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Abstract 8 

Immune system is crucial for the development and progression of immune-mediated and non-9 

immune mediated complex diseases. Studies have shown that multiple complex diseases are 10 

associated with several immunologically relevant genes. Despite such growing evidence, the 11 

effect of disease associated genes on immune functions has not been well explored. Here, we 12 

curated the largest immunome (transcriptome profiles of 40 different immune cells) and 13 

integrated it with disease gene networks and drug-gene database, to generate a Disease-gene 14 

IMmune cell Expression network (DIME). We used the DIME network to: (1) study 13,510 15 

genes and identify disease associated genes and immune cells for >15,000 complex diseases; 16 

(2) study pleiotropy between various phenotypically distinct rheumatic and other non-17 

rheumatic diseases; and (3) identify novel targets for drug repurposing and discovery. We 18 

implemented DIME as a tool (https://bitbucket.org/systemsimmunology/dime) that allows 19 

users to explore disease-immune-cell associations and disease drug networks to pave way for 20 

future (pre-) clinical research. 21 
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Introduction 22 

The genetic and epigenetic heterogeneity has been known to play a major role in the 23 

development and progression of complex diseases. The past two decades have seen a major 24 

surge in studies that characterize genes and loci associated with disease. The use of high-25 

throughput omics technology and functional screenings have boosted our knowledge about 26 

genetic, epigenetic and metabolic factors underlying complex diseases1. As a result of these 27 

genetic and epigenetic screenings, we now know that the majority of complex diseases and 28 

genes/loci have a many-to-many relationship meaning that a complex disease is linked to 29 

many different genes and a gene/loci is associated with many different genes2.  30 

Large high-throughput screening studies have typically used bulk tissue or whole blood to 31 

study disease associated genes (DAGs). However, the expression of each gene is known to 32 

vary between tissues and cell types3,4. Thus, bulk tissue- or blood-based studies on DAGs do 33 

not consider the role played by different cells and tissues in the disease biology. To improve 34 

the understanding and molecular basis of complex diseases, a large number of research 35 

groups and consortiums have started to functionally identify disease associated cells (DACs) 36 

or tissue types3–7. The Genotype-Tissue Expression (GTEx) is one such valuable project, 37 

which maps gene expression profiles of 54 different human tissue types and the 38 

corresponding expression quantitative trait loci (eQTLs)5–7. Furthermore, the growth of single 39 

cell technologies have advanced our understanding of DACs and have helped in identifying 40 

cell types associated with complex diseases including cancer8, Alzheimer’s9, rheumatoid 41 

arthritis10, among others.  42 

The immune system is known to play a key role in the development and progression of 43 

immune-mediated as well as non-immune mediated chronic diseases. A large number of 44 

association and functional studies have shown that multiple DAGs are expressed in immune 45 

cells and perturbing these DAGs can modulate immune cell functions11. However, very few 46 

studies have explored the impact of DAGs on specific cell types and even fewer on immune 47 

cells, many of which focus on limited number of cell subsets12–16. Recently Schmiedel et al. 48 

studied the effect of genetic variants on the expression of genes in 13 different immune cell 49 

types17. However, this study largely focused on the analysis of genetic variants and their 50 

impact on a total of 13 immune cell types: monocytes (classical and non-classical), NK cells, 51 

naïve B-cells and nine sub-populations of T-cells. 52 
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In this study, we mapped the largest available and expert curated disease-gene network (from 53 

the DisGeNet curated from 16 different databases) on the largest immunome data curated by 54 

us comprising gene expression profiles of 40 different immune cell types. We then quantified 55 

the effects of 13,510 DAGs on the immunome, to identify DACs for 15,367 different diseases 56 

in the DisGeNet. Using the DACs and the DAGs, we constructed the Disease-gene IMmune 57 

cell Expression (DIME) network. We use the DIME network to: (1) study the underlying cell-58 

specific mechanisms of complex diseases; (2) identify cell-specific targets for complex 59 

disease; (3) identify networks of genes and cells that are commonly associated with different 60 

pairs of diseases; and (4) predict drug repurposing targets towards identified disease 61 

mechanisms shared between different diseases. We further built a user-friendly shinyapp 62 

called DIME (https://bitbucket.org/systemsimmunology/dime), which can be used to identify 63 

DACs and construct DIME network for: (1) diseases from the DisGeNet, (2) diseases from 64 

the EBI genome wide association study (GWAS) catalogue, or (3) custom set of genes 65 

defined by the user. 66 

 67 

Methods 68 

Transcriptome data - Immunome 69 

The transcriptome data consists of RNA-sequencing datasets of 40 different immune cell 70 

types curated using 316 samples from a total of 27 publicly available datasets (see 71 

Supplementary Table 1 for list of GEO datasets and samples used). The 40 different 72 

immune cells cover the entire hematopoietic stem cell differentiation tree comprising of 9 73 

progenitors, 19 lymphoid, and 12 myeloid cell types. The samples used here were manually 74 

curated considering only the unstimulated (except for macrophages, that were monocyte 75 

derived) immune cells that were sorted using Fluorescence-activated cell sorting (FACS) and 76 

were isolated from either blood, bone marrow or cord blood from healthy donors. All the 77 

selected datasets were downloaded as FASTQ files using the fastq-dump tool from 78 

sratoolkit18. The “—split-files” option was given if the library type was paired end 79 

sequencing. FASTQ files were then aligned to reference genome (GRCH.Hg38.79) using 80 

STAR aligner19. The result is a SAM file which was then converted into a sorted BAM file 81 

using the samtools program20. These were then used to calculate the count of aligned reads 82 

using the HTSeq program21 with the mode option “intersection non-empty”. HTSeq was run 83 
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for all possible stranded mode options, the count file with the maximum counts was chosen as 84 

the respective count file for the sample.  85 

The data was then filtered by removing all genes that had less than 20 read counts in 95 86 

percent of the samples using R programming. The filtered data was then lane normalized 87 

using the “betweenLaneNormalization” function from the RUVSeq package22. The RUVr 88 

method from RUVSeq was used to identify residual factors contributing to the batch effect. 89 

The resulting filtered, batch corrected and normalized data had expression for 34,906 genes 90 

that was void of any observable batch effect. We calculated counts per million (cpm) for the 91 

filtered genes and used cpm as the gene expression measure. We then used the median gene 92 

expression for each cell type for the rest of the analysis. This processed, batch corrected, 93 

normalized and median representative data of 40 immune cells is referred to as the 94 

immunome. 95 

 96 

Disease gene network from DisGeNet 97 

The full disease gene association network from DisGeNet23 was downloaded from the 98 

DisGeNet database (www.disgenet.org/downloads). All HLA associated genes was removed 99 

from the network, this was done to ensure that bias towards myeloid cells and B cells are 100 

removed, since the HLA genes are largely expressed by these cells. The resulting network 101 

was further filtered to include only those genes that were present in the immunome. The final 102 

network comprised of 15367 diseases and 13510 DAGs.  103 

The DisGeNet consists of expert curated disease-gene interactions from 16 different 104 

databases: UNIPROT, CGI, ClinGen, Genomics England, CTD, PsyGeNET, Orphanet, RGD, 105 

MGD, CTD, Human Phenotype Ontology, Clinvar, GWAS catalogue, GWAS DB, LHDGN 106 

and BeFree. The DisGeNet is the largest and most comprehensive disease-gene association 107 

network available in the literature that was known to us. We also tested our methods on more 108 

specific disease networks such as those from the EBI GWAS database.    109 

 110 

Other disease gene networks - EBI GWAS data 111 

In addition to the DisGeNet, we also used a refined GWAS based dataset from the EBI24. The 112 

GWAS catalogue of Version 1.0, e89, was downloaded from the EBI website, which 113 
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contained information on the disease associated SNP for about 1900 diseases/traits. The 114 

reported p-value of all the disease associated SNP in the catalogue was ≤ 0.05. The catalogue 115 

also provided the corresponding mapped gene information for all the SNP which was used to 116 

construct the disease to gene association network. We further filtered this network using the 117 

same filtering criteria that was used for the DisGeNet. The EBI GWAS dataset was used to 118 

infer SNP based disease cell associations.  119 

 120 

Mapping disease gene network to Immunome data 121 

For a given disease D and its DAGD, we first extracted the corresponding Immunome 122 

expression matrix. This expression matrix (XD) comprised the gene expression of the DAGD 123 

across the 40 cells forms as the input data upon which further analysis was performed. Thus, 124 

the dimension of each XD was given as:  125 

dim(XD) = length(DAGD) x 40, 126 

where, length(DAGD) is the number of DAGs in disease D and 40 corresponds to the number 127 

of cell types in the immunome data. 128 

 129 

Using NMF to cluster XD into k classes 130 

We used the NMF package25 in R and applied the non-negative matrix factorization method 131 

using Brunet’s26 algorithm to the expression matrix (XD) to factor it into two matrices namely 132 

WD and HD such that. 133 

XD ≈ WD HD, 134 

where, WD and HD are the basis and coefficient matrices computed by the NMF. The 135 

dimensions of WD and HD are given as: 136 

dim(WD) = length(DAGD) x k, 137 

dim(HD) = k x 40, 138 

where, k is the number of classes/clusters that splits the data, such that it satisfies the above 139 

NMF equation. The WD matrix comprises of the weights of the DAGs across the k clusters (in 140 

each column) and the HD matrix comprises of the weights of the cells in the corresponding k 141 
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clusters (in each row). We used Brunet et al. method to identify the ideal k value using the 142 

cophenetic correlation coefficient method26.  143 

 144 

Identifying the key DAGD and DACD from WD and HD  145 

The NMF algorithm clusters the data into k clusters such that, in each cluster ‘i’, where i � 146 

(1, …, k), the genes that have high values in ��
�  are constitutively expressed by the cells that 147 

have high values in ��� . Where, ��
�  is the ith column of WD and ���  is the ith row of HD. For 148 

each cluster i, we chose the cell-gene pairs that were in the top 25th percentile range of their 149 

corresponding ��
�  and h��  values. These cells and their corresponding gene pairs are regarded 150 

as the key DACD and DAGD respectively.  The cell-gene pairs were extracted from all the 151 

clusters and were compiled together. The resulting cell-gene pairs of all the clusters form the 152 

edges of the Disease-gene to IMmune cell Expression network, hereby referred as the DIME 153 

network. 154 

 155 

Identifying the key cluster 156 

We then identified the largest weighted cluster among the k clusters identified by the NMF. 157 

That is, the subset of genes and cells of XD that can capture most of its expression pattern. We 158 

did this by using the following approach.  159 

Since XD, WD and HD can be represented as below: 160 

�� � ���� � � | | | |
��
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2 … ��
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�
��
��
	 
�

1 	

	 
�
2 	

	 � 	
	 
�

� 		


� � ∑ ��

��

��1 
�
�

. 161 

 162 

We calculated the Frobenius norm of each ��
� 
�

� for all values of i.  We then identified the 163 

cluster (represented as c) for which ||��

� 
�
� ||

	
 is the maximum. This can be mathematically 164 

represented as: 165 

� � argmax�||��
� 
�

� ||
�;  � � �1, … , ��, 166 

 167 
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where, the cth cluster represents that cluster which maximally captures/represents the 168 

expression matrix XD. We used the ��
�  as the scores for the DAGD and 
�� as the scores for the 169 

DACD. 170 

DAGD score = ��
� , 171 

DACD score = 
�� , 172 

The scores were scaled between 0 and 1, with 1 representing the cell or gene with the highest 173 

score.  174 

 175 

Pleiotropic associations 176 

To identify common mechanisms between two diseases, we looked at their overlapping cell-177 

gene connections in their corresponding DIME networks. Jaccards’ index (JI) was used to 178 

measure the overlap between the two diseases with Fisher’s exact test (FET) used to obtain 179 

confidence p-value for the given overlap. The overlapping genes were used to calculate JI and 180 

statistical significance of overlap using FET. The pleiotropy based overlapping cell-gene 181 

network between the two diseases is referred to as the DIME-pleiotropy network.  182 

 183 

Integrating drug-gene network 184 

The drug to gene target database from DGIdb was downloaded27. The data was filtered to 185 

contain only the CHEMBL interactions and only those pertaining to the drugs approved by 186 

the food and drug administration (FDA) of USA. This FDA approved drug to gene target 187 

interaction serves as the drug-gene network in this study. To identify potential drug 188 

candidates from the drug-gene network for disease D, we choose its key DAGD as identified 189 

in the previous step and extracted its corresponding target drugs from the drug-gene network. 190 

This network between the drugs and the key DAGD is referred to as the DIME-drug network 191 

for disease D. The DIME-drug network represents all the drugs that target the key DAGD 192 

identified in the given DIME network. To identify potential common acting drugs between 193 

different diseases, we used their corresponding DIME-pleiotropy network and extracted the 194 

drug-gene connections between the cell-gene and the drugs in drug-gene network. The drugs 195 

identified using this approach represent those that act on the common mechanisms between 196 

the two diseases and can be potential candidates for drug repurposing. 197 
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 198 

Rationale for restricting analysis to only diseases with ≥ 100 DAGs 199 

The filtered disease-gene network of the DisGeNet comprised of DAGs for about 15,367 200 

diseases. This could make the pleiotropy analysis between diseases extremely cumbersome, 201 

with the number of disease-to-disease comparisons reaching as large as 118,064,661. 202 

Additionally, to have sufficient number of DAC-DAG associations in the DIME-pleiotropy 203 

network and also have sufficient number of drug-target gene associations in the DIME-drug 204 

network, we used a smaller subset of diseases but with larger DAGs associated to them. We 205 

found by looking at the distribution of DAGs across the diseases, that the number of diseases 206 

with ≥ 100 DAGs were fewer in number, i.e., 613 diseases. This was sufficiently large DAC-207 

DAG associations for the pleiotropy analysis and less cumbersome to analyze the 208 

comparisons (187,578). Hence, we choose those diseases with ≥ 100 DAGs. All analysis 209 

presented in this study have been performed on this disease subset.  210 

 211 

DIME shinyapp 212 

To construct the DIME and DIME-drug network for other diseases not mentioned in this 213 

study or using a custom gene input, we built a tool in R/Bioconductor called DIME that is 214 

available as a shiny app (https://bitbucket.org/systemsimmunology/dime). The app can be 215 

used to identify the key DAC, DAG and the DIME-drug network for the diseases from the 216 

DisGeNet, the EBI-GWAS catalogue or for custom set of genes from the user.  217 

 218 

Results  219 

The aim of this study is to identify disease associated cell types (DACs) based on the existing 220 

disease gene network, and to further identify disease associated gene (DAG) subsets that may 221 

perturb the associated immune cells. To achieve this, we integrated our immunome data with 222 

the disease network from DisGeNet and used the non-negative matrix factorization (NMF) 223 

method to identify those subsets of genes and cells that maximally represent the Disease gene 224 

IMmune cell Expression (DIME) network, as illustrated in Figure 1A. The constructed 225 

immunome dataset comprises 40 different cell types and is the largest bulk RNASeq meta-226 

dataset of the immune cell types known to us. The filtered disease-gene network from 227 
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DisGeNet consists of associations between 15,367 diseases and 13,510 DAGs. In this 228 

massive disease network, numerous DAGs were found to be common between both 229 

phenotypically similar and distinct diseases. We explore these common DAG patterns in 230 

more detail in the next section. 231 

 232 

Common DAGs of phenotypically distinct diseases 233 

The 15,367 diseases in the DisGeNet belong to 29 different disease MeSH (Medical Subject 234 

Headings) terms (Figure 1B). The MeSH-MeSH network in Figure 1B depicts the 235 

connections between the different MeSH terms, where the thickness of the connections 236 

represents the number of DAGs common between the different MeSH terms. The neoplasm 237 

MeSH term was the most well connected disease category in the network. The highest 238 

number of common DAGs (6,959 DAGs) between two different MeSH terms was observed 239 

between neoplasm and digestive system diseases. Other top MeSH-MeSH connections that 240 

had more than 5,000 common DAGs include those between neoplasm and that of the skin and 241 

connective tissue, nervous system, congenital, endocrine system, and female urogenital 242 

diseases and pregnancy complications. Thus, the MeSH-MeSH gene network revealed the 243 

shared DAGs across phenotypically distinct diseases belonging to different MeSH terms. 244 

We further studied the DAG patterns across MeSH terms and found that TP53 was 245 

preferentially associated with diseases categorized under the neoplasm MeSH term (Figure 246 

1C). Interestingly, TP53 was also associated with numerous diseases from various other 247 

MeSH terms such as immune system diseases, nervous system diseases, and skin and 248 

connective tissue diseases. Similarly, TNF was associated with numerous diseases from 249 

various MeSH terms including immune system diseases (Figure 1D). APOE was largely 250 

associated with nervous system diseases, and ACE was largely associated with cardiovascular 251 

diseases (Figure 1E and F). TLR4 and CXCL8 were prevalently associated to several MeSH 252 

terms (Figure 1G and H). The above-mentioned genes (Figure 1C-1F) are those that are 253 

either the top represented (degree) genes across all diseases or for disease within specific 254 

MeSH terms. More examples of DAGs associated with specific MeSH terms and their degree 255 

can be found in the Supplementary Figure 1. Majority of the DAGs mapped to two or more 256 

MeSH terms (Figure 1I) or diseases (Figure 1J) also hinting towards shared disease 257 

mechanisms between phenotypically distinct diseases. These genes that are associated to 258 

many diseases/MeSH terms (i.e. having high degree) were regarded as the hub genes of the 259 
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disease-gene network. We ranked the DAGs based on their degree and found TP53, TNF, 260 

VEGFA, BCL2, IL1B as the top 5 DAGs each being associated with >750 diseases (Figure 261 

1K and Supplementary Figure 1).  262 

 263 

Relevance of the immune system 264 

We further evaluated the expression of the hub genes identified in the previous step, in the 265 

immunome data. The rationale was to assess if the hub genes representing the core of the 266 

disease-gene network were important to the immune system. Indeed, we found that many of 267 

the hub genes of the disease-gene network were expressed constitutively by either all immune 268 

cells or by some specific immune cells, as seen in Figure 1K. For example, the nervous 269 

system associated gene, APOE, important to many of neurological diseases such as 270 

Alzheimer’s and Parkinson28 were found to be expressed specifically by macrophages, as 271 

seen in Figure 1L. Studies have shown that genetic polymorphisms in APOE protein leads to 272 

defective clearance of the Aβ plaques by macrophages29–31. Thus, conferring macrophages as 273 

one of the key players of the disease. Such links between DAGs, to observing altered 274 

function in a cell type, questions the need to study DAGs by integrating cell-specific 275 

expression information.  276 

 277 

Identifying disease associated cell types 278 

We further identified such disease associated cells (DACs) based on the DAGs and report 279 

DACs for about 600 diseases in the disease-gene network (see Methods). The immune cells 280 

can be broadly categorized as myeloids, lymphoids and progenitors. Using the DAC profiles 281 

of about 600 diseases, we observed that in most diseases, DAGs do not associate with all 282 

immune cells but tend to associate with specific immune cells or with specific category of 283 

immune cells (Supplementary Figure 2). We observed from these DAC profiles that several 284 

phenotypically different diseases had similar DAC profiles. For example, diseases such as 285 

skin carcinoma, muscle degeneration, juvenile arthritis, epilepsy, etc. clustered together, 286 

showing progenitors as their top DACs. Similarly, peripheral T-cell lymphoma, celiac 287 

disease, atopic dermatitis, malignant glioma, basal cell carcinoma, etc. clustered together, 288 

with lymphoid cells as the top DACs. Interestingly, systemic lupus erythematosus (SLE), 289 

heart failure, myocardial infarction, colitis, type 1 diabetes, etc. cluster together showing 290 
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myeloid cells as their top DACs. Thus the DAC profiles like the DAG profiles showed that 291 

phenotypically different diseases had similar DAC pattern.  292 

We constructed the DIME network for different diseases individually, the DIME network 293 

consists of the top DACs and their respective DAGs, (see methods). The DIME network 294 

represents the key cell-gene mechanisms that can be drawn from the given set of DAGs. As 295 

proof of concept, we present here the DIME network of lymphoid leukemia (Figure 2A), a 296 

group of blood cancer that typically affects the lymphocytes. The DIME network revealed 4 297 

DAC clusters for lymphoid leukemia. The key DAC cluster comprised of lymphoid 298 

progenitor cells as well as myeloid progenitor cells. The key DAGs contributing to this 299 

cluster included genes associated with hematopoiesis such as RPS14, HSP90AA1, MPO, 300 

ETV6, ATF4 and TAL1. The other key DAC cluster comprised of all the subsets of T cells, 301 

primarily the CD4+ T cells. The key DAGs contributing to this cluster included ETS1, 302 

CXCR4, IKZF1, ATM, LCK, and KMT2A. The pathway enrichment (Supplementary 303 

Figure 4B) of these genes revealed pathways associated to TCR and BCR signaling and 304 

PI3K/AKT signaling. Interestingly, these pathways have been shown to be important for 305 

survival of cancer cells and are targets for anti-cancer drugs in acute and chronic lymphoid 306 

leukemia32. Thus the DIME network of lymphoid leukemia revealed the key DAGs and 307 

DACs implicated in the disease. 308 

We then explored the DIME network of different kinds of rheumatic and/or fibrotic diseases, 309 

such as systemic scleroderma (MeSH: skin disease), pulmonary fibrosis (MeSH: respiratory 310 

tract disease) and SLE (MeSH: immune system disease). Moreover, we aimed to characterize 311 

the diseases on the basis of the DAGs, DACs and the accompanying DIME networks. The 312 

DIME network of systemic scleroderma, an autoimmune rheumatic condition with chronic 313 

inflammation and fibrotic phenotype, revealed a complex relationship between their DAGs 314 

and their DACs (Figure 2B). For systemic scleroderma, myeloid cells (neutrophils, 315 

granulocytes, BDCA1+CD14+, and CD11c myeloid dendritic cells), and lymphoid cells (NK, 316 

CD4+ T regulatory, ILC3, and ILC2) were identified as key cluster of DACs (see methods). 317 

The key DAGs contributing to this cluster included PTPRC, FOS, SRRM2, MSN, JUNB, 318 

CXCR4, ITGB2, and TNFAIP3 genes. For systemic scleroderma, the other key DAC cluster 319 

comprised myeloid cells (macrophages and pDCs) and myeloid progenitor cells. The key 320 

DAGs contributing to this cluster included HSP90AB1, SPP1, HSP90AA1, MMP9, WNK1, 321 

HIF1A and IRF8. The two systemic scleroderma associated DAC clusters together were 322 

enriched in DAGs from interleukin signaling, TGF beta signaling, TLR signaling, ECM 323 
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organization and neutrophil degranulation pathways (Supplementary Figure 3A). Of which, 324 

evidently, TGF beta is known to play an essential role in the pathogenesis of fibrosis33. 325 

Likewise, the neutrophil degranulation pathway or otherwise known as NETosis, is the 326 

mechanism by which neutrophils exhibit defensive mechanisms to trap and kill foreign 327 

bodies34. And this pathway has been found to be implicated in other autoimmune diseases, 328 

and is now being currently investigated in clinical trials35. Interestingly, we found neutrophils 329 

and its NETosis associated genes to be in the top cluster of the DIME network for systemic 330 

scleroderma. 331 

We then constructed the DIME network of another fibrotic disease, pulmonary fibrosis. The 332 

DIME network revealed 4 DAC clusters for pulmonary fibrosis (Figure 2C). Similar to 333 

systemic scleroderma, we found a DAC cluster comprising of T-cells and NK cells enriched 334 

in DAGs associated with TGF beta signaling (Supplementary Figure 3B). Interestingly, we 335 

also found that for pulmonary fibrosis neutrophils-granulocytes, macrophages, 336 

BDCA1+CD14+ cells, pDCs and myeloid progenitors were among the top DACs similar to 337 

that of systemic scleroderma, (Supplementary Figure 3B). We also found an enrichment of 338 

NLRP3 pathway genes, which are known to play a role in the collagen deposition 339 

mechanisms commonly dysregulated in fibrosis36. 340 

We then studied the DIME network of SLE, an autoimmune disease. The DIME network 341 

revealed 2 DAC clusters for SLE (Figure 2D). The key cluster comprised of myeloid cells 342 

like neutrophils-granulocytes, macrophage M1, BDCA1+CD14+ and monocytes as the DACs. 343 

The key DAGs contributing to this cluster included CD74, FOS, LYZ, SOD2 and 344 

HSP90AB1. The other cluster comprised of CD4+ TEMRA, CD4+ TEM, CD4+ TCM and 345 

CD4+ TH1 as their DACs. The key DAGs contributing to this cluster included B2M, IGHG3, 346 

IL7R, ETS1, RPS19, and TNFAIP3. The pathway enrichment for the SLE DIME network 347 

includes pathways that are heavily described in the literature for SLE, such as the neutrophil 348 

degranulation pathways or NETosis37–41, interleukin 4 and interleukin 13 signaling42,43, TLR 349 

signaling pathway44, translocation of ZAP70 to immunological synapsis45, and immune-350 

regulatory interactions between lymphoid and non-lymphoid cells (Supplementary Figure 351 

4A). 352 

The DIME networks revealed immune system mediated mechanisms for the different 353 

diseases. As observed in the Figure 2, Supplementary Figure 3 and 4, the rheumatic and/or 354 

fibrotic diseases such as SLE and SSc, had overlap in specific cell-gene mechanisms 355 
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including those related to the neutrophil degranulation, degradation of ECM, interleukin and 356 

TGF beta signaling pathways. These pathways and common mechanisms observed in the 357 

DIME networks could serve as additional layers to understand the pathogenesis of these type 358 

I interferon driven diseases46. We further explored such common mechanisms based on the 359 

cell-gene relationships in the next section. 360 

 361 

Pleiotropy based on DIME 362 

Pleiotropy is when one gene affects two or more diseases47. Pleiotropy has been observed in 363 

several studies for many different diseases based on gene mutation to phenotype 364 

associations48. Unlike most pleiotropy studies performed in the past that looks at only the 365 

common DAGs between two diseases, we used a different approach. Since the DIME 366 

networks from the previous analysis (for example, between SSc and pulmonary fibrosis) 367 

revealed several overlapping cell-gene connections, we extended this approach to look for 368 

cell-gene connections that are common between the DIME networks of all possible pairs of 369 

diseases. Hence, we define pleiotropy in this study as the cell-gene connections that are found 370 

in one or more diseases. Using this approach, we constructed the pleiotropy network as 371 

shown in Figure 3A. The pleiotropy network consists of diseases as nodes. The nodes are 372 

connected if there exists a significant (JI ≥ 0.1and FET p-value ≤ 0.01) number of common 373 

cell-gene connections between their corresponding DIME networks, (see methods). The 374 

network shown in Figure 3A is trimmed to contain only those nodes with degree ≥ 2. The 375 

node colors represent the MeSH term (as shown in Figure 1B) of the disease. The grey 376 

colored nodes represent those diseases for which the MeSH term ontology was not available 377 

from the DisGeNet. As seen from Figure 3A, several cancer related diseases (shown by 378 

orange color for neoplasm MeSH term) cluster together. Same can be observed for the eye 379 

related disease (shown by green color MeSH term) and the chemically induced disorders 380 

(shown by pink and yellow color MeSH terms) seen in the bottom of the network Figure 3A. 381 

These clusters together highlight the similar mechanisms (cell-gene connections) between 382 

these diseases. 383 

Within this pleiotropy network, we further looked at diseases that belong to different MeSH 384 

terms and searched for common cell-gene mechanistic patterns between them. To do so, we 385 

constructed the DIME-pleiotropy network of several pairs of phenotypically distinct 386 

rheumatic diseases within the pleiotropy network. We present here some examples of the 387 
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DIME-pleiotropy network that had a JI similarity of ≥ 0.1. In the DIME-pleiotropy network 388 

(Figure 3B) of Crohn’s disease (MeSH: digestive system disease) and psoriasis (MeSH: skin 389 

disease), we found cell-gene networks of lymphoid (CD4+, NK and ILC’s) and myeloid cells. 390 

The pathway enrichment of the DAGs in this DIME-pleiotropy network revealed pathways 391 

related to TCR signaling, interleukin signaling, neutrophil degranulation and regulation of 392 

TLR (Supplementary Figure 5A). As observed in the DIME-pleiotropy network (Figure 393 

3B), CD4+ TH1 cells have been implicated in the pathogenesis of both Crohn’s disease and 394 

psoriasis49,50. Likewise, in the DIME-pleiotropy network (Figure 3C) of SSc (MeSH: skin 395 

disease) and pulmonary fibrosis (MeSH: respiratory tract disease), we found cell-gene 396 

networks between progenitors and pDCs, NK cells, CD4+ TEMRA and CD4+ T regulatory, 397 

and other myeloid cells. The pathway enrichment of the DAGs in this DIME-pleiotropy 398 

network revealed pathways (Supplementary Figure 5B) related to TGF beta receptor 399 

signaling, interleukin, ECM and integrin cell surface interactions. Both of these being fibrotic 400 

diseases, the involvement of TGF beta signaling and ECM is well represented in the DIME-401 

pleiotropy network and known to be implicated in literature51–53. Interestingly, we also 402 

observed cell-gene network between macrophages and genes like TGF-B1, MMP9 and 403 

TIMP1. Evidently, macrophages may exacerbate pulmonary fibrosis by TGF beta production 404 

or cause ECM degradation via matrix metalloproteinase (MMP) activities54. The DIME-405 

pleiotropy network has captured the intricate network of these key DAGs and the cells 406 

(macrophages) accurately. 407 

Patients with rheumatoid arthritis (RA) have an increased risk of cancer due to the severe 408 

regimen of disease modifying anti-rheumatic drugs55. However, RA patients seem to have 409 

lower risk of colon cancer in comparison to the general population55,56. To explore the factors 410 

responsible for the protective effect against colon cancer in RA patients, we constructed the 411 

DIME-pleiotropy network (Figure 3D) of RA (MeSH: immune system) and colon carcinoma 412 

(MeSH: neoplasm). We found cell-gene networks of CD4+ T cells and many of the myeloid 413 

cells. The pathway enrichment of the DAGs in this DIME-pleiotropy network revealed 414 

pathways (Supplementary Figure 5C) related to TLR signaling, interleukin signaling, 415 

neutrophil degranulation, ECM organization, FCER1 and EGFR signaling. Although clear 416 

signatures of the protective effect were not observed, we did find the presence of PTGS1 and 417 

PTGS2 (also known as COX1 and COX2) in the DIME-pleiotropy network of RA and colon 418 

carcinoma. These genes are targets of the non-steroidal anti-inflammatory drugs (NSAIDs) 419 

that are frequently taken by RA patients. Evidently, NSAIDs like aspirin have been shown to 420 
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confer protective affect against colorectal cancer even in lower doses57. Perhaps the missing 421 

link in the protective effect of RA in colon cancer lies in the anti-inflammatory role of the 422 

NSAIDs taken by the RA patients that target the pro-inflammatory mediators58 such as 423 

PTGS1 and PTGS2 in both diseases, thus conferring protection. 424 

These DIME-pleiotropy analyses highlighted the common cell-gene relationships between 425 

the different diseases (Figure 3B-D). Thus, making such pleiotropic relationships less 426 

“ubiquitous”59 but rather based on the similar cell-gene mechanism implicated between the 427 

two diseases. We used this to further capture the plausible drug targets based on the immune 428 

system mechanism as we identified with RA and colon cancer. 429 

 430 

Immunome mediated drug repurposing  431 

Using our immunome data, the DisGeNet and the NMF, we constructed the DIME network 432 

and the DIME-pleiotropy network (as described before and as depicted in Figure 4A, part 1 433 

and 2). We extended this approach to construct drug-gene network to identify drug targets 434 

based on the DIME network (Figure 4A, part 3), which are referred to as the DIME-drug 435 

network. We then used the pleiotropy method used before to then identify common drug 436 

targets between the diseases (Figure 4A, part 4) based on the DIME-drug networks, which 437 

forms the basis of the immunome mediated drug repurposing, (see methods). Figure 4B 438 

shows an example of the DIME-drug network of Crohn’s disease that represents the 439 

connections between the top DAGs of Crohn’s disease as the potential drug targets and their 440 

associated drugs. The DIME-drug network of Crohn’s disease identified some known drugs 441 

like  the corticosteroids (such as prednisone, methylprednisolone, hydrocortisone and 442 

budesonide, targets of NR3C1) and the aminosalicylates (such as sulfasalazine and 443 

mesalamine, targets of PTGS2 and ALOX5) that are current line of drugs used in treatment of 444 

Crohn’s disease60. In addition to the known drugs and drug targets, the DIME-drug network 445 

of Crohn’s disease also revealed some novel and potentially interesting drugs and drug 446 

targets, such as lifitegrast that target the integrins, ITGB2 and ITGAL. This is particularly 447 

interesting because integrin based therapies (such as natalizumab and vedolizumab) are 448 

already in use for Crohn’s disease61. Exploring other integrin based therapies for Crohn’s 449 

disease may be beneficial since both ITGAL and ITGB2 show in the top DAGs and are also 450 

implicated in Crohn’s disease62,63.  451 
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As we discovered common cell-gene mechanisms in the DIME-pleiotropy network in the 452 

previous analysis (Figure 3), we extended this approach to discover plausible drugs and drug 453 

targets between the disease pair comparison to find new candidates for drug repurposing, we 454 

refer to these analysis as the pleiotropy-drug network analysis (Figure 4A, part 4). In 455 

addition to the drug targets revealed from the DIME-drug network of Crohn’s disease, the 456 

pleiotropy drug network of Crohn’s disease and psoriasis (Figure 4C), comprised some 457 

known drug targets such as IL6R for psoriasis and IL1B for Crohn’s disease. The associated 458 

drug of IL6R, tocilizumab is known to be used in the treatment for psoriasis64. Interestingly, 459 

anti IL6 therapy has been shown to have promising clinical response for Crohn’s disease as 460 

well65. Similarly, anti-IL1 therapies have also been explored for psoriasis and have shown 461 

beneficial clinical outcome64. Thus, DIME-network identifies established and novel potential 462 

targets for drug repurposing.  463 

Studying the pleiotropy-drug network of fibrotic disease systemic scleroderma and 464 

pulmonary fibrosis (Figure 4D), we found the DNMT1 (a DNA methyl transferase enzyme) 465 

targeting drugs decitabine and azacitidine. Epigenetic modulation as a therapy has been 466 

explored as a treatment option in SSc66. Similarly, in the pleiotropy drug network of SSc and 467 

myocardial infarction (MeSH: Cardiovascular), Figure 4E, we found canakinumab an IL1B 468 

targeting drug. Anti-IL drugs have also been tested on patients with myocardial infarction and 469 

were shown to have fewer cardiovascular events than placebo67.The pleiotropy drug network 470 

of rheumatoid arthritis and colon carcinoma was found to be larger (Figure 4F), due to the 471 

larger overlap between the two diseases, see Figure 3D. The network shows possibilities of 472 

using anti-inflammatory drugs for treatment or prevention of colon carcinoma as discussed 473 

before. With drugs that target genes such as IL2RG, TYK2, PTGS1, PTGS2, etc. that are 474 

widely used to treat anti-inflammatory or immune mediated diseases, these can be used as 475 

preventive care drugs or for use along with chemotherapy68.  476 

We also looked at the known drug targets that are present across the DIME networks of the 477 

613 diseases analyzed by us. We found the top 5 drug targets to be BCL2 (Figure 4B, C, E, 478 

and F), PTGS2 (Figure 4B, 4E-4F), PIK3CD (Figure 4D, 4E), CXCR4 (Figure 4B-4F) and 479 

IL1B (Figure 4B, C, E, and F) that were implicated in the DIME networks of more than 200 480 

out of the 613 diseases analyzed by us. The CXCR4 targetable by plerixafor is present in all 481 

of the pleiotropy-drug networks shown here (Figure 4B-4F). Plerixafor is a drug intended for 482 

use in cancer after stem cell transplantation to initiate migration of stem cells in the 483 

bloodstream69. This drug is now in clinical trials (NCT01413100) to be evaluated for use 484 
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after autologous transplant in patients with scleroderma70. Such trials may potentially be 485 

extended to other immune diseases like psoriasis, Crohn’s disease, rheumatoid arthritis, and 486 

potentially for a variety of other phenotypically distinct rheumatic diseases that are driven by 487 

CXCR4 mediated dysregulation of immune system. Many such potential drug repurposing 488 

targets (enlisted in Supplementary Table 2) can be similarly evaluated in future studies and 489 

trials. 490 

 491 

Discussion 492 

Despite decades of experimental data on the understanding of the molecular mechanism of 493 

diseases, we know little about the perturbations in the niche cell compartments that are 494 

specific to the disease. To address this gap several efforts at the tissue5–7 and immune cell16,17 495 

level have been performed to identify these disease specific compartments. However, 496 

previous studies have concentrated at whole tissues, not distinguishing different immune cell 497 

subsets or, in contrast, focused on a few immune cell subsets thereby likely missing the 498 

complex molecular network underpinning immune mediated diseases. Additionally, it is 499 

important to understand which of the gene subsets contribute to a mechanism within the 500 

different cell populations. A disease may have perturbations occurring at a single cell type or 501 

at multiple cell types with completely different or similar genes being involved. To truly 502 

understand a disease, it is essential to capture these cell-gene networks as holistically as 503 

possible. 504 

To address the above-mentioned gap, we used the systems immunology approach of 505 

dissecting diseases using the immunome comprising of 40 immune cells, the vast literature on 506 

the available disease network and computational methods to compute and construct DIME 507 

networks. The unique integration of these parts resulted in the novel mechanisms being 508 

captured by our method. In this report, we highlight some of the known mechanisms we 509 

capture from the DIME networks. For example, the role of NETosis and granulocytes in 510 

many of the immune diseases, the role of TGF beta signaling in fibrotic diseases, the role of 511 

BCR signaling and PI3K/AKT pathways in cancer, etc. We further outlined methods to 512 

capture pleiotropy between diseases using the combination of cell-gene commonalities 513 

between the DIME networks of the diseases, to ensure the robust capture of common 514 

mechanism between diseases. We further extend this approach to identify immune 515 

mechanism based drug targets that provides additional support and rationale for drug 516 
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repurposing. For example, we found from the DIME drug network that several specific 517 

interleukins are involved in Crohn’s disease, psoriasis and myocardial infarction. Given the 518 

success of anti-IL therapies in many of the immune related diseases, our results indicate that 519 

the anti-IL therapies might also be a promising option for these immune related diseases. 520 

Likewise, our results indicate that using NSAIDs might be a promising option for cancer 521 

prevention and treatment. However, additional functional experiments and extensive clinical 522 

trials have to be done to support this approach. 523 

The DACs and DAGs of the DIME network make it more robust to pinpoint which 524 

mechanism and in which cell type. And this makes it a useful tool to dissect diseases. Hence 525 

we built a shiny app to identify and construct DIME networks for all the diseases in the 526 

DisGeNet, the GWAS network and also for user defined set of genes. The tool also identifies 527 

potential drug targets based on the DIME networks. A caveat is that we focused on 40 528 

different immune cells in this study, certain diseases may have manifestations that may or 529 

may not be perturbed in the immune system or the progenitor cells that we have looked at. 530 

Such diseases should be analyzed with additional data to identify the DACs and the 531 

underlying mechanism. We have built the tool to accommodate and plugin such futuristic or 532 

existing data consisting of gene expression information (coming from single cell or bulk) on 533 

the different cell types apart from those found in the immune system. We believe that this tool 534 

will aid scientist to increase the understanding of disease pathology and facilitate drug 535 

development by better determining drug targets, thereby mitigating risk of failure in late 536 

clinical development. 537 

 538 
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FIGURE LEGENDS 701 

 702 

Figure 1: A Brief overview of methods, highlighting the integration of the 3 layers. B MeSH-703 

MeSH network highlighting different MeSH (disease category) terms as nodes and the edges 704 

represent the genes common between the MeSH terms. Node names in network represent first 705 

two letters of the complete MeSH term as shown in the legend on right. C-H Gene 706 

prevalence over different MeSH terms. The degree distribution of genes across I MeSH terms 707 

and J diseases shown as histogram. K heatmap of gene expression across immunome of high 708 

degree genes in the DisGeNet. L Gene expression of APOE in the immunome. In B, E-J, size 709 

of node represents number of diseases in MeSH term. 710 

 711 

Figure 2: DIME network of A lymphoid leukemia, B systemic scleroderma, C pulmonary 712 

fibrosis and D systemic lupus erythematosus. Green nodes represent genes, blue represents 713 

cell types and red represents diseases. Size of nodes is proportional to DAG score in genes 714 

and DAC score in cell types. 715 

 716 

Figure 3: A Top pleiotropy network of the disease subset of the DisGeNet. Nodes are 717 

diseases that have a minimum degree of 2 nodes. Edges between diseases exist if the JI ≥ 0.1 718 

and FET p-value ≤ 0.01 of the common DIME network between the diseases. Pleiotropy 719 

analysis between B Crohn’s disease and psoriasis, C systemic scleroderma and pulmonary 720 

fibrosis, and D rheumatoid arthritis and colon carcinoma. B, C, D Venn diagrams represent 721 

overlap of cell-gene connections between the disease comparisons. JI and FET p-value are 722 

calculated for overlap in the genes in the DIME network of the diseases. 723 

 724 

Figure 4: A Schema showing the different analysis performed in this study from building the 725 

DIME network (part1) to the pleiotropy (part 2) to the DIME-drug network (part3) and to the 726 

pleiotropy-drug network (part 4). B DIME-drug network of Crohn’s disease. Pleiotropy-drug 727 

network for C Crohn’s disease and psoriasis, D systemic scleroderma and pulmonary fibrosis, 728 

E systemic scleroderma and myocardial infarction, and F rheumatoid arthritis and colon 729 

carcinoma. 730 

 731 

732 
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Supplementary Information 733 

 734 

Supplementary Figure 1: Shows the degree of the top 10 high degree genes for different 735 

MeSH term categories and for all diseases. 736 

 737 

Supplementary Figure 2: Heatmap of DAC scores for top weighted feature of 613 diseases 738 

from the DisGeNet. 739 

 740 

Supplementary Figure 3: Reactome pathway enrichment analysis of top DAGs in the 741 

different clusters of the DIME network of A systemic scleroderma and B pulmonary fibrosis. 742 

 743 

Supplementary Figure 4: Reactome pathway enrichment analysis of top DAGs in the 744 

different clusters of the DIME network of A systemic lupus erythematosus and B lymphoid 745 

leukemia. 746 

 747 

Supplementary Figure 5: Reactome pathway enrichment analysis of pleiotropy DIME 748 

network of A Crohn’s disease and psoriasis, B systemic scleroderma and pulmonary fibrosis, 749 

and C rheumatoid arthritis and colon carcinoma. 750 

 751 

Supplementary Table 1: Represents all GEO datasets and samples used to construct the 752 

immunome.  753 

 754 

Supplementary Table 2: List of genes as potential drug targets identified from the 755 

pleiotropy-drug network analysis. The degree represents the number of diseases in which the 756 

gene was found to be in the DIME-drug network. A total of 613 diseases were analyzed.  757 
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