-IL drugs have also been tested on patients with myocardial infarction and
470 were shown to have fewer cardiovascular events than placebo® . The pleiotropy drug network
471  of rheumatoid arthritis and colon carcinoma was found to be larger (Figure 4F), due to the
472 larger overlap between the two diseases, see Figure 3D. The network shows possibilities of
473 using anti-inflammatory drugs for treatment or prevention of colon carcinoma as discussed
474  before. With drugs that target genes such as IL2RG, TYK2, PTGS1, PTGS2, etc. that are
475  widely used to treat anti-inflammatory or immune mediated diseases, these can be used as

476  preventive care drugs or for use along with chemotherapy®.

477  We also looked at the known drug targets that are present across the DIME networks of the
478 613 diseases analyzed by us. We found the top 5 drug targets to be BCL2 (Figure 4B, C, E,
479 and F), PTGS2 (Figure 4B, 4E-4F), PIK3CD (Figure 4D, 4E), CXCR4 (Figure 4B-4F) and
480 IL1B (Figure4B, C, E, and F) that were implicated in the DIME networks of more than 200
481  out of the 613 diseases analyzed by us. The CXCR4 targetable by plerixafor is present in all
482  of the pleiotropy-drug networks shown here (Figur e 4B-4F). Plerixafor is adrug intended for
483 use in cancer after stem cell transplantation to initiate migration of stem cells in the
484  bloodstream®. This drug is now in clinical trials (NCT01413100) to be evaluated for use
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485  after autologous transplant in patients with scleroderma’™. Such trials may potentially be
486  extended to other immune diseases like psoriasis, Crohn's disease, rheumatoid arthritis, and
487  potentially for a variety of other phenotypically distinct rheumatic diseases that are driven by
488 CXCR4 mediated dysregulation of immune system. Many such potential drug repurposing
489  targets (enlisted in Supplementary Table 2) can be similarly evaluated in future studies and
490  trials.

491
492 Discussion

493  Despite decades of experimental data on the understanding of the molecular mechanism of
494  diseases, we know little about the perturbations in the niche cell compartments that are
495  specific to the disease. To address this gap several efforts at the tissue®> and immune cel 1'%
496 level have been performed to identify these disease specific compartments. However,
497  previous studies have concentrated at whole tissues, not distinguishing different immune cell
498  subsets or, in contrast, focused on a few immune cell subsets thereby likely missing the
499  complex molecular network underpinning immune mediated diseases. Additionally, it is
500 important to understand which of the gene subsets contribute to a mechanism within the
501 different cell populations. A disease may have perturbations occurring at a single cell type or
502 at multiple cell types with completely different or similar genes being involved. To truly
503 understand a disease, it is essential to capture these cell-gene networks as holistically as

504 possible.

505 To address the above-mentioned gap, we used the systems immunology approach of
506  dissecting diseases using the immunome comprising of 40 immune cells, the vast literature on
507 the available disease network and computational methods to compute and construct DIME
508 networks. The unique integration of these parts resulted in the novel mechanisms being
509 captured by our method. In this report, we highlight some of the known mechanisms we
510 capture from the DIME networks. For example, the role of NETosis and granulocytes in
511  many of the immune diseases, the role of TGF beta signaling in fibrotic diseases, the role of
512 BCR signaling and PI3K/AKT pathways in cancer, etc. We further outlined methods to
513  capture pleiotropy between diseases using the combination of cell-gene commonalities
514  between the DIME networks of the diseases, to ensure the robust capture of common
515 mechanism between diseases. We further extend this approach to identify immune

516  mechanism based drug targets that provides additional support and rationale for drug
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517  repurposing. For example, we found from the DIME drug network that several specific
518 interleukins are involved in Crohn’s disease, psoriasis and myocardial infarction. Given the
519  success of anti-IL therapies in many of the immune related diseases, our results indicate that
520 the anti-IL therapies might also be a promising option for these immune related diseases.
521  Likewise, our results indicate that using NSAIDs might be a promising option for cancer
522  prevention and treatment. However, additional functional experiments and extensive clinical

523 trials haveto be done to support this approach.

524 The DACs and DAGs of the DIME network make it more robust to pinpoint which
525  mechanism and in which cell type. And this makes it a useful tool to dissect diseases. Hence
526  we built a shiny app to identify and construct DIME networks for all the diseases in the
527  DisGeNet, the GWAS network and also for user defined set of genes. The tool also identifies
528  potential drug targets based on the DIME networks. A caveat is that we focused on 40
529 different immune cells in this study, certain diseases may have manifestations that may or
530 may nhot be perturbed in the immune system or the progenitor cells that we have looked at.
531  Such diseases should be analyzed with additional data to identify the DACs and the
532  underlying mechanism. We have built the tool to accommodate and plugin such futuristic or
533  existing data consisting of gene expression information (coming from single cell or bulk) on
534 thedifferent cell types apart from those found in the immune system. We believe that this tool
535 will aid scientist to increase the understanding of disease pathology and facilitate drug
536 development by better determining drug targets, thereby mitigating risk of failure in late

537  clinical development.
538
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700 FIGURE LEGENDS

702

703  Figure 1: A Brief overview of methods, highlighting the integration of the 3 layers. B MeSH-
704  MeSH network highlighting different MeSH (disease category) terms as nodes and the edges
705  represent the genes common between the MeSH terms. Node names in network represent first
706  two letters of the complete MeSH term as shown in the legend on right. C-H Gene
707  prevaence over different MeSH terms. The degree distribution of genes across| MeSH terms
708  and J diseases shown as histogram. K heatmap of gene expression across immunome of high
709  degree genesin the DisGeNet. L Gene expression of APOE in theimmunome. In B, E-J, size
710  of node represents number of diseasesin MeSH term.

711

712 Figure 2: DIME network of A lymphoid leukemia, B systemic scleroderma, C pulmonary
713  fibrosis and D systemic lupus erythematosus. Green nodes represent genes, blue represents
714  cell types and red represents diseases. Size of nodes is proportional to DAG score in genes
715  and DAC scorein cell types.

716

717  Figure 3: A Top pleiotropy network of the disease subset of the DisGeNet. Nodes are
718  diseases that have a minimum degree of 2 nodes. Edges between diseases exist if the Jl > 0.1
719 and FET p-vaue < 0.01 of the common DIME network between the diseases. Pleiotropy
720 analysis between B Crohn’'s disease and psoriasis, C systemic scleroderma and pulmonary
721 fibrosis, and D rheumatoid arthritis and colon carcinoma. B, C, D Venn diagrams represent
722 overlap of cell-gene connections between the disease comparisons. JI and FET p-value are
723 calculated for overlap in the genesin the DIME network of the diseases.

724

725  Figure 4: A Schema showing the different analysis performed in this study from building the
726  DIME network (partl) to the pleiotropy (part 2) to the DIME-drug network (part3) and to the
727  pleiotropy-drug network (part 4). B DIME-drug network of Crohn’s disease. Pleiotropy-drug
728  network for C Crohn’s disease and psoriasis, D systemic scleroderma and pulmonary fibrosis,
729 E systemic scleroderma and myocardial infarction, and F rheumatoid arthritis and colon
730  carcinoma.

731

732
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733 Supplementary Information

734

735  Supplementary Figure 1: Shows the degree of the top 10 high degree genes for different
736  MeSH term categories and for all diseases.

737

738  Supplementary Figure 2: Heatmap of DAC scores for top weighted feature of 613 diseases
739  from the DisGeNet.

740

741  Supplementary Figure 3. Reactome pathway enrichment analysis of top DAGs in the
742  different clusters of the DIME network of A systemic sclerodermaand B pulmonary fibrosis.
743

744  Supplementary Figure 4. Reactome pathway enrichment analysis of top DAGs in the
745  different clusters of the DIME network of A systemic lupus erythematosus and B lymphoid
746  leukemia

747

748  Supplementary Figure 5: Reactome pathway enrichment analysis of pleiotropy DIME
749  network of A Crohn's disease and psoriasis, B systemic scleroderma and pulmonary fibrosis,
750  and C rheumatoid arthritis and colon carcinoma.

751

752  Supplementary Table 1. Represents al GEO datasets and samples used to construct the
753  immunome.

754

755  Supplementary Table 2: List of genes as potential drug targets identified from the
756  pleiotropy-drug network analysis. The degree represents the number of diseases in which the

757  genewas found to be in the DIME-drug network. A total of 613 diseases were analyzed.
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