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ABSTRACT 

Single-cell technologies enable measure of unique cellular signatures, but are typically           

limited to a single modality. Computational approaches allow integration of diverse           

single-cell datasets, but their efficacy is difficult to validate in the absence of authentic              

multi-omic measurements. To comprehensively assess the molecular phenotypes of         

single cells in tissues, we devised single-nucleus methylCytosine, Chromatin         

accessibility and Transcriptome sequencing (snmC2T-seq) and applied it to         

post-mortem human frontal cortex tissue. We developed a computational framework to           

validate fine-grained cell types using multi-modal information and assessed the          

effectiveness of computational integration methods. Correlation analysis in individual         

cells revealed distinct relations between methylation and gene expression. Our          

integrative approach enabled joint analyses of the methylome, transcriptome, chromatin          

accessibility and conformation for 63 human cortical cell types. We reconstructed           

regulatory lineages for cortical cell populations and found specific enrichment of genetic            

risk for neuropsychiatric traits, enabling prediction of cell types with causal roles in             

disease.  
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INTRODUCTION 

Single-cell transcriptome, cytosine DNA methylation (mC) and chromatin profiling         

techniques have been successfully applied for cell-type classification and studies of           

gene expression and regulatory diversity in complex tissues ​(Ecker et al., 2017; Kelsey             

et al., 2017) ​. The broad range of targeted molecular signatures, as well as technical              

differences between measurement platforms, presents a challenge for integrative         

analysis. For example, mouse cortical neurons have been studied using single-cell           

assays that profile RNA, mC or chromatin accessibility ​(Luo et al., 2017; Preissl et al.,               

2018; Tasic et al., 2016, 2018; Zeisel et al., 2015)​, with each study reporting its own                

classification of cell types. Although it is possible to correlate the major cortical cell              

types identified by transcriptomic and epigenomic approaches, it remains unclear          

whether fine subtypes can be effectively integrated across different datasets and           

between modalities. Recently, computational methods based on Canonical Correlation         

Analysis (CCA, e.g. Seurat3) ​(Stuart et al., 2019) ​, mutual nearest neighbors (MMN, e.g.             

Scanorama) ​(Hie et al., 2019) or matrix factorization (e.g. LIGER) ​(Welch et al., 2019)              

have been developed to integrate molecular data types. However, validating the results            

of computational integration requires multi-omic reference data comprising different         

types of molecular measurements made in the same cell.  

Single-cell multi-omic profiling provides a unique opportunity to evaluate cell          

types classification using multiple molecular signatures ​(Kelsey et al., 2017)​. Most           

single-cell studies rely on clustering analysis to identify cell types. However, it is             

challenging to objectively determine whether the criteria used to distinguish cell clusters            
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are statistically appropriate and whether the resulting clusters reflect biologically distinct           

cell types ​(Mukamel and Ngai, 2019)​. We reasoned that genuine cell types should be              

distinguished by concordant molecular signatures of cell regulation at multiple levels,           

including RNA, mC and open chromatin, in individual cells. Moreover, multi-omic data            

can uncover subtle interactions among transcriptomic and epigenomic levels of cellular           

regulation. 

Existing methods for joint profiling of transcriptome and mC, such as scM&T-seq            

and scMT-seq, rely on physical separation of RNA and DNA followed by parallel             

sequencing library preparation ​(Angermueller et al., 2016; Clark et al., 2018; Hu et al.,              

2016)​. Generating separate transcriptome and mC sequencing libraries leads to a           

complex workflow and increases cost. Moreover, it is unclear if these methods can be              

applied to single nuclei, which contain much less polyadenylated RNA than whole cells.             

Since the cell membrane is ruptured in frozen tissues, the ability to produce robust              

transcriptome profiles from single nuclei is critical for applying a multi-omic assay for             

cell-type classification in frozen human tissue specimens.  

Here we describe two single nucleus multi-omic methods that do not require            

physical separation of RNA and DNA. Single-nucleus methylCytosine & Transcriptome          

sequencing (snmCT-seq) captures mC and transcriptome profiles from single         

cells/nuclei, whereas snmC2T-seq (single-nucleus methylCytosine, Chromatin      

accessibility and Transcriptome sequencing) simultaneously interrogates transcriptome,       

mC and chromatin accessibility, based on NOMe-seq ​(Clark et al., 2018; Guo et al.,              

2017; Kelly et al., 2012; Pott, 2017)​. We applied both methods to cultured human cells               
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and postmortem human frontal cortex tissues. We further generated an additional           

23,005 single-nucleus, droplet-based RNA-seq profiles and 12,557 single-nucleus,        

snATAC-seq-based open chromatin profiles using frozen human frontal cortex tissue          

(Preissl et al., 2018)​. Using this comprehensive multimodal dataset, we developed           

computational strategies to tackle two challenges in single-cell biology: 1) how to            

assess the statistical and biological validity of clustering analyses, and 2) how to             

validate computational approaches to integrate multiple single-cell data types. We then           

performed integrated analyses of single-cell methylomes for the human frontal cortex           

comprised of 15,030 cells, including two multi-omic data sets generated by snmC2T-seq            

and the previously published sn-m3C-seq, a method to simultaneously profile chromatin           

conformation and mC ​(Lee et al., 2019)​. These large datasets enabled the identification             

of gene regulatory diversity for 63 finely defined brain cell types at an unprecedented              

level of integration using four levels of molecular signatures (i.e. transcriptome,           

methylome, chromatin accessibility, and conformation) to define their unique regulatory          

genomes with cell-type specificity and link them to genetic disease risk variants.  

 

RESULTS 

Joint analysis of RNA and DNA methylome with molecular partitioning. 

Simultaneous DNA methylcytosine and transcriptome sequencing using       

mCT-seq allows RNA and DNA molecules to be molecularly partitioned by incorporating            

5’-methyl-dCTP instead of dCTP during reverse transcription of RNA (Figure 1A). We            

treated single nuclei with Smart-seq or Smart-seq2 reactions for ​in situ cDNA synthesis             
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and amplification of full-length cDNA ​(Picelli et al., 2013; Ramsköld et al., 2012)​.             

Replacing dCTP by 5’-methyl-dCTP results in fully cytosine-methylated double-stranded         

cDNA amplicons. Following bisulfite treatment converting unmethylated cytosine to         

uracil, sequencing libraries containing both cDNA- and genomic DNA-derived molecules          

were generated using snmC-seq2 ​(Luo et al., 2017, 2018)​. With this strategy, all             

sequencing reads initially derived from RNA are completely cytosine methylated and do            

not show C to U sequence changes during bisulfite conversion. By contrast, more than              

95% of cytosines in mammalian genomic DNA are unmethylated and converted by            

sodium bisulfite to uracils that are read during sequencing as thymine ​(Lister et al.,              

2009)​. In this way, sequencing reads originating from RNA and genomic DNA can be              

distinguished by their total mC density. Since 70-80% of CpG dinucleotides are            

methylated in mammalian genomes, we used the read-level non-CG methylation (mCH)           

to uniquely partition sequencing reads into RNA or DNA bins. Specifically, we expect             

the level of mCH for all RNA-derived reads to be greater than 90%, while for DNA                

derived reads the level is no more than 50% even considering the enrichment of mCH in                

adult neurons ​(Lister et al., 2013)​. Using this threshold, only 0.04% of single-cell             

methylome reads were misclassified as transcriptome reads and only 0.23% ± 0.03% of             

single-cell RNA-seq reads were misclassified as methylome reads. These results show           

that RNA- and DNA-derived mCT-seq reads can be effectively separated.  

To test the efficacy of these methods, we first applied mCT-seq to either single              

whole cells (scmCT-seq) or single nuclei (snmCT-seq) of cultured human H1 embryonic            

stem cells and HEK293 cells (Table S1-S2). scmCT-seq transcriptome profiling          
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detected 4,220 ± 1,251 genes from single whole cells using exonic reads while             

snmCT-seq detected 4,531 ± 1,888 genes using both exonic and intronic reads (Figure             

S1A). Similar to previously reported single-nuclei RNA-seq datasets, a minor fraction           

(17.3 ± 6.1%) of snmCT-seq transcriptome reads were mapped to exons, whereas 68.1             

± 15.2% of scmCT-seq reads were mapped to exons (Figure S1B). Transcriptome            

reads accounted for 22.2 ± 13.6% and 9.2 ± 6.5% of all mapped reads for scmCT-seq                

and snmCT-seq, respectively (Figure S1C). The two human cell types were clearly            

separated by their transcriptomic signatures measured using either scmCT-seq or          

snmCT-seq ​(Maaten and Hinton, 2008) (Figure S1D-E). Further, scmCT-seq or          

snmCT-seq profiles recapitulate H1 or HEK293 specific gene expression signatures          

(Figure S1F). 

To assess whether the two cell types could be distinguished using mC signatures             

derived from snmCT-seq, tSNE was performed using the average CG methylation           

(mCG) level of 100 kb non-overlapping genomic bins measured from single cells or             

nuclei (Figure S1G-H). As exemplified by the NANOG and CRNDE loci (Figure S1I),             

both single-cell multi-omic assays produced mC profiles highly consistent with data           

generated from bulk methylomes ​(Ellis et al., 2012)​. scmCT-seq and snmCT-seq           

identified global mC differences between H1 and HEK293T cells, showing that H1 cells             

are more methylated in both CG (83.6%) and non-CG (1.3%) contexts compared with             

HEK293T cells (mCG: 60.1%, no significant mCH detected, Figure S1J-M) ​(Lister et al.,             

2009)​. To examine whether local mC signatures can be recapitulated in scmCT-seq and             

snmCT-seq profiles, we identified differentially methylated regions (DMRs) from bulk H1           
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and HEK293 methylomes. Plotting mCG levels measured using scmCT-seq and          

snmCT-seq across DMRs showed highly consistent patterns compared to bulk cell           

methylomes (Figure S1N-O). 

 

Multi-omic profiling of postmortem human brain tissue with snmC2T-seq 

Next we extended snmCT-seq to include a measure of chromatin accessibility by            

incorporating the Nucleosome Occupancy and Methylome-sequencing assay       

(NOMe-seq, Figure 1A) ​(Clark et al., 2018; Guo et al., 2017; Kelly et al., 2012; Pott,                

2017)​. In the snmC2T-seq assay, regions of accessible chromatin are marked by            

treating bulk nuclei with the GpC methyltransferase M.CviPI prior to          

fluorescence-activated sorting of single nuclei into the reverse transcription reaction          

(Figure 1A). We generated snmC2T-seq profiles from 4,358 single nuclei isolated from            

postmortem human frontal cortex tissue from two young male donors (21 and 29 years              

old, Table S3-4). The data quality was similar to datasets generated from cultured             

human cells with respect to the fraction of sequencing reads mapped to the             

transcriptome (Figure S2A), the fraction of transcriptome reads mapped to introns and            

exons (Figure S2B) and the number of genes detected (Figure 1B and Figure S2C).              

Compared with snmC-seq and snmC-seq2 data generated from human single nuclei           

(Luo et al., 2017, 2018)​, the DNA methylome component of snmC2T-seq had            

comparable genomic coverage (Figure 1C), mapping efficiency (Figure S2D), and          

showed only moderately reduced library complexity (Figure S2E) with similar coverage           

uniformity (Figure S2F-G). 
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To compare each data modality profiled by snmC2T-seq with their corresponding           

single modality assays, we first identified 20 cell types by jointly using transcriptome,             

methylome and chromatin accessibility. We used RNA abundance across gene body for            

the transcriptome, mCH and mCG level of chromosome non-overlapping 100kb-bins,          

and binarized NOMe-seq signal of 5kb bins for chromatin accessibility (See methods).            

In each modality, we identified highly variable features separately and calculated           

Principle Components, we then concatenated the PCs together as the input features for             

joint clustering and UMAP ​(McInnes et al., 2018) visualization of the three data types              

(Figure 1D-E). These cell types were effectively separated by performing dimensionality           

reduction using each individual data type (Figure S2H-J). The comparison of           

homologous clusters between snmC2T-seq transcriptome and snRNA-seq (Table S5)         

shows a robust global correlation - Pearson r = 0.82 for both PV-expressing inhibitory              

neurons (MGE_PVALB, p = 1x10 ​-145​) and superficial layer excitatory neurons (L1-3           

CUX2, p = 3x10 ​-301​) (Figure S2K-L). Moreover, highly consistent expression patterns of            

cell-type signature genes were observed (Figure 1F).  

To test whether snmC2T-seq transcriptome data can be integrated with          

snRNA-seq, we performed joint embedding and clustering of snRNA-seq and the           

transcriptome component of snmC2T-seq (Figure 1G). The joint clustering confirmed          

that the cell types identified using the snmC2T-seq transcriptome are strongly correlated            

with the cell types found using snRNA-seq (Figure 1H). Similar to the transcriptome,             

both mCH and mCG profiles correlate strongly between methylomes generated with           
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snmC2T-seq and snmC-seq2 either globally (Figure S2M-N) or at cell type-specific           

signature genes (Figure 1I).  

The presence of high levels of mCH in the human brain confounds the analysis              

of chromatin accessibility using methylation at GpC sites (GmC). However, we found            

that in GCT and GCC sequence contexts, GmC introduced by M.CviPI greatly            

surpasses the levels of native methylation by 6.4 and 16-fold, respectively (Figure S2O).             

Thus for snmC2T-seq, we focused our analyses of chromatin accessibility on GmC at             

GCY (Y=C or T) sites in the genome. We further developed a computational strategy to               

effectively identify open chromatin regions using the frequency of significantly          

methylated GCY (GmCY) sites. Chromatin accessibility measured by the frequency of           

GmCY sites correlates closely with snATAC-seq signal at cell-type specific open           

chromatin sites (Figure 1J and Figure S2P-Q, p-value < 2.2 x 10 ​-308​). In addition, open               

chromatin regions identified with GmCY frequency overlapped substantially with regions          

found using snATAC-seq (Fig.S2R-S). In summary, snmC2T-seq can simultaneously         

profile transcriptome, methylome and chromatin accessibility in single nuclei, accurately          

recapitulating cell-type signatures for each data type.  

 

Multi-omic integration of chromatin conformation, transcriptome, methylome and        

chromatin accessibility 

We then generated snmC2T-seq and snmCT-seq profiles for human frontal          

cortex from two independent donors. These data were combined with previously           

published human frontal cortex datasets (Table S3): sn-m3C-seq which simultaneously          

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.873398doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.873398


 

profile mC and chromatin conformation ​(Lee et al., 2019) and snmC-seq methylomes for             

2,784 single neurons ​(Luo et al., 2017)​. These datasets can be readily integrated by              

joint embedding and clustering using single-nucleus methylomes as the common          

framework (Figure 2A). To identify both major cell types and subtypes of frontal cortex,              

we performed joint clustering of 15,030 single-cell methylomes generated by snmC-seq           

(n=5,131), snmC-seq2 (n=1,304), snmC2T-seq (n=4,358) and sn-m3C-seq (n=4,238)        

(Table S6). We used an iterative clustering approach to identify 20 major cell             

populations including 9 excitatory neuron types, 8 inhibitory neuron types and 3            

non-neuronal cell types in the first round of clustering (Figure 2B-C). A second round of               

iterative clustering of each major cell types identified 63 cell subtypes, including 19             

excitatory neuronal subtypes, 33 inhibitory neuronal subtypes and 11 non-neuronal cell           

subtypes (Figure 2B-C). Each fine-grained cell subtypes can be distinguished from any            

other cell type by at least 10 mCH signatures genes for neuronal clusters, or 10 mCG                

signatures genes for non-neuronal clusters. Consistent with our previous results ​(Luo et            

al., 2017) as well as transcriptomic studies ​(Hodge et al., 2019)​, we found greater              

diversity among human cortical inhibitory neurons than excitatory cells (Figure 2C). The            

methylome data generated by these diverse multi-omic methods and from multiple           

donors were uniformly represented in major cell type and subtype clusters (Figure 2D).  

We next performed integration of single-cell methylome and snATAC-seq (Table          

S7) profiles by transferring the cluster labels defined by mC into ATAC-seq cells using a               

nearest neighbor approach ​(Haghverdi et al., 2018) that was adapted for epigenomic            

data and implemented in a new software package        
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( ​https://github.com/mukamel-lab/SingleCellFusion​, see methods). For each cell      

population, we reconstructed four types of molecular profiles: transcriptome (from          

snmC2T-seq), methylome (from snmC-seq1/2, snmCT-seq and sn-m3C-seq),       

chromatin accessibility (from snmC2T-seq mGCY frequency or snATAC-seq) and         

chromatin conformation (from sn-m3C-seq) (Figure 2E). This integrative analysis         

revealed extensive correlations across epigenomic marks at cell-type signature genes.          

For example, ​ADARB2 is a signature gene of inhibitory neurons derived from the caudal              

ganglionic eminence (CGE). In CGE-derived VIP neurons, ​ADARB2 ​was associated          

with abundant transcripts, reduced mCG and mCH, and distinct chromatin interactions           

compared with other neuron types (Figure 2E). In contrast, in VIP neurons the ​MEF2C              

locus showed lower transcript abundance (TPM - L1-3 CUX2: 75.8, L4-5 FOXP2: 80.2,             

MGE PVALB: 77.5, CGE VIP: 49.0), reduced chromatin interaction, and more abundant            

gene body mCG (Figure 2E). Although nearly identical open chromatin sites were            

identified at the promoter regions of ​ADARB2 and ​MEF2C ​using GmCY frequency and             

snATAC-seq, the two methods revealed distinct cell-type specificity of chromatin          

accessibility. At the ​ADARB2 promoter, snATAC-seq but not the GmCY frequency           

profile showed enriched chromatin accessibility in VIP neurons. However, at ​MEF2C           

promoter, the GmCY frequency indicated a depletion of open chromatin in VIP neurons             

which is more consistent with the reduced gene expression and increased gene body             

mCG in this inhibitory cell population. The cause of these differences in measures of              

chromatin accessibility is not clear, and further work is needed to clarify their respective              

sensitivity and biases. 
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snmC2T-seq identifies RNA and mC signatures of neuronal subtypes. 

Joint clustering of 15,030 single-cell methylomes allowed determination of         

fine-grained brain cell subtypes with a sensitivity comparable to snRNA-seq (Figure           

2B-C). For example, we identified 15 subtypes of CGE-derived inhibitory neuron using            

single-cell methylomes, whereas 26 subtypes were identified by snRNA-seq ​(Hodge et           

al., 2019) ​. To ask whether snmC2T-seq can recapitulate the molecular signatures of            

neuronal subtypes, we first integrated snmC2T-seq transcriptome with snRNA-seq         

datasets for inhibitory neurons using Scanorama followed by joint clustering (Figure           

3A-B). Individual nuclei profiled with snmC2T-seq transcriptome and snRNA-seq were          

uniformly distributed across joint clusters corresponding to inhibitory neuron         

subpopulations (Figure 3B-C), suggesting that the snmC2T-seq transcriptome        

recapitulates the full range of inhibitory neuron diversity. Similarly, integration of           

snmC2T-seq transcriptomes and snRNA-seq for excitatory neurons and non-neuronal         

cells showed that brain cell type diversity across all cell classes can be recapitulated              

from the snmC2T-seq transcriptome profiles. (Figure S3D-I). We further compared the           

expression of a panel of signature genes for inhibitory neuron subpopulations and found             

that snmC2T-seq transcriptome and snRNA-seq identified highly consistent expression         

patterns (Figure 3D). Lastly, we identified cell-type marker genes across inhibitory           

neuronal populations using transcriptome profiles generated with either snmC2T-seq or          

snRNA-seq (Table S8). Analysis of the marker genes using a database curated for             

neuronal functions - SynGO ​(Koopmans et al., 2019) revealed consistent enrichment in            
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ontological categories associated with synaptic signaling and synapse organization for          

inhibitory neuron marker genes identified with both snmC2T-seq transcriptome and          

snRNA-seq data (Figure 3E). 

 

Paired RNA and mC profiling enables cross-validation and quantification of          

over-/under-splitting for single-cell clusters 

A fundamental challenge for single-cell genomics is to objectively determine the           

number of biologically meaningful clusters in a dataset ​(Mukamel and Ngai, 2019)​.            

Cross-dataset integration can be used to assess cluster robustness, but it may be             

limited by systematic differences between the datasets or modalities used ​(Crow et al.,             

2018)​. To address this, we devised a novel cross-validation procedure using matched            

transcriptome and DNA methylation information to estimate the number of reliable           

clusters supported by both modalities in snmC2T-Seq data (3,898 neurons, Figure 4A).            

The cells were first clustered with different resolutions using mC information followed by             

testing how well each clustering is supported by the matched transcriptome profiles, as             

represented by the mean squared error (MSE) between the RNA expression profile of             

individual cells and that of cluster centroids as a function of the number of clusters               

(Figure 4B-C). Increased cluster number monotonically reduces MSE in the training set,            

whereas overclustering (more than 20 clusters) leads to an increase in MSE for the test               

set (Figure 4B). Using this approach, we found a range of 20-50 clusters with strong               

multimodal support in the current snmC2T-seq dataset (Figure 4B,C). 
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We further developed metrics to quantify over-splitting and under-splitting (Figure          

4D, Figure S4B) by defining a graph connecting each cell to ​k ​cells with the greatest                

cross-modality similarity (called ​k ​-partners). An over-splitting score was calculated as          

the fraction of each cell’s ​k​-partners which are in the same cluster (Methods; Figure              

4D,E). This measure shows that major clusters resemble ideal, homogeneous clusters           

(simulated by shuffling gene features) and have little over-splitting (Figure 4E, Figure            

S4C). Most sub-clusters also had relatively little over-splitting, though some were more            

distinct than others (Figure S4C,E). To quantify under-splitting, we reasoned that all            

cells in a cluster should be statistically equivalent. Therefore, each cell’s mC profile             

should be no more correlated with its own RNA profile than with the RNA profile of any                 

other cell of the same type. This could be violated if there is any discrete or continuous                 

variation within the cluster that is correlated between modalities. Using a cross-modal            

score based on each cell’s cross-modal self-radius (see Methods), we found that major             

neuronal types had substantial within-cluster variation across cells indicating         

under-splitting (Figure 4F, Figure S4D,F). By contrast, subtypes resembled ideal          

(shuffled) clusters to a greater degree. Combining both scores, we could quantitatively            

map the lumper-splitter tradeoff in terms of the degree of over- and under-splitting for              

each major type or subtype (Figure 4G). 

Integration of single-cell genomics data has been a focus of recent computational            

studies, yet existing methods lack validation on ground truth from experimental           

single-cell multi-omic dataset ​(Stuart and Satija, 2019)​. By treating snmC2T-seq          

transcriptome and mC profiles as if they were generated from different single cells, we              
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could test the performance of computational integration using LIGER ​(Welch et al.,            

2019)​Figure S4G​(Welch et al., 2019) and Single Cell Fusion (Methods; Figure 4H). We             

quantified the accuracy of computational integration as the fraction of cells whose            

transcriptome and mC profiles were assigned to the same cluster (Figure 4I, Figure             

S4H-I). Both methods integrated the two data modalities well at the major neuronal type              

level, achieving an overall accuracy of 87.3% (Figure 4I-J). As expected, computational            

integration of fine-grain cell subtypes was less accurate (62.6%) and more variable            

across clusters (Figure 4I), potentially because of the greater degree of over-clustering            

(Figure 4E). 

  

Diverse correlation between gene body mCH and gene expression  

Using the paired profiling of transcriptome and mC by snmC2T-Seq, we found diverse             

patterns of correlation between mCH and gene expression across thousands of single            

cells. Figure 5A shows examples for three distinct types of correlations between gene             

body mCH and gene expression. ​KCNIP4 shows inverse correlation between mCH and            

RNA across a broad range of cell types. ​ADARB2 is a marker gene for CGE-derived               

inhibitory cells and showed strong inter-cluster correlation, but no intra-cluster          

correlation between mCH and RNA. Finally, ​GPC5 has a gradient of mCH across             

clusters (low in CGE VIP, high in L1-3 CUX2), but no corresponding pattern of              

differential gene expression across cell types. Applying this correlation analysis to all            

13,637 sufficiently covered genes, we found that 38% (n=5,145) have significant           

negative correlation between mCH and RNA (mCH-RNA coupled, FDR < 5%). The            
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majority of genes (62%) had no apparent correlation that could be distinguished from             

noise (mCH-RNA uncoupled, Figure 5B). The pattern of correlation was highly           

consistent between the specimens we profiled, and robust with respect to normalization            

(Figure S5A-F). We found that genes with significant correlation between mCH and            

gene expression are longer, more highly expressed, and are enriched in neuronal            

functions (Figure S5G-I).  

We further investigated the factors that determine the degree of correlation           

between mCH and RNA for each gene. We reasoned that housekeeping genes with             

strong expression and little variation across cell types would show weak mCH-RNA            

correlation, whereas mCH-RNA coupling is enriched in genes with cell-type specific           

expression. We quantified the cell-type specificity of gene expression and DNA           

methylation by calculating the fraction of variance in gene expression explained by cell             

type ( and , Figure 5C-E and Figure S5J). Consistent with our NA ηR 2   mCH  η2          

hypothesis, genes with greater had a stronger inverse-correlation between    RNA η2       

mCH and RNA (Figure 5D-E). Notably, we found a large number of genes (n=1,243)              

with strong gene body mCH diversity across cell types ( > 0.25) but no apparent         mCH  η2      

correlation between mCH and RNA (r < -0.03) (box in Figure 5C). This suggests that               

lack of correlation between mCH and gene expression is driven by variability in gene              

expression within cell types despite conserved DNA methylation signatures. 

The accumulation of mCH in the frontal cortex starts from the second trimester of              

embryonic development and continues into adolescence ​(Lister et al., 2013; Luo et al.,             

2016)​. The developmental dynamics of mCH motivated us to compare the           
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developmental expression of mCH-RNA coupled and uncoupled genes. We found that           

mCH-RNA uncoupled genes, on average, are highly expressed during early fetal brain            

development (PCW 8-9) and are later repressed, whereas the expression of mCH-RNA            

coupled genes are moderately increased during development (Figure 5F). Consistently,          

developmentally down-regulated genes are significantly enriched in the mCH-RNA         

uncoupled group (Figure 5G). We speculated that the developmentally down-regulated          

genes may be repressive by alternative epigenomic marks such as histone H3K27            

trimethylation (H3K27me3), which leads to the uncoupling of RNA and gene body mCH.             

By binning all the genes by their expression dynamics during brain development, we             

indeed found the promoter of both down- and up- regulated genes are enriched in              

H3K27me3 and depleted in active histone marks (Figure 5H and Figure S5K). We             

directly compared mCH-RNA correlation and H3K27me3 in purified human cortical          

glutamatergic and GABAergic neurons ​(Kozlenkov et al., 2018)​, and found genes with            

strong H3K27me3 signal clearly show weak correlations between gene body mCH and            

gene expression (e.g. CDC27 Figure 5I-K). In summary, although mCH and gene            

expression are clearly inversely correlated at a global scale, substantial variations can            

be observed from genes to genes at a single-cell level and can be partially explained by                

the presence of alternative epigenetic pathways such as polycomb repression.  

 

DNA methylation signatures of hierarchical transcription factor regulation in         

neural lineages 
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Timed expression of transcription factors (TF) during specific developmental         

stages is critical for neuronal differentiation ​(Deneris and Hobert, 2014; Kepecs and            

Fishell, 2014)​. We hypothesized that the cell-type hierarchy reconstructed from mC           

information reflects the developmental lineage of human cortical neurons. If so, then key             

transcription factors that specify neuronal lineage can be identified for each branch of             

the hierarchy. We separately constructed hierarchies for inhibitory and excitatory          

neurons based on the concatenated principal components of mCH and mCG (Figure 6A             

and S6A). The inhibitory neuron hierarchy comprises two major branches corresponding           

to medial ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) derived           

cells. These major populations contain intermediate neuronal populations such as          

PVALB-expressing Basket Cell (BC) and Chandelier Cell (ChC), or the recently reported            

LAMP5-expressing Rosehip neurons ​(Boldog et al., 2018)​. At the finest level, the            

hierarchy contains 33 neuronal subtypes (Figure 6A). To identify TFs involved in the             

specification of neuronal lineages, we compared three levels of molecular information           

for each of 1639 human TFs ​(Lambert et al., 2018) between the daughter branches              

(Figure 6B). To assess the genome-wide DNA binding activity of the TF at regulatory              

elements, we used enrichment of DNA binding sequence binding motifs in differentially            

methylated regions (DMRs). To assess TF gene expression, we used both mRNA            

expression and TF gene body mCH level.  

Our integrated strategy taking advantage of matched information for TF motif           

enrichment, transcript abundance and TF gene body mCH level allowed us to            

distinguish the relative importance of closely related TFs sharing a common binding            
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motif based on their cell type-specific expression ​(Castro-Mondragon et al., 2017)           

(Figure 6C). For example, we predicted that NFIB and NFIX contribute to CGE lineage              

specification since they show greater RNA abundance and stronger gene body mCH            

depletion than closely related TFs NFIA and NFIC. We systematically applied this            

approach across the inhibitory neuron hierarchy, using 579 curated motifs from the            

JASPAR 2018 CORE vertebrates database (Figure S6B-I) ​(Fornes et al., 2019)​. Many            

predicted lineage regulators were homologous to cell-type lineage regulators in mouse           

cortical development, such as NFIX, NFIB for CGE-derived neurons (Figure S6F), or            

LHX6, SOX6 and SATB1 for MGE-derived neurons (Figure S6F) ​(Kepecs and Fishell,            

2014; Paul et al., 2017)​. The motifs of some TFs were also recurrently enriched in               

multiple lineages. For example, the NFIB gene ​(Piper et al., 2014) is not only specific to                

CGE neurons but also highly expressed and hypo-methylated in PV-expressing          

chandelier cell (ChC) but not basket cells (BC) (Figure 6D). The same expression             

pattern of NFIB was found in a comparison of mouse ChC - BC ​(Paul et al., 2017)​.                 

These findings provide cogent evidence that the conserved major cell types of human             

and mouse ​(Hodge et al., 2019) also have shared basic rules of TF regulation. The               

same TF gene may perform multiple roles in different cell type lineages.  

Previous studies including ours have found that discrete genomic regions with           

reduced mCG (hypomethylated DMRs) mark active regulatory elements ​(Mo et al.,           

2015; Schultz et al., 2015; Stadler et al., 2011; Ziller et al., 2013)​. We expected that TF                 

binding motifs would be enriched in hypomethylated DMRs for cell types where the TF              

gene is active expressed and has low gene-body mCH. However, we identified several             
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TFs with an opposite pattern: their binding motif was enriched in the hypomethylated             

DMRs of the alternative lineage showing low TF expression and high gene body mCH.              

For example, the motifs of NR2F1 and PBX1 were enriched in the hypomethylated             

DMRs of ChC, but both TFs were actively expressed in BC and not ChC (Figure 6D).                

Similarly, the PKNOX2 motif was enriched in hypomethylated DMRs of VIP cells, yet             

PKNOX2 is preferentially expressed in NDNF neurons (Figure 6E). These data suggest            

that certain TFs can preferentially bind to hypermethylated regions (i.e. hypomethylated           

regions in the alternative lineage). This non-classical preference for methylated binding           

sites has been demonstrated in previous ​in vitro studies ​(Hu et al., 2013; Yin et al.,                

2017)​. In particular, Yin et al. used an ​in vitro assay to bind each recombinant TF                

protein to a pool of synthetic DNA (methyl-SELEX). They identified hundreds of TFs             

whose binding is inhibited (MethylMinus) or promoted (MethylPlus) by the presence of            

methylated CpG sites in their binding motifs. We analyzed the ​in vivo binding of              

MethylPlus TFs to hypermethylated DNA by analyzing chromatin accessibility measured          

by the snmC2T-seq NOMe-seq profile (Figure 6F). We quantified the average chromatin            

accessibility at TF binding motifs that are lowly methylated (overlapping with           

hypomethylated DMRs) or highly methylated (overlapping with hypermethylated DMRs)         

(Figure 6F), and used the difference in chromatin accessibility to determine the ​in vivo              

sensitivity of each TF to cytosine methylation. We found a general agreement between             

our ​in vivo ​approach and the ​in vitro ​methyl-SELEX results with MethylMinus TFs             

showing enrichment in the upper part of Figure 6F (e.g. ETV1 in Figure 6J), which               

showed greater chromatin accessibility between lowly and highly methylated TF motifs           
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(Figure 6H). Consistently, MethylPlus TFs are strongly depleted in the upper part of             

Figure 6F (Figure 6G). Therefore, our joint analysis of mC and chromatin accessibility             

using snmC2T-seq provided ​in vivo evidence for the modulation of TF binding by             

cytosine methylation.  

Lastly, we examined the correlation between chromatin accessibility and the          

presence of CA dinucleotide in the TF binding motifs, since CA is the predominant              

sequence context of mCH in the human brain ​(Lister et al., 2013)​. Intriguingly, we found               

a significant enrichment of TF binding motifs containing CA dinucleotides in the lowest             

part of Figure 6F (Figure 6I), suggesting the accessibility of TF binding motifs containing              

CA is less affected by mC. Across all TF binding motifs examined, the accessibility of               

motifs containing both CA and CG dinucleotides (CA+ CG+, p-value = 1 x 10 ​-4​, e.g.               

ATF4, Figure 6L) or only CA (CA+ CG-, p-value = 5.7 x 10 ​-6​, e.g. RARB, Figure 6K)                 

show significantly less sensitivity to mC than motifs containing CG dinucleotides only            

(CA- CG+) (Figure 6M). The results suggest certain TFs may be able to bind              

hypermethylated regions through the interaction with mCA sites. The modulation of TF            

binding by mCA has not been systematically explored since previous studies have            

focused on the effect of mCG sites ​(Hu et al., 2013; Yin et al., 2017) ​.  

 

Cortical cell regulatory genomes predict developmental and adult cell types          

involved in neuropsychiatric diseases 

The strong enrichment of disease heritability in gene regulatory elements has           

allowed the prediction of disease-relevant cell types using epigenomic signatures          
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(Finucane et al., 2015)​, including neuropsychiatric disorders ​(Kozlenkov et al., 2018)​. By            

reconstructing mC and open chromatin maps from single-cell profiles, we used LD            

score regression partitioned heritability to infer the relevant cell types for a set of              

neuropsychiatric traits using DMRs and ATAC-seq peaks (Table S9-10) ​(Finucane et           

al., 2015) ​. To capture regulatory elements active during early development which may            

implicated in psychiatric disease, we further included DMRs identified from bulk fetal            

(PCW 19) human cortex methylome ​(Luo et al., 2016) and DNase-seq peaks identified             

from fetal brain samples ​(Roadmap Epigenomics Consortium et al., 2015)​. Using a            

statistical threshold of FDR < 0.1, we identified 27 disease-cell type associations across             

23 cortical cell types or bulk samples for 16 neuropsychiatric traits (Figure S7A). Each              

association corresponds to a significant enrichment of disease heritability within the           

corresponding cell type’s active regulatory regions. By contrast, only 3 associations           

were found in DMRs identified from 18 bulk non-brain tissues (Figure S7A) ​(Schultz et              

al., 2015) ​. This result strongly suggests our partitioned heritability analysis has correctly            

identified the brain as the relevant tissue types for neuropsychiatric traits.  

Using our single-cell epigenomic dataset, we identified enrichment of heritability          

in distinct cortical cell types for a number of psychiatric disorders. In most cases our               

analysis enhanced the cell-type resolution of partitioned heritability analysis compared          

with previous efforts. For example, using single-cell RNA-seq dataset, the genetic risk of             

schizophrenia (SCZ) was previously mapped to broad cortical neuronal populations          

including neocortical somatosensory pyramidal cells, and cortical interneurons        

(Kozlenkov et al., 2018; Skene et al., 2018)​. Our analysis further identified the             
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enrichment of SCZ heritability in multiple types of intratelencephalic (IT) neuron types            

(L1-3 CUX2, L4-5 FOXP2 and L5-6 PDZEN4), in addition to a medial ganglionic             

eminence (MGE) derived inhibitory cell type (MGE CALB1) (Figure 7A). Intriguingly, the            

heritability of bipolar disorder (BP) was specifically enriched in a deep layer IT neuron              

type L5-6 PDZEN4 (Figure 7B). We also found a specific enrichment of autism             

spectrum disorder (ASD) risk in a deep-layer thalamic-projecting neuronal population L6           

TLE4 (Figure 7C). By contrast, the heritability of educational attainment (EA) was            

broadly distributed across multiple types of neurons including excitatory cells (L1-3           

CUX2 and L4 PLCH1) and inhibitory neurons derived from both CGE (CGE LAMP5)             

and medial ganglionic eminence (MGE, MGE CALB1) (Figure 7D). Consistent with the            

neurodevelopmental hypothesis that gene mis-regulation during brain development        

underlies many psychiatric disorders ​(Birnbaum and Weinberger, 2017)​, fetal cortex          

DMRs are enriched in the heritability for 9 neuropsychiatric traits including SCZ and             

educational attainment (Figure S7A). However, the partitioned heritability analysis using          

the fetal cortex sample is likely underpowered due to the cell-type heterogeneity.  

We performed the partitioned heritability analysis using the two complementary          

types of epigenomic signatures: DMRs and open chromatin regions (ATAC-seq or           

DNase-seq peaks). To our surprise, the results obtained using DMRs and ATAC-seq            

peaks were substantially different. For example, the partition of SCZ heritability across            

DMRs identified enrichment in four adult cell types in addition to fetal cortex (Figure 7A),               

whereas the analysis using open chromatin regions only found enrichment in L1-3            

CUX2 cells and the fetal brain (Figure 7E). To understand this discrepancy, we stratified              
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DMR regions into two groups [DMR (ATAC-pos) and DMR (ATAC-neg)] by their overlap             

with open chromatin regions. Partitioned heritability across the stratified DMR regions           

revealed that in adult cells, DMR regions without open chromatin signature are more             

strongly enriched in heritability for SCZ, BP, ASD and EA. In fetal cortex, however, a               

stronger enrichment of SCZ and EA heritability was found in DMRs associated with             

open chromatin.  

We speculate that DMRs without open chromatin contain vestigial enhancers          

(Hon et al., 2013)​, which contribute to the enrichment of disease heritability. Vestigial             

enhancers are active regulatory elements during embryonic development but become          

dormant in adult tissues ​(Hon et al., 2013)​. However, vestigial enhancers remain lowly             

methylated in adult tissues and can be identified as DMRs. Thus, vestigial enhancers             

can be strongly enriched in the genetic risk of neuropsychiatric traits since these regions              

are active regulatory elements during brain development. We identified the fraction of            

adult brain DMRs that correspond to vestigial enhancers, i.e. overlapping with open            

chromatin regions in the embryonic, but not the adult brain. Consistent with our             

speculation, in many cases vestigial enhancers show stronger enrichment of disease           

heritability (Figure S7I-L). In particular, the enrichment of ASD genetic risk in L4 PLCH1              

and L6 TLE4 cells can only be identified in vestigial enhancers (Figure S7K). In              

summary, we found that single cell type DMRs integrates regulatory information in both             

developmental and adult brain and can be effectively used to predict cell types involved              

in neuropsychiatric disorders. 
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DISCUSSION 

Epigenomic studies often incorporate multiple molecular profiles from the same          

sample to explore possible correlations between gene regulatory elements and          

expression. The need for multi-omic comparison poses a challenge for single-cell           

analysis, since most existing single-cell techniques terminally consume the cell,          

precluding multi-dimensional analysis. To address this challenge, we have developed          

two single-nucleus multi-omic assays snmCT-seq and snmC2T-seq to jointly profile the           

transcriptome, DNA methylome and chromatin accessibility and can be applied to either            

single cells or nuclei from frozen human tissues. snmC2T-seq requires no physical            

separation of DNA and RNA and is designed to be a “single-tube” reaction for steps               

before bisulfite conversion to minimize material loss. snmC2T-seq is fully compatible           

with high-throughput single-cell methylome techniques such as snmC-seq2 ​(Luo et al.,           

2018)​ and can be readily scaled to analyze thousands of cells/nuclei.  

The continuous development of multi-omic profiling techniques such as         

scNMT-seq ​(Clark et al., 2018) and snmC2T-seq, and several methods for joint RNA             

and chromatin accessibility profiling sci-CAR ​(Cao et al., 2018)​, SNARE-seq ​(Chen et            

al., 2019) and Paired-seq ​(Zhu et al., 2019) provide the opportunity to classify cell types               

with multiple molecular signatures. Our study provided a computational framework to           

cross-validate clustering-based cell-type classifications using multi-modal data. Through        

cross-validation between matched single-cell mC and RNA profiles, we found that           

between 20-50 human cortical cell types can be identified from our moderate size             

snmC2T-seq dataset (4,358 cells) with sound cluster robustness. This is consistent with            

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.873398doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.873398


 

the number of human frontal cortex cell types we reported in our previous (21 major               

types, ​(Luo et al., 2017)​) and current (20 major types and 63 subtypes) studies. Using               

snmC2T-seq as a “ground-truth”, we determined that computational multi-modal         

integration tools perform well at the major cell-type level but show variable accuracy for              

the integration of fine grain subtypes. The computational strategies developed in this            

study can be applied to other types of multi-omic profiling including methods involving             

physiological measurement such as Patch-seq ​(Cadwell et al., 2016; Fuzik et al., 2016)​. 

Epigenomic studies at both bulk and single-cell levels have established both mC            

and open chromatin as reliable markers for regulatory elements ​(Kelsey et al., 2017)​.             

However, the difference between the information provided by the two epigenomic marks            

has been less clear in the context of normal development and diseases. Our study              

found that DMRs contain disease-related regulatory information of both adult and           

embryonic tissues, with vestigial enhancers ​(Hon et al., 2013) as a possible mechanism             

that informs developmental gene regulation. The strong enrichment of genetic risks for            

neuropsychiatric disorders in vestigial enhancers enabled the prediction of causal          

cellular lineage for diseases using DMRs for partitioned heritability analyses and           

identified more diverse disease-relevant brain cell populations than similar analyses          

using open chromatin regions. The abundance of developmental information in DNA           

methylome suggests the possibility to study developmental processes and gene          

regulation in cell lineages using methylome profiling of adult tissues, especially given            

the practical and ethical challenges for obtaining primary human tissues from           

developmental stages.  
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brain tissues can be visualized at      

[​http://neomorph.salk.edu/human_frontal_cortex_ensemble.php ​].  

 

METHODS 

 

Cell cultures 

HEK293T cells were cultured in DMEM with 15% FBS and 1% Penicillin-Streptomycin            

and dissociated with 1X TrypLE. H1 human ESCs (WA01, WiCell Research Institute)            

were maintained in feeder-free mTesR1 medium (Stemcell Technologies). hESCs         

(passage 26) were dispersed with 1U/ml Dispase and collected for single-cell sorting or             

nuclei isolation. For the sorting of single H1 and HEK293T cells, equal amounts of H1               

and HEK293T cells were mixed and stained with anti-TRA-1-60 (Biolegend,          

Cat#330610) antibody.  
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Human brain tissues 

Postmortem human brain biospecimens GUID: NDARKD326LNK and NDARKJ183CYT        

were obtained from NIH NeuroBioBank at University of Miami Brain Endowment Bank.  

Postmortem human brain biospecimens UMB4540, UMB5577 and UMB5580 were         

obtained from NIH NeuroBioBank at University of Maryland Brain and Tissue Bank.            

Published snmC-seq was generated from frontal cortex (medial frontal gyrus) tissue           

obtained from a 25-year-old Caucasian male (UMB4540, labeled as M_25yr_1 in this            

study) with a postmortem interval (PMI) = 23 h. The snATAC-seq dataset was             

generated from specimen UMB4540. Additional snmC-seq data was generated in          

frontal cortex (superior frontal gyrus, Brodmann area 10) tissues obtained from a            

58-year-old Caucasian male (GUID: NDARKD326LNK, labeled as M_58yr in this study)           

with a postmortem interval (PMI) = 23.4 h. snmC-seq2 data was generated from frontal              

cortex (Brodmann area 10) tissue from a 25-year-old Caucasian male (GUID:           

NDARKJ183CYT, labeled as M_25yr_2 in this study) with a PMI = 20.8 h. snmCT-seq              

and sn-m3C-seq data were generated from a 21-year-old Caucasian male (UMB5577,           

labeled as M_21yr in this study) with a PMI = 19h, and a 29-year-old Caucasian male                

(UMB5580, labeled as M_29yr in this study) with a PMI = 8h. The samples were taken                

from unaffected control subjects who died from accidental causes. The snRNA-seq           

dataset was generated from postmortem brain specimen H18.30.002 from the Allen           

Institute for Brain Science. Frontal cortex (BA44-45, 46) from this donor was used for              

the generation of single nucleus RNA-seq data. The donor was a 50 year old male with                

a PMI = 12 h.  
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Nuclei isolation from cultured cells for scmCT-seq and snmCT-seq 

Cell pellets containing 1 million cells were resuspended in 600 µl NIBT [250 mM              

Sucrose, 10 mM Tris-Cl pH=8, 25 mM KCl, 5mM MgCl ​2​, 0.1% Triton X-100, 1mM DTT,               

1:100 Proteinase inhibitor (Sigma-Aldrich P8340), 1:1000 SUPERaseIn RNase Inhibitor         

(ThermoFisher Scientific AM2694), 1:1000 RNaseOUT RNase Inhibitor (ThermoFisher        

Scientific 10777019)]. The lysate was transferred to a pre-chilled 2 ml dounce            

homogenizer (Sigma-Aldrich D8938) and dounced using loose and tight pestles for 20            

times each. The lysate was then mixed with 400 µl of 50% Iodixanol (Sigma-Aldrich              

D1556) and gently pipetted on top of 500 µl 25% Iodixanol cushion. Nuclei were              

pelleted by centrifugation at 10,000 x g at 4°C for 20 min using a swing rotor. The pellet                  

was resuspended in 2 ml of DPBS supplemented with 1:1000 SUPERaseIn RNase            

Inhibitor and 1:1000 RNaseOUT RNase Inhibitor. Hoechst 33342 was added to the            

sample to a final concentration of 1.25 nM and incubated on ice for 5 min for nuclei                 

staining. Nuclei were pelleted by 1,000 x g at 4°C for 10 min and resuspended in 1 ml of                   

DPBS supplemented with RNase inhibitors.  

 

Nuclei isolation from human brain tissues and GpC methyltransferase treatment          

for snmC2T-seq 

Brain tissue samples were ground in liquid nitrogen with cold mortar and pestle, and              

then aliquoted and store at -80°C. Approximately 100mg of ground tissue was            

resuspended in 3 ml NIBT (250 mM Sucrose, 10 mM Tris-Cl pH=8, 25 mM KCl, 5mM                
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MgCl ​2​, 0.2% IGEPAL CA-630, 1mM DTT, 1:100 Proteinase inhibitor (Sigma-Aldrich          

P8340), 1:1000 SUPERaseIn RNase Inhibitor (ThermoFisher Scientific AM2694),        

1:1000 RNaseOUT RNase Inhibitor (ThermoFisher Scientific 10777019)). The lysate         

was transferred to a pre-chilled 7 ml dounce homogenizer (Sigma-Aldrich D9063) and            

dounced using loose and tight pestles for 40 times each. The lysate was then mixed               

with 2 ml of 50% Iodixanol (Sigma-Aldrich D1556) to generate a nuclei suspension with              

20% Iodixanol. Gently pipet 1 ml of the nuclei suspension on top of 500 µl 25%                

Iodixanol cushion in each of the 5 freshly prepared 2ml microcentrifuge tubes. Nuclei             

were pelleted by centrifugation at 10,000 x g at 4°C for 20 min using a swing rotor. The                  

pellet was resuspended in 1ml of DPBS supplemented with 1:1000 SUPERaseIn           

RNase Inhibitor and 1:1000 RNaseOUT RNase Inhibitor. A 10 µl aliquot of the             

suspension was taken for nuclei counting using a Biorad TC20 Automated Cell Counter.             

One million nuclei aliquots were pelleted by 1,000 x g at 4°C for 10 min and                

resuspended in 200 µl of GpC methyltransferase M.CviPI (NEB M0227L) reaction           

containing 1X GC Reaction Buffer, 0.32 nM S-Adenoslylmethionime, 80U 4U/µl          

M.CviPI, 1:100 SUPERaseIn RNase Inhibitor and 1:100 RNaseOUT RNase Inhibitor          

and incubated at 37°C for 8 min. The reaction was stopped by adding 800 µl of ice-cold                 

DPBS with 1:1000 RNase inhibitors and mixing. Hoechst 33342 was added to the             

sample to a final concentration of 1.25 nM and incubated on ice for 5 min for nuclei                 

staining. Nuclei were pelleted by 1,000 x g at 4°C for 10 min, resuspended in 900 µl of                  

DPBS supplemented with 1:1000 RNase inhibitors and 100 µl of 50mg/ml Ultrapure​TM            

BSA (Ambion AM2618) and incubated on ice for 5 min for blocking. Neuronal nuclei              
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were labeled by adding 1 µl of AlexaFluor488-conjugated anti-NeuN antibody (clone           

A60, MilliporeSigma MAB377XMI) for 20 min.  

 

Reverse transcription for snmC2T-seq 

Single cells or single nuclei were sorted into 384-well PCR plates (ThermoFisher            

4483285) containing 1 µl mCT-seq reverse transcription reaction per well. The mCT-seq            

reverse transcription reaction contained 1X Superscript II First-Strand Buffer, 5mM DTT,           

0.1% Triton X-100, 2.5 mM MgCl ​2​, 500 µM each of 5’-methyl-dCTP (NEB N0356S),             

dATP, dTTP and dGTP, 1.2 µM dT30VN_4 oligo-dT primer         

(5’-AAGCAGUGGUAUCAACGCAGAGUACUTTTTTUTTTTTUTTTTTUTTTTTUTTTTTV

N-3’ was used the cultured cell scmCT-seq and snmCT-seq experiments;          

5’-/5SpC3/AAGCAGUGGUAUCAACGCAGAGUACUTTTTTUTTTTTUTTTTTUTTTTTU

TTTTTVN-3’ was used for human brain snmC2T-seq experiments), 2.4 µM TSO_3           

template switching oligo (/5SpC3/AAGCAGUGGUAUCAACGCAGAGUGAAUrGrG+G​)​,    

1U RNaseOUT RNase inhibitor, 0.5 U SUPERaseIn RNase inhibitor, 10U Superscript II            

Reverse Transcriptase (ThermoFisher 18064-071). For snmCT-seq and snmC2T-seq,        

the reaction further included 2 µM N6_2 random primer         

(/5SpC3/AAGCAGUGGUAUCAACGCAGAGUACNNNNNN). After sorting, the PCR     

plates were vortexed and centrifuged at 2000 x g. The plates were placed in a               

thermocycler and incubated using the following program: 25°C for 5 min, 42°C for             

90min, 70°C 15min followed by 4°C.  
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cDNA amplification for scmCT-seq, snmCT-seq and snmC2T-seq 

3 µl of mCT-seq cDNA amplification mix was added into each mCT-seq reverse             

transcription reaction. mCT-seq cDNA amplification reaction containing 1X KAPA 2G          

Buffer A, 600 nM ISPCR23_2 PCR primer       

(/5SpC3/AAGCAGUGGUAUCAACGCAGAGU), 0.08U KAPA2G Robust HotStart DNA      

Polymerase (5 U/μL, Roche KK5517). PCR reactions were performed using a           

thermocycler with the following conditions: 95°C 3min -> [95°C 15 sec -> 60°C 30 sec ->                

72°C 2min] -> 72°C 5min -> 4°C. The cycling steps were repeated for 12 cycles for                

scmCT-seq using H1 or HEK293 cells, 15 cycles for snmCT-seq using H1 or HEK293              

cells and 14 cycles for snmC2T-seq using human brain tissues.  

 

Digestion of unincorporated DNA oligos for scmCT-seq, snmCT-seq and         

snmC2T-seq 

For scmCT-seq and snmCT-seq using H1 and HEK293 cells, 1 µl uracil cleavage mix              

was added to into cDNA amplification reaction. Each 1 µl uracil cleavage mix contains              

0.25 µl Uracil DNA Glycosylase (Enzymatics G5010) and 0.25 µl Endonuclease VIII            

(Enzymatics Y9080) and 0.5 µl Elution Buffer (Qiagen 19086). Unincorporated DNA           

oligos were digested at 37°C for 30 min using a thermocycler. We have found that               

Endonuclease VIII is dispensable for the digestion of unincorporated DNA oligos since            

the alkaline condition during the desulfonation step of bisulfite conversion can effective            

cleave abasic sites created by Uracil DNA Glycosylase ​(Greenberg, 2014)​. Therefore           

for snmC2T-seq using human brain tissues, each cDNA amplification reaction was           
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treated with 1µl uracil cleavage mix containing 0.5 µl Uracil DNA Glycosylase            

(Enzymatics G5010-1140) and 0.5 µl Elution Buffer (Qiagen 19086).  

 

Bisulfite conversion and library preparation 

Detailed methods for bisulfite conversion and library preparation are previously          

described for snmC-seq2 ​(Luo et al., 2017, 2018)​. The following modifications were            

made to accommodate the increased reaction volume of scmCT-seq, snmCT-seq or           

snmC2T-seq: Following the digestion of unused DNA oligos, 25 µl instead of 15 µl of CT                

conversion reagent was added to each well of a 384-well plate. 90 µl instead of 80 µl                 

M-binding buffer was added to each well of 384-well DNA binding plate. scmCT-seq             

libraries were generated using the snmC-seq method as described in Luo et al., 2017              

(Luo et al., 2017)​. snmCT-seq and snmC2T-seq libraries were generated using the            

snmC-seq2 method as described in Luo et al., 2018 ​(Luo et al., 2018)​. The scmCT-seq               

and snmCT-seq libraries were sequenced using an Illumina HiSeq 4000 instrument with            

150 bp paired-end reads. The snmC2T-seq libraries generated from human brain           

specimens were sequenced using an Illumina Novaseq 6000 instrument with S4           

flowcells and 150 bp paired-end mode.  

 

The mapping pipeline for snmC-seq, snmC-seq2, snmCT-seq, and snmC2T-seq 

We implemented a versatile mapping pipeline ( ​cemba-data.rtfd.io​) for all the methylome           

based technologies developed by our group ​(Luo et al., 2017, 2018)​. The main steps of               
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this pipeline include: 1) Demultiplexing FASTQ files into single-cell; 2) Reads level QC;             

3) Mapping; 4) BAM file processing and QC; 5) final molecular profile generation. 

For snmC-seq and snmC-seq2, the details of the five steps are described previously             

(Luo et al., 2017, 2018)​. For scmCT-seq, snmCT-seq and snmC2T-seq, steps 1 and 2              

are identical as snmC-seq2, steps 3 to 5 are split into “a” for methylome and “b” for                 

transcriptome as following: 

Step 3a (methylome)​. To map methylome reads, reads from step 2 were mapped onto              

the human hg19 genome using bismark ​(Krueger and Andrews, 2011) with the same             

setting as snmC-seq2. 

Step 3b (transcriptome) ​. To map transcriptome reads, reads from step 2 were mapped             

to GENCODE human v28 indexed hg19 genome using STAR 2.7.2b ​(Dobin et al.,             

2013) with the following parameters: ​--alignEndsType EndToEnd --outSAMstrandField        

intronMotif --outSAMtype BAM Unsorted --outSAMunmapped Within --outSAMattributes       

NH HI AS NM MD --sjdbOverhang 100 --outFilterType BySJout         

--outFilterMultimapNmax 20 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1      

--outFilterMismatchNmax 999 --outFilterMismatchNoverLmax 0.04 --alignIntronMin 20      

--alignIntronMax 1000000 --alignMatesGapMax 1000000 --outSAMattrRGline ID:4      

PL:Illumina​.  

Step 4a (methylome)​. PCR duplicates were removed from mapped reads using Picard            

MarkDuplicates. The non-redundant reads were then filtered by MAPQ > 10. To select             

genomic reads from the filtered BAM, we used the “XM-tag” generated by bismark to              
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calculate reads methylation level and keep reads with mCH ratio < 0.5 and the number               

of cytosines ≥ 3. 

Step 4b (transcriptome) ​, the STAR mapped reads were first filtered by MAPQ > 10. To               

select RNA reads from the filtered BAM, we used the “MD” tag to calculate reads               

methylation level and keep reads with mCH ratio > 0.9 and the number of cytosines ≥ 3.                 

The stringency of read partitioning was determined by applying the criteria for identifying             

snmCT-seq transcriptome reads to snmC-seq2 data (SRR6911760, SRR6911772,        

SRR6911776) ​(Luo et al., 2018)​, which contains no transcriptomic reads. Similarly, the            

criteria for identifying snmCT-seq methylome reads were applied to Smart-seq data           

(SRR944317, SRR944318, SRR944319, SRR944320) ​(Picelli et al., 2013)​, which         

contains no methylome reads. 

Step 5a (methylome)​, Tab-delimited (ALLC) files containing methylation level for every           

cytosine position was generated using methylpy ​call_methylated_sites function ​(Schultz         

et al., 2015) on the BAM file from the step 4a. For snmC2T-seq, an additional base was                 

added before the cytosine in the context column of the ALLC file using the parameter               

“--num_upstr_bases 1”, to distinguish GpC sites from HpC sites for the NOMe-seq            

modality. 

Step 5b (transcriptome) ​, BAM file from step 4b were counted across gene annotations             

using featureCount 1.6.4 ​(Liao et al., 2014) with the default parameters. Gene            

expression was quantified using either only exonic reads with “-t exon” or both exonic              

and intronic reads with “-t gene”.  
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Methylome feature generation 

After allc files were generated, the methylcytosine ( ​mc​) and total cytosine basecalls            

( ​cov​) were summed up for each 100kb bin across the hg19 genome. For snmC-seq,              

snmC-seq2, and snmCT-seq, cytosine and methylcytosine basecalls in CH (H=A, T, C)            

and CG context were counted separately. For snmC2T-seq, the HCH context was            

counted for CH methylation and HCG is counted for CG methylation. The GCY (Y=T, C)               

context was counted as the chromatin accessibility signal (NOMe-seq in snmC2T-seq)           

and the HCY context was counted as the endogenous mCH background. In addition to              

the 100kb feature set, we also counted gene body methylation levels using gene             

annotation from GENCODE v28. The 100kb feature set was used in methylation-based            

clustering analysis and data integration; the gene body feature set was used in             

methyl-marker identification, cluster annotation and data integration between        

methylome and transcriptome.  

 

Preprocessing of snmC-seq and snmC-seq2 data for clustering analyses 

Cell filtering ​. We filtered the cells based on these main mapping metrics: 1) mCCC rate               

< 0.03. mCCC rate reliably estimates the upper bound of bisulfite non-conversion rate             

(Luo et al., 2017)​, 2) overall mCG rate > 0.5, 3) overall mCH rate < 0.2, 4) total final                   

reads > 500,000, 5) bismark mapping rate > 0.5. Other metrics such as genome              

coverage, PCR duplicates rate, index ratio were also generated and evaluated during            

filtering. However after removing outliers with the main metrics 1-5, few additional            

outliers can be found. 
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Feature filtering​. 100kb genomic bin features were filtered by removing bins with mean             

total cytosine base calls < 300 or > 3000. Regions overlap with the ENCODE blacklist               

(Amemiya et al., 2019)​ were also removed from further analysis.  

Computation and normalization of the methylation rate ​. For CG and CH           

methylation, the computation of methylation rate from the methylcytosine and total           

cytosine matrices contains two steps: 1) prior estimation for the beta-binomial           

distribution and 2) posterior rate calculation and normalization per cell.  

Step 1, for each cell we calculated the sample mean, , and variance, , of the raw mc          m    v      

rate ​(mc / cov) ​for each sequence context (CG, CH). The shape parameters of             α, β)(    

the beta distribution were then estimated using the method of moments:  

(m(1 )/v )α = m − m − 1  

1 )(m(1 )/v )β = ( − m − m − 1  

This approach used different priors for different methylation types for each cell, and             

used weaker prior on cells with more information (higher raw variance). 

Step 2, We then calculated the posterior: ., We normalized this rate by the       mcˆ = α+mc 
α+β+cov        

cell’s global mean methylation, . Thus, all the posterior with 0 ​cov will    /(α )m = α + β      mcˆ      

be constant 1 after normalization. The resulting normalized ​mc rate matrix contains no             

NA (not available) value and features with less ​cov tend to have a mean value close to                 

1.  

Selection of highly variable features ​. Highly variable methylation features were          

selected based on a modified approach using the scanpy package          

scanpy.pp.highly_variable_genes function ​(Wolf et al., 2018) ​. In brief, the         
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scanpy.pp.highly_variable_genes function normalized the dispersion of a gene by         

scaling with the mean and standard deviation of the dispersions for genes falling into a               

given bin for mean expression of genes. In our modified approach, we reasoned that              

both the mean methylation level and the mean ​cov of a feature (100kb bin or gene) can                 

impact ​mc rate dispersion. We grouped features that falling into a combined bin of mean               

and ​cov ​, and then normalized the dispersion within each mean- ​cov group. After            

dispersion normalization, we selected the top 3000 features based on normalized           

dispersion for clustering analysis.  

Dimension reduction and combination of different mC types. For each selected           

feature, ​mc rates were scaled to unit variance and zero mean. PCA was then performed               

on the scaled ​mc rate matrix. The number of significant PCs was selected by inspecting               

the variance ratio of each PC using the elbow method. The CH and CG PCs were then                 

concatenated together for further analysis in clustering and manifold learning. 

 

Preprocessing of snmC2T-seq data for clustering analysis 

Methylome preprocessing​. The methylome modality preprocessing is similar to         

snmC-seq2 with one major modification: non-CG methylation is quantified using the           

HCH context; CG methylation is quantified using the HCG context. Chromosome 100kb            

bin features with mean total cytosine base calls between 250 and 2500 were included in               

downstream analyses. 

Transcriptome preprocessing​. The whole gene RNA read count matrix is used for            

snmC2T-seq transcriptome analysis. Cells are filtered by the number of genes           
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expressed > 200 and genes are filtered by the number of cells expressed > 10. The                

count matrix X is then normalized per cell and transformed by ln(X + 1). After log                

transformation, we use the ​scanpy.pp.highly_variable_genes to select the top 3000          

genes based on normalized dispersion, using a process similar to the selection of highly              

variable methylation features. The selected feature matrix is scaled to unit variance and             

zero mean per feature followed by PCA calculation. 

Chromatin accessibility (NOMe-seq) preprocessing​. For clustering analysis,       

cytosine methylation in the GCY context (GmCY) is counted as the open chromatin             

signal from NOMe-seq, and the HCY context is used to estimate the endogenous mCH              

background. Highly methylated regions (in GCY context) at a single-cell level are            

identified by three continuous GmCY sites with maximum distance < 500bp. By applying             

the same threshold to HCY contexts (non-substrate for GpC methylase), we have            

determined that the empirical false discovery rate is less than 5%. The binarized peak              

signal (1 for having highly methylated region in this bin, 0 for no signal or missing data)                 

is then called for all the 5kb nonoverlapping chromosome bins as the NOMe matrix.              

Similar to snATAC-seq analysis, we then used the SnapATAC (Fang et al., 2019)             

package to select bins, perform cell-cell Jaccard matrix calculation, and normalize the            

coverage impact as described in the snATAC clustering analysis section. The PCs are             

then calculated from the normalized Jaccard matrix. 

 

General strategies for clustering and manifold learning 
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Consensus clustering on concatenated PCs ​. We used a consensus clustering          

approach based on multiple Leiden-clustering ​(Traag et al., 2018) over K-Nearest           

Neighbor (KNN) graph to account for the randomness of the Leiden clustering            

algorithms. After selecting dominant PCs from PCA in all available modalities of            

different technologies (mCH, mCG for snmC-seq and snmC-seq2; mCH, mCG, RNA,           

NOMe-seq for snmC2T-seq, etc.), we concatenated the PCs together to construct KNN            

graph using scanpy.pp.neighbors. Given fixed resolution parameters, we repeated the          

Leiden clustering 200 times on the KNN graph with different random starts and             

combined these cluster assignments together as a new feature matrix, where each            

single Leiden result is a feature. We then used the outlier-aware DBSCAN algorithm             

from the scikit-learn package to perform consensus clustering over the Leiden feature            

matrix using the hamming distance. Different epsilon parameters of DBSCAN are           

traversed to generate consensus cluster versions with the number of clusters that range             

from minimum to the maximum number of clusters observed in the 200x Leiden runs.              

Each version contains a few outliers that usually fall into three categories: 1. Cells              

located between two clusters that have gradient differences instead of clear borders,            

e.g. L2-3 IT to L4 IT; 2. Cells with a low number of reads that potentially lack information                  

in important features to determine the exact cluster. 3. Cells with a high number of               

reads that are potential doublets. The number of type 1 and 2 outliers depends on the                

resolution parameter and is discussed in the choice of the resolution parameter section,             

the type 3 outliers are very rare after cell filtering. The final consensus cluster version is                

then determined by the supervised model evaluation. 
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Supervised model evaluation on the clustering assignment ​. For each consensus          

clustering version, we performed a Recursive Feature Elimination with Cross-Validation          

(RFECV) ​(Guyon et al., 2002) process from the scikit-learn package to evaluate            

clustering reproducibility. We first removed the outliers from this process, then we held             

out 10% of the cells as the final testing dataset. For the remaining 90% of the cells, we                  

used tenfold cross-validation to train a multiclass prediction model using the input PCs             

as features and ​sklearn.metrics.balanced_accuracy_score ​(Brodersen et al., 2010) as         

an evaluation score. The multiclass prediction model is based on          

BalancedRandomForestClassifier from the imblearn package that accounts for        

imbalanced classification problems ​(Lemaître et al., 2017)​. After training, we used the            

10% testing dataset to test the model performance using the balanced_accuracy_score           

score. We kept the best model and corresponding clustering assignments as the final             

clustering version. Finally, we used this prediction model to predict outliers’ cluster            

assignments, we rescued the outlier with prediction probability > 0.5, otherwise labeling            

them as outliers. 

Choice of resolution parameter ​. Choosing the resolution parameter of the Leiden           

algorithm is critical for determining the final number of clusters. We selected the             

resolution parameter by three criteria: 1. The portion of outliers < 0.05 in the final               

consensus clustering version. 2. The final prediction model performance > 0.95. 3. The             

average cell per cluster ≥ 30, which controls the cluster size in order to reach the                

minimum coverage required for further epigenome analysis such as DMR calling. All            

three criteria prevent the over-splitting of clusters thus we selected the maximum            
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resolution parameter under meeting the criteria using grid search in each specific            

clustering analysis below. 

Cluster marker gene identification and cluster trimming​. After clustering, we used a            

one-vs-rest strategy to calculate methylation (methyl-marker) and RNA (rna-marker, for          

snmC2T-seq only) marker genes for each cluster. We used all the protein coding and              

long non-coding RNA genes with evidence level 1 or 2 from gencode v28. For the               

rna-marker, we used the ​scanpy.tl.rank_genes_group function with the Wilcoxon test          

and Benjamini-Hochberg multi-test correction, and filtered the resulting marker gene by           

adjusted P-value < 0.01 and log2(fold-change) > 1, we also used AUROC score as a               

measure of marker gene’s predictability of corresponding cluster, and filtered genes by            

AUROC > 0.8. For the methyl-marker, we used the normalized gene body mCH rate              

matrix to calculate markers for neuronal clusters and the normalized gene body mCG             

rate matrix for non-neuronal clusters, and we modified the original Wilcoxon test            

function to used a reverse score to select genes that have significant decrease             

(hypomethylation). Marker gene is chosen based on adjusted P-value < 0.01, delta            

methylation level change < -0.3 (hypo-methylation), AUROC > 0.8. The delta           

methylation level is calculated as the normalized methylation rate change between the            

cluster and the mean value of the rest clusters.For the ensemble methylome clustering,             

if cluster with the number of methyl-markers < 10 is detected, the cluster with the               

minimum total marker genes are merged to the closest clusters based on cluster             

centroids euclidean distance in the PC space, then the marker identification process is             

repeated until all clusters found enough marker genes. 
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Manifold learning ​. The T-SNE and UMAP embedding are run on the PC matrix the              

same as the clustering input using the scanpy package. 

 

Identification of open chromatin regions using snmC2T-seq GmCY profiles 

The methylation level of each GCY site was normalized to the average GCY cytosine              

methylation level of the surrounding 100kb region. GCY sites with normalized           

methylation greater than 2.5 were considered significantly methylated (GmCY) sites.          

The density of GmCY sites across the genome was modeled using Poisson distribution             

by MACS2 ​(Zhang et al., 2008) and regions with significant enrichment of GmCY sites              

were identified with MACS2 ​callpeak with p-value < 0.01. Peaks with q-value < 0.01              

were selected for downstream analyses.  

 

snATAC-seq data generation 

Combinatorial barcoding single nucleus ATAC-seq was performed as described         

previously in Fang et al. ​(Fang et al., 2019)​. Isolated brain nuclei were pelleted with a                

swinging bucket centrifuge (500 x g, 5 min, 4°C; 5920R, Eppendorf). Nuclei pellets were              

resuspended in 1 ml nuclei permeabilization buffer (5 % BSA, 0.2 % IGEPAL-CA630,             

1mM DTT and cOmplete ​TM​, EDTA-free protease inhibitor cocktail (Roche) in PBS) and            

pelleted again (500 x g, 5 min, 4°C; 5920R, Eppendorf). Nuclei were resuspended in              

500 µL high salt tagmentation buffer (36.3 mM Tris-acetate (pH = 7.8), 72.6 mM              

potassium-acetate, 11 mM Mg-acetate, 17.6% DMF) and counted using a          

hemocytometer. Concentration was adjusted to 4500 nuclei/9 µl, and 4,500 nuclei were            
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dispensed into each well of a 96-well plate. For tagmentation, 1 μL barcoded Tn5              

transposomes ​(Fang et al., 2019) were added using a BenchSmart™ 96 (Mettler            

Toledo), mixed five times and incubated for 60 min at 37 °C with shaking (500 rpm). To                 

inhibit the Tn5 reaction, 10 µL of 40 mM EDTA were added to each well with a                 

BenchSmart™ 96 (Mettler Toledo) and the plate was incubated at 37 °C for 15 min with                

shaking (500 rpm). Next, 20 µL 2 x sort buffer (2 % BSA, 2 mM EDTA in PBS) were                   

added using a BenchSmart™ 96 (Mettler Toledo). All wells were combined into a FACS              

tube and stained with 3 µM Draq7 (Cell Signaling). Using a SH800            

Fluorescence-activated cell sorter (Sony), 40 nuclei were sorted per well into eight            

96-well plates (total of 768 wells) containing 10.5 µL EB (25 pmol primer i7, 25 pmol                

primer i5, 200 ng BSA (Sigma). Preparation of sort plates and all downstream pipetting              

steps were performed on a Biomek i7 Automated Workstation (Beckman Coulter). After            

addition of 1 µL 0.2% SDS, samples were incubated at 55 °C for 7 min with shaking                 

(500 rpm). 1 µL 12.5% Triton-X was added to each well to quench the SDS. Next, 12.5                 

µL NEBNext High-Fidelity 2× PCR Master Mix (NEB) were added and samples were             

PCR-amplified (72 °C 5 min, 98 °C 30 s, (98 °C 10 s, 63 °C 30 s, 72°C 60 s) × 12                      

cycles, held at 12 °C). After PCR, all wells were combined. Libraries were purified              

according to the MinElute PCR Purification Kit manual (Qiagen) using a vacuum            

manifold (QIAvac 24 plus, Qiagen) and size selection was performed with SPRI Beads             

(Beckman Coulter, 0.55x and 1.5x). Libraries were purified one more time with SPRI             

Beads (Beckman Coulter, 1.5x). Libraries were quantified using a Qubit fluorometer           

(Life technologies) and the nucleosomal pattern was verified using a Tapestation (High            
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Sensitivity D1000, Agilent). The library was sequenced on a HiSeq2500 sequencer           

(Illumina) using custom sequencing primers, 25% spike-in library and following read 

lengths: 50 + 43 + 37 + 50 (Read1 + Index1 + Index2 + Read2) ​(Preissl et al., 2018)​. 

 

snATAC-seq data processing 

Using a custom python script, we first de-multicomplexed FASTQ files by integrating the             

cell barcode (concatenate reads pair in I1.fastq and I2.fastq) into the read name             

(R1.fastq and R2 fastq) in the following format:        

"@"+"barcode"+":"+"original_read_name". Demulticomplexed reads were aligned to the       

corresponding reference genome (hg19) using bwa (0.7.13-r1126) ​(Li and Durbin, 2009)           

in pair-end mode with default parameter settings. Alignments were then sorted based            

on the read name using samtools (v1.9) ​(Li et al., 2009)​. Pair-end reads were converted               

into fragments and only those that are 1) properly paired (according to SMA flag value);               

2) uniquely mapped (MAPQ > 30); 3) with length less than 1000bp were kept. Since               

fragments were sorted by barcode (integrated into the read name), fragments belonging            

to the same cell (or barcode) were automatically grouped together which allowed for             

removing PCR duplicates for each cell separately. Using remaining fragments, a           

snap-format (Single-Nucleus Accessibility Profiles) file was generated. snap file is          

hierarchically structured hdf5 file that contains the following sessions: header (HD),           

cell-by-bin matrix (BM), cell-by-peak matrix (PM), cell-by-gene matrix (GM), barcode          

(BD) and fragment (FM). HD session contains snap-file version, date, alignment and            

reference genome information. BD session contains all unique barcodes and          
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corresponding meta data. BM session contains cell-by-bin matrices of different          

resolutions (or bin sizes). PM session contains cell-by-peak count matrix. PM session            

contains cell-by-gene count matrix. FM session contains all usable fragments for each            

cell. Fragments are indexed for fast search. A detailed documentation of snap file can              

be found here   

( ​https://docs.google.com/document/d/1AGyn_WJTr0A1SKcfrEgum-jvAJjWd84jZ6Dwbwi

GRaQ/edit?usp=sharing​). After generating the SNAP file, we filtered cell barcodes          

based on the following criteria 1) Total Sequencing Fragments (>1,000); 2) Mapping            

Ratio (>0.8); 3) Properly Paired Ratio (>0.9); 4) Duplicate Ratio (<0.5); 5) Mitochondrial             

Ratio (<0.1). ​(Fang et al., 2019) ​. 

 

Clustering analysis of snATAC-seq data 

We used the snapATAC package for the clustering analysis of snATAC-seq data, the             

detail steps were described in ​(Fang et al., 2019)​. Briefly, we used the binarized              

cell-by-bin matrix of the whole genome 5kb non-overlapping bins as input (1 means             

open, 0 means close or missing data). We first the coverage of each bin and converted                

the coverage distribution to log-normal distribution and converted the bin coverage to            

z-score. Bins with extremely high (zscore > 1.5) or low coverage (zscore < -1.5), or               

overlap with ENCODE blacklist ​(Amemiya et al., 2019) ​are removed. We then converted             

the cell-by-bin matrix into cell-by-cell similarity matrix by calculating the Jaccard index            

between cells. To normalize the cell coverage impact on Jaccard index, we used the              

observed over expected (OVE) method from snapATAC, which calculate the residual of            
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the linear regression model between expected Jaccard matrix given cell coverage and            

the overserved matrix. We then perform PCA on standardized residual matrix and used             

top 25 PCs for leiden clustering (resolution = 1) and UMAP visualization. 

 

Open chromatin peak calling using snATAC-seq data 

Open chromatin peaks were identified using snATAC-seq reads combined for each cell            

type using MACS ​callpeak with the following parameters -f BED --nomodel --shift 37             

--ext 73 --pvalue 1e-2. Peaks with q-value < 0.01 were further selected for downstream              

analyses.  

 

snRNA-seq data generation 

Nuclei were isolated from human postmortem brain tissues and sorted based on NeuN             

fluorescence as previously described ​(Hodge et al., 2019)​. Each sample contained           

approximately 80% NeuN-positive and 20% NeuN-negative nuclei. snRNA-seq data         

was generated using 10x Genomics v3 single cell chemistry per the manufacturer’s            

protocol. RNA-seq reads were aligned with Cell Ranger v3 using the human            

GRCh38.p2 reference genome, and intronic and exonic mapped reads were included in            

gene expression quantification. 

 

snRNA-seq clustering and annotation (Used in Fig 1, 3, 6)  

Nuclei were included in downstream analysis if they passed the following QC            

thresholds: > 500 genes detected (UMI > 0) in non-neuronal nuclei or > 1000 genes               
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detected (UMI > 0) in neuronal nuclei; and doublet score < 0.3. Cells were grouped into                

transcriptomic cell types using the iterative clustering procedure described in ​(Tasic et            

al., 2018) ​. Briefly, genes from the mitochondrial and sex chromosomes were excluded,            

and expression was normalized to UMI per million and log2-transformed. Nuclei were            

clustered using the following steps: high variance gene selection, dimensionality          

reduction, dimension filtering, Jaccard–Louvain or hierarchical (Ward) clustering, and         

cluster merging. Differential gene expression (DGE) was computed for every pair of            

clusters, and pairs that did not meet the DGE criteria were merged. Differentially             

expressed genes were defined using two criteria: 1) significant differential expression (>            

2-fold; Benjamini-Hochberg false discovery rate < 0.01) using the R package limma and             

2) binary expression (CPM > 1 in more the half of cells in one cluster and < 30% of this                    

proportion in the other cluster). We define the deScore as the sum of the −log10(false               

discovery rate) of all differentially expressed genes (each gene contributes to no more             

than 20), and pairs of clusters with deScore < 150 were merged. This process was               

repeated within each resulting cluster until no more child clusters met DGE or cluster              

size criteria (minimum of 10 cells). The entire clustering procedure was repeated 100             

times using 80% of all cells sampled at random, and the frequency with which nuclei               

co-cluster was used to generate a final set of clusters, again subject to differential gene               

expression and cluster size termination criteria. Clusters were identified as outliers if            

more than 40% of nuclei co-expressed markers of inhibitory (GAD1, GAD2) and            

excitatory (SLC17A7) neurons or were NeuN+ but did not express the pan-neuronal            

marker SNAP25. Median values of total UMI counts and gene counts were calculated             
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for each cluster and used to compute the median and inter-quartile range (IQR) of all               

cluster medians. Clusters were also identified as outliers if the cluster median QC             

metrics deviated by more than three times the IQRs from the median of all clusters. In                

total, 23,379 nuclei passed QC criteria and were split into three broad classes of cells               

(13,997 excitatory neurons, 7,094 inhibitory neurons, and 1,914 non-neuronal cells)          

based on NeuN staining and cell class marker-gene expression. A final merge step             

required at least 4 marker genes to be more highly expressed in each pair of clusters.                

The clustering pipeline is implemented in an R package publicly available at github             

(https://github.com/AllenInstitute/scrattch.hicat). The clustering method is provided by       

the run_consensus_clust function. 

 

FIGURE-SPECIFIC METHODS 

Cell line dataset analysis (Figure S1) 

Clustering​. For both scmCT-seq and snmCT-seq cell line datasets, PCA was           

used for the dimension reduction of the mCG and RNA matrices. Since only two              

cell types (H1 and HEK293T) need to be separated, only the first 5 PCs from               

each matrix were selected to construct K-Nearest Neighbor (KNN) graphs          

(K=25). On each KNN graph for mCG and RNA, Leiden clustering (r=0.5) is used              

to determine the two clusters and tSNE was used to visualize the PCs. Clusters              

were annotated by examining the genome-wide methylation levels and marker          

gene expression. Data acquired from single cells or nuclei were then merged for             

each cluster for comparisons with bulk methylome and transcriptome data. 
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Comparison to bulk H1 and HEK293 Methylome​. The bulk HEK293 cell           

whole-genome bisulfite sequencing (WGBS-seq) data were downloaded from        

Libertini et. al. (GSM1254259) ​(Libertini et al., 2015)​. The bulk WGBS-seq data            

of the H1 cell was downloaded from Schultz et al (GSE16256) ​(Schultz et al.,              

2015)​. Methylpy was used to call CG-DMRs between these two cell lines​(Schultz            

et al., 2015) ​. DMRs were filtered by DMS (differentially methylated sites) ≥ 5 and              

methylation level difference ≥ 0.6.  

Bulk H1 and HEK293 RNA Data Analysis​. The bulk HEK293 cell RNA-seq data             

was downloaded from Aktas et. al. (GSE85161) ​(Aktaş et al., 2017) ​, the bulk H1              

cell RNA-seq data was downloaded from encodeproject.org (ENCLB271KFE,        

generated by Roadmap Epigenome). Gene count tables and bigwig tracks were           

generated using human GENCODE v19 gene annotation. 

 

snmC2T-seq baseline clustering​ (Used in Fig 1) 

To perform clustering analysis on the human frontal cortex snmC2T-seq dataset only,            

we first preprocessed three modalities separately as described in the preprocessing           

section above. We then concatenate all the dominant PCs together to run the             

consensus clustering identification (resolution = 1). We annotated the clusters based on            

marker genes reported in the previous studies ​(Hodge et al., 2019; Luo et al., 2017)​. We                

also calculated the UMAP coordinates based on concatenated PCs (Figure 1D) and            

PCs from every single modality separately (Figure S2H-J). 
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Methylome ensemble clustering​ (Used in Fig 2, 3, 4, 5, 6, 7) 

To generate an ensemble cell type taxonomy for the human frontal cortex, we combine              

four methylome based technologies (Figure 2A, snmC2T-seq, snmC-seq, snmC-seq2,         

sn-m3C-seq) in this study. Due to the high cell-type diversity, we performed a two-level              

iterative clustering analysis.  

Level 1 clustering to identify major cell types ​. We first preprocessed the            

methylation matrix as described above for each technology separately to obtain           

the corresponding highly variable feature matrix. We then used scanorama to           

integrate all cells using the union of highly variable features from all technologies,             

with K=25 and default values for other parameters. After the integration, we            

performed PCA on the integrated matrix and used the dominant PCs for the             

subsequent consensus clustering analysis (resolution = 0.5) as described above.          

We also calculated UMAP coordinates using the ensemble PCs (Figure 2C). 

Level 2 clustering to identify subtypes for each major cell type​. After level 1              

clustering, we selected cells from each major cell type and repeated all the steps              

from highly variable feature selection to final clustering (K=20, resolution = 0.8)            

including scanorama integration. The highly variable features selected in this          

step are more specific to intracluster diversity of each major type, which helps to              

better separate the subtype. The subcluster UMAP coordinates are calculated          

from PCs in each subtype analysis (Figure 2C insets). 
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snmC2T-seq - snRNA-seq integration (Figure 3, excitatory, inhibitory, non-neuron         

separately) 

To perform the integration analysis of snmC2T-seq transcriptome and snRNA-seq, we           

separate the cells into three broad classes: excitatory neurons, inhibitory neurons, and            

non-neuronal cells. The RNA features used for the integration by Scanorama come from             

two sources for each cell class: 1) highly variable genes across individual cells; 2)              

cluster level RNA marker genes. To validate that the cluster level RNA marker genes              

are relevant for neuronal processes, we performed a synapse-specific GO enrichment           

test using the SynGO terms and all brain expressed genes as background ​(Koopmans             

et al., 2019) ​. The -log(adjusted P-value) of SynGO biological process enrichment in            

each selected gene set is color-coded on the sunburst chart of the hierarchical SynGO              

terms (Figure 3C,3D).  

We then used the union of RNA features found in snmC2T-seq transcriptome            

and snRNA-seq for Scanorama integration and PCA calculation. The dominant PCs           

were then used to perform a co-clustering analysis on the cells profiled by snmC2T-seq              

cell or snRNA-seq. Instead of directly using the co-clustering results, we used this             

intermediate clustering assignment to calculate the overlap score between the original           

methylome ensemble clusters and the snRNA-seq clusters. The overlap score range           

from 0 to 1 is defined as the sum of the minimum proportion of samples in each cluster                  

that overlapped within each co-cluster ​(Hodge et al., 2019)​, a higher score between one              

methylome cluster and one snRNA-seq cluster indicate they consistently co-clustered          

within one or more co-clusters. 
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Integration of DNA methylome and snATAC-Seq data (Figure 2) 

Ensemble methylomes and snATAC-seq data from neurons and glia were integrated           

separately using our recently developed Single Cell Fusion method (see section           

Computational data integration with SingleCellFusion ​). The top 4000 variable         

genes across clusters in the snmC2T-seq and snATAC-seq data were identified using a             

Kruskal-Wallis test; 1,652 genes were identified as being variable in both datasets and             

were used for the subsequent integration. For snATAC-seq the gene body was            

extended to include the promoter region (2kb upstream TSS). Prior to integration mCH             

and open chromatin levels at gene bodies were smoothed to reduce sparseness (k =              

20, ka = 4, epsilon = 1, p = 0.9; see section ​Within-modality smoothing ​) using a                

diffusion based smoothing method adapted from MAGIC ( ​(van Dijk et al., 2018)​). A             

constrained k-nearest neighbors graph was generated among cells across 2 datasets           

(k=20, z=10; see section ​Cross-modality imputation by Restricted k-Partners​).         

Instead of calculating Euclidean distance in reduced dimensions, here we simply used            

Spearman correlation across 1,652 genes as the distance measure between cells. We            

used the kNN graph to impute the gene body mCH profile for each ATAC-Seq nucleus.               

The observed (ensemble methylomes) and imputed (snATAC-Seq nuclei) gene body          

mCH was then jointly used for Leiden clustering and UMAP embedding. Each            

snATAC-seq nucleus was assigned to a major cell type if at least half of it’s restricted                

k-Partners belonged to that cell type, remaining cells were removed from subsequent            

analysis (n=499, 3.98%). 
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Cross-validation of cell clusters (Figure 4)  

The analysis starts with 2 cell-by-gene data matrices: one for gene-body non-CG DNA             

methylation (mCH) and the other for RNA expression. We first filter out low-quality cells              

and low-coverage genes. After removing glia and outliers in the snmC2T-Seq dataset,            

we get 3,898 high-quality neuronal cells. By selecting genes expressed in >1% of cells              

and with >20 cytosines coverage at gene body in >95% of cells, we get 13,637               

sufficiently covered genes. Then we normalize the mCH matrix by dividing the raw mCH              

level by the global mean mCH level of each cell; and we normalize the RNA matrix by                 

(log ​10​(TPM+1)). 

The goal of cluster cross-validation is to cluster cells with one part of the              

features, and to validate clustering results with the other part of features. We first              

generate clusterings with different granularity, ranging from coarse to very fine, using            

DNA methylation features. Clusterings are generated by the Leiden method applied to            

the top 20 principal components with different settings of the resolution parameter            

controlling granularity. Following clustering, we randomly split cells into training set and            

test set. Using the training set, we estimate the cluster centroids of RNA expression.              

Using the test set, we calculate the mean squared error (MSE) between the RNA              

expression profile of individual cells and that of cluster centroids. This procedure can be              

reversed by clustering with RNA features and evaluation with DNA methylation features. 

To summarize the results, we plot the curve of number of clusters versus the              

mean squared error. To ensure robustness, clustering is repeated five times with            
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different random seeds, and with 10 repetitions of 5-fold cross-validation procedure on            

different random splits of training and test set. 

 

Quantification of over-splitting and under-splitting of cell clusters (Figure 4) 

We define cross-validation based scores to quantify over-splitting (S​over​) and          

under-splitting (S​under​), respectively. Ideally, each cluster should be globally distinct from           

other clusters (not over-split) and locally homogeneous, with little systematic difference           

within the same cluster (not under-split). S​over measures global uniqueness, i.e. how            

distinct one cluster is compared with other clusters. S​under measures local homogeneity,            

i.e. how similar cells within one cluster are to each other. These scores are designed               

based on cross-validation between transcriptomic and epigenomic information of         

snmC2T-Seq, as we attempt to address how well clusters defined by one data modality              

(transcriptome or DNA methylation) can be validated by the complementary data           

modality.  

Over- and under-splitting scores are computed based on a cross-modality          

distance measure. This distance measure treats the two data modalities as independent            

measurements, as if they came from separate DNA methylation and transcriptome           

assays performed on independent groups of cells. Given a cell-by-gene mCH matrix            X   

(raw mCH level normalized by global mCH level of each cell), and a cell-by-gene              

RNA-expression matrix (log ​10​(TPM+1)), we simultaneously reduce the dimensionality  Y        

of both matrices by canonical correlation analysis ​(Butler et al., 2018) ​: 

,Y  USVX  T ≈  T  
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where and are cell-by-feature orthogonal matrices (feature dimension = 20) of the U   V            

canonical coefficients of cells measured by mCH and RNA, respectively. S is a diagonal              

matrix of the canonical correlations. We define cross-modality distance between cell           i  

(measured by mCH) and (measured by RNA) as the Euclidean distance in the low    j            

dimensional feature space: 

 ,  dij = √(u ) (u ) i − vj
T

i − vj  

where and are the ’th column of and the ’th column of , respectively. We ui  vj   i    U    j    V    

then build a bipartite graph, connecting each cell’s profile in one modality with the              

k-nearest neighbors in the other modality. We refer to the these cross-modality            

neighbors as “k-partners,” are the k smallest distances for cell .j | d  P i
(k) = { ij  }i  

Next, we take advantage of the multimodal measurements to define over- and            

under-clustering metrics using the cross-modality partner cells. The over-clustering         

score, , is defined as one minus the mean fraction of each cell’s k-partners (with Sover               

 = number of cells in cluster ) that are from the same cluster:C |k = | i i  

,[C ]Sover = 1 − k
1 ∑

k

i=1
k
1 ∑

 

j∈P i
(k)
I i = C j   

where is the indicator function and is the cluster label of cell . Thus, if all of a []I       C i        i       

cell’s k-partners share the same cluster label, , while larger values of       Sover = 0      Sover  

indicate less cross-modality stability for the clusters. 

To quantify under-splitting, we compared each cell’s cross-modality distance to          

itself, with the distance to other cells in the same cluster. We define each cell’s ,dii                

self-radius, , as the maximum k value such that all k-partners are closer than :ri dii   
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r {d d  ∀ j }.i = arg max
k ij <  ii ∈ P i

(k)

 
 

In other words, a cell’s self-radius is the number of ​k ​-partners whose cross-modality             

distance is less than the cell’s cross-modality distance to itself. 

We compared each self-radius ​r to the size of the cluster. For an ideal cluster                

with no internal heterogeneity, its cells’ self-radii are uniformly distributed between 0 and             

the size of the cluster, because all its cells are equivalent to each other. We proved this                 

empirically with simulated clusters generated by randomly shuffling gene features within           

each cluster (pink line in Figure 4F). For an under-split cluster, its cells’ self-radii are               

much smaller than the cluster size, indicating it can be potentially further split into              

sub-clusters. We therefore define as the number of cells whose self-radius was ≤    Sunder           

25% of the cluster size normalized by . For an ideal cluster, this score should     C |,| i    C |/4| i         

be 1; for an under-split cluster, it should be greater than 1.  

 

Computational data integration with SingleCellFusion (Figure 4) 

Several computational methods have been proposed for integrating multiple single cell           

sequencing datasets across batches, sequencing technologies, and modalities​(Butler et         

al., 2018; Haghverdi et al., 2018; Hie et al., 2019; Korsunsky et al., 2019; Welch et al.,                 

2019)​. Many of these methods share a basic strategy of identifying neighbor cells             

across datasets. However, existing methods have not been optimized to integrate single            

cells from multiple transcriptomic and epigenomic data modalities, with potentially large           

systematic differences in the features measured for each dataset. Here, we integrated            

the transcriptomes and DNA methylomes of the snmCT-Seq dataset, treating the two            
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data modalities as if they were acquired by two independent single-modality           

experiments in different cells. We developed a new data integration method,           

SingleCellFusion​, for this task (available at:      

https://github.com/mukamel-lab/SingleCellFusion)​, which is based on finding k-partners,       

i.e. nearest neighbors across data modalities (see previous section). Nearest neighbor           

based data integration has been successfully applied to combine multiple RNA-Seq           

datasets ​(Haghverdi et al., 2018; Hie et al., 2019)​, while other approaches including             

canonical correlation analysis (CCA) and non-negative matrix factorization (NMF) have          

previously been used for integrating transcriptomic and epigenomic data ​(Butler et al.,            

2018; Welch et al., 2019)​. Single Cell Fusion is designed to robustly integrate DNA              

methylation, ATAC-Seq and/or RNA-Seq data. The procedure comprises 4 major steps:           

preprocessing: within-modality smoothing, cross-modality imputation, and clustering and        

visualization. 

 

1. Preprocessing. ​We define a gene-by-cell feature matrix for both transcriptomes          

and epigenomes. Transcriptomic features are log ​10​(TPM+1) normalized. DNA        

methylation data is represented by the mean gene body mCH level, normalized            

by the global (genome-wide) mean mCH level for each cell. We select genes with              

significantly correlated gene body mCH and RNA expression (FDR < 0.05)           

across neuronal cells as features (n=5,107 genes).  

2. Within-modality smoothing. ​To reduce the sparsity and noise of feature          

matrices, we share information among cells with similar profiles using data           
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diffusion ​(van Dijk et al., 2018)​. First, we generate a kNN graph of cells based on                

Euclidean distances in PC space [ndim = 50, k=30]. We next construct a sparse              

weighted adjacency matrix . We first apply a Gaussian kernel on the distance   A           

between cell i and cell j: , where is the distance to the      (− /σ )A(1)
ij ∝ exp dij

2
i
2   σi       

-th [ =5] nearest neighbor of cell i. We set diagonal elements to zero,ka  ka             

, and also set all elements to zero if they are not part of the kNN. WeA(1)
ii = 0                  

then symmetrize the matrix, , and normalize each row:    A(2)
 = A(1) + A(1)T      

, where . Finally, we reweight the adjacency matrix with/aA(3)
ij = A(2)

i   ai = ∑
 

j
A(2)

ij         

a parameter, , that explicitly controls the relative contribution of diagonal and  p           

non-diagonal elements: , where is the identity matrix. We   IA = p + (1 ) A− p (3) 
  I       

chose p=0.9 for DNA methylation; p=0.7 for RNA. Finally, we smooth the raw             

feature matrix by matrix multiplication with the adjacency matrix. 

3. Cross-modality imputation by Restricted k-Partners (RKP)​. Each cell has a          

set of measured features in one data modality (RNA or mC), which we call the               

“source modality.” The goal of this step of the analysis is to impute the missing               

features from the other data type, called the “target modality.” For each cell in the               

source modality, we select a set of k-partners in the target modality and use the               

average of the k-partners’ features to estimate the missing modality for the            

original cell. However, care must be taken to avoid hub cells in the target              

modality which form k-partner relationships with a large fraction of all cells in the              

source modality. One way to avoid hub cells is by including only mutual nearest              
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neighbors (MNN) ​(Haghverdi et al., 2018)​. We developed an alternative          

approach, restricted k-partners (RKP), that efficiently finds a set of k-partners for            

every source modality cell, while ensuring that every target-modality cell is           

connected with a roughly equal number of source modality cells. 

As above, we first reduce the dimensionality of both source and target            

data matrices by canonical correlation analysis, retaining the top 50 canonical           

components. We then iterate over all cells in the source modality (in random             

order) k times, connecting each with its most similar partner cell in the target              

modality. Whenever a target modality cell is partnered with more than source           k′   

modality cells, we remove it from the pool of eligible target cells so that it will not                 

be the partner of additional source cells. We set , where          z k N /N  ]k′ = [ source target +   

and is a relaxation parameter that determines how much variability in the z ≥ 1             

number of partners is allowed across target modality cells and is the ceiling          ][ +     

function. If then every target cell will be connected to exactly or  z = 1           k′   k′ − 1  

cells. We set , meaning that any individual target modality cell can have at   z = 3            

most 3 times as many partners as the average. This algorithm is efficient and, in               

our analyses, provides robust k-partner graphs for cross-modality data         

imputation. 

Having determined each source cell’s restricted k-partners, we next         

impute the target features by averaging over the smoothed feature vectors of            

each cell’s k-partners. 
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4. Clustering and visualization. After imputation, we cluster and visualize cells          

from the 2 data modalities as if they are from the same dataset. We reduce               

dimensionality for all cells and each set of features (features of each modality) by              

performing PCA, keeping the top 50 PCs. To balance the contributions of each             

modality, we divide the features in each modality by their total standard deviation.             

We concatenate PC matrices as the final feature matrix for downstream           

embedding and clustering. Next, we perform UMAP embedding ​(Haghverdi et al.,           

2018) on the PC matrix [n_neighbors=60, min_dist=0.5]. Finally, we perform          

Leiden clustering (Traag ​(Haghverdi et al., 2018) on the kNN graph           

(symmetrized, unweighted) generated from the final PC matrix [Euclidean         

distance, k=30, resolution=0.8, 1, 2, 4]. 

 

LIGER integration (Figure S4) 

The LIGER integration was performed largely per the recommended         

RNA-to-methylation integration pipeline. A LIGER object was created for the          

transcriptome and methylome data from each snmC2T-seq profiled cell, and 5,145           

RNA-mCH coupled genes (see ​Correlation analysis of RNA expression and gene           

body DNA methylation​). Transcriptome data was normalized per LIGER’s default          

function, and mCH was scaled to the maximum. For the non-negative matrix            

factorization 20 factors (k) were selected with a penalization of 5 (lambda). The data              

was quantile normalized and a UMAP embedding was generated on the factors. 
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Correlation analysis of RNA expression and gene body DNA methylation (Figure           

5) 

For each gene, we compute the Spearman correlation coefficient between RNA           

expression (log ​10​(TPM+1)) and gene body mCH (raw mCH level normalized by global            

mCH of each cell) over all neurons or over a subset of cells. To know if a correlation is                   

statistically significant, we randomly shuffled cell labels to generate an empirical null            

distribution. Significantly correlated genes are defined with empirical FDR < 0.05.           

Applying this method to 3,898 neurons in snmC2T-Seq dataset, we get 5,145 genes             

with significant negative correlation between RNA and mCH (RNA-mCH coupled). 

 

Eta Squared of Genes Across Clusters (Figure 5) 

For each gene used for correlation analysis we compute the across neuronal sub          η2     

clusters (n=52) generated from ensemble methylomes (Fig. 2) for both RNA           

(log ​10​(TPM+1)) and gene body mCH (normalized by global mCH of each cell) signals.             

We also compute  across 10X RNA-seq clusters for the same genes.η2   

 

H3K27me3 ChIP-Seq data processing (Figure 5) 

We downloaded published H3K27me3 ChIP-Seq data of purified excitatory and          

inhibitory neurons from human prefrontal cortex ​(Kozlenkov et al., 2018)​. We calculated            

the average ChIP-Seq signal intensity (RPKM) across the gene body for excitatory and             

inhibitory neurons. 
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Cell type dendrogram and sub-cluster merge along the lineage (Figure 6)  

The cell-type hierarchy of inhibitory and excitatory cells were calculated separately           

using the concatenated PCs from mCG and mCH as the features used for computing              

cluster centroids. We used ​scipy.cluster.hierarchy.linkage function to calculate the ward          

linkage. Based on the linkage results, we merged the CpG sites from single-cell ALLC              

files in 2 steps: 1) we merged the single-cell ALLC files into each of the sub-clusters, 2)                 

we then merge the sub-clusters into all nodes appeared in the dendrograms. The             

merged CpG ALLC files are then used in the lineage-DMR analysis. 

 

Neural lineage specific DMR calling and motif enrichment analysis (Figure 6)  

We used the ​methylpy findDMR function ​(Schultz et al., 2015) to identify mCG             

lineage-DMRs for each pair of lineages using merged ALLC files. The DMRs identified             

by methylpy in each branch comparison is further filtered by mCG rate difference > 0.3               

and the number of differentially methylated sites (DMS) >= 2. Lineage pairs with >10 ​4              

DMRs identified were used for motif enrichment analysis and TF marker identification.            

For each of these DMR sets, we use AME ​(McLeay and Bailey, 2010) to perform motif                

enrichment (fisher’s exact test) analysis with the motifs’ Position Weight Matrix (PWM)            

from the JASPAR database (JASPAR2018 CORE Vertebrates) ​(Khan et al., 2018)​. The            

DMRs are length standardized into ±250bp of region center before motif scanning.            

Tissue-specific DMRs (without brain tissue, and standardized in the same way) from the             

Roadmap Epigenomics project ​(Roadmap Epigenomics Consortium et al., 2015;         

Schultz et al., 2015) ​ were used as the background. 
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TF binding preference to methylated motifs (Figure 6)  

To further investigate the methylation level impact on the potential TF binding sites, we              

selected all the mCG DMSs ±25bp regions from the branch-DMRs and ran motif             

enrichment using motifs identified from the methyl-SELEX experiment ​(Yin et al., 2017)​.            

In each branch pair, we used the left-DMSs as the background of right-DMS to find the                

right-branch-specific motif and vise Versa. The significant enriched “TF motif - branch”            

combinations were then intersected with the corresponding branch pair’s DEG and           

DMG list to infer their gene mCH or RNA specificity. 

 

Chromatin accessibility (NOMe-seq) analysis of TF binding motifs (Figure 6H-M) 

Genome-wide sites matching TF binding motifs (motif matches) identified by          

methyl-SELEX ​(Yin et al., 2017) was identified using FIMO 4.11.4 ​(Grant et al., 2011)              

with the following parameters --max-stored-scores 500000 --max-strand --thresh 1e-5.         

Methyl-SELEX only quantified the effect of CpG methylation on TF binding. Therefore            

only genomics sites containing CG dinucleotides were selected for further analyses. As            

discussed above, we found the local density of methylated GmCY sites (normalized            

GmCY level > 2.5 compared to the surrounding 100kb region) as a reliable marker of               

chromatin accessibility. For each major cell type, the density of GmCY sites was             

quantified for motif matches that overlap with hypomethylated or hypermethylated          

DMRs. Figure 6H shows the average chromatin accessibility at motif matches across            

major cell types. TF binding motifs were ranked by the difference of chromatin             
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accessibility between motif matches located in hypomethylated and hypermethylated         

DMRs. To test the enrichment of MethylPlus and MethylMinus TFs, the ranked motif list              

was divided into 5 bins and the enrichment or depletion in each bin was tested using                

Matlab ​hygecdf​ function.  

 

Partitioned heritability analysis (Figure 7) 

Bulk human fetal frontal cortex methylomes from a PCW 20 donor ​(Lister et al., 2013)               

and a PCW 19 donor ​(Luo et al., 2016) were previously published. Fetal frontal cortex               

DMRs were identified using ​methylpy findDMR function ​(Schultz et al., 2015) by            

comparing to adult bulk neuronal (NeuN+) and non-neuronal (NeuN-) methylomes          

(Lister et al., 2013)​. Fetal brain Dnase-seq samples included fetal day 85d            

(GSM595922, GSM595923), 96d (GSM595926, GSM595928), 101d (GSM878650),       

104d (GSM878651), 105d (GSM1027328), 109d (GSM878652), 112d (GSM665804),        

117d (GSM595920) and 142d (GSM665819). Mapped reads files (BED format) were           

downloaded followed by DNase-seq peak calling using MACS2 2.0.10 with q-value <            

0.01. Fetal brain DNase-seq peaks were defined as the union DNase-seq peaks of fetal              

brain DNase-seq datasets and were supported by at least two samples. 

Summary statistics were downloaded from the Psychiatric Genomics Consortium         

portal ( ​https://www.med.unc.edu/pgc/​) for neuropsychiatric trait GWAS - ADHD ​(Martin         

et al., 2018) ​, Aggression ​(Pappa et al., 2016)​, Anorexia nervosa ​(Watson et al., 2019)​,              

Anxiety ​(Otowa et al., 2016)​, ASD ​(Grove et al., 2019)​, Bipolar ​(Stahl et al., 2019)​,               

Cognitive Performance ​(Rietveld et al., 2013)​, Educational Attainment ​(Rietveld et al.,           

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.873398doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.873398


 

2013)​, Alzheimer’s ​(Lambert et al., 2013)​, Internalizing, Loneliness ​(Gao et al., 2017)​,            

Major Depression ​(Wray et al., 2018) ​, Neuroticism ​(Smith et al., 2016)​, OCD            

(Mattheisen et al., 2015)​, Schizophrenia (PGC2) ​(Schizophrenia Working Group of the           

Psychiatric Genomics Consortium, 2014) and Schizophrenia (PGC1) ​(Ripke et al.,          

2013)​.  

The partitioned heritability analysis was performed using LD Score Regression          

(LDSC) Partitioned Heritability ​(Finucane et al., 2015)​. The partitioned heritability          

analysis was performed by constructing joint linear models by providing multiple           

regulatory element annotations in addition to the “baseline” annotation. We built a            

“baseline” annotation using tissue-specific DMRs from non-brain human tissues         

(Schultz et al., 2015) to control for generic gene regulation characteristics. The reported             

q-values were derived from the “ ​Coefficient_z.score​” values reported by LDSC          

Partitioned Heritability.  

 

FIGURE LEGENDS 

 

Figure 1. snmC2T-seq generates single-nucleus multi-omic profiles of the human          

brain. ( ​A​) Schematic diagram of snmC2T-seq. ( ​B​) Boxplot comparing the number of            

genes detected in each cell/nucleus by different single-cell or single-nucleus RNA-seq           

technologies. ( ​C​) Boxplot comparing the genome coverage of single-nucleus         

methylome between snmC2T-seq and snmC-seq. ( ​D​) UMAP embedding of human          

frontal cortex snmC2T-seq profiles. ( ​E​) UMAP embedding of transcriptome, methylome          
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and chromatin accessibility profiled by snmC2T-seq for ​ADARB2 ​. From left to right, the             

cells are colored by gene expression (CPM, counts per million), non-CG DNA            

methylation (HmCH ratio normalized per cell) and chromatin accessibility (MAGIC          

imputed GmCY ratio, see methods). ( ​F​) Comparison of marker gene expression           

between clusters identified using snmC2T-seq and matching clusters identified using          

snRNA-seq. The matching clusters were merged from original snRNA-seq clusters          

based on cell integration and label transfer (see methods). Dot sizes represent the             

fraction of cells with detected gene expression. Dot colors represent the mean            

expression level across the cells with detected gene expression. ( ​G​) UMAP embedding            

of snmC2T-seq transcriptome and snRNA-seq cells after integration. ( ​H​) Confusion          

matrix comparing snmC2T-seq clusters to snRNA-seq clusters. The plot is colored by            

overlapping scores between clusters. ( ​I​) Comparison of marker gene non-CG          

methylation (HmCH) between clusters identified using snmC2T-seq and matching         

clusters identified using snmC-seq. Dot sizes represent the mean cytosine coverage per            

cell. Dot colors represent the mean HmCH ratio. *For non-neuronal cell markers, gene             

body CG methylation (HmCG) levels were compared between snmC2T-seq and          

snmC-seq. ( ​J​) Comparison of chromatin accessibility profiled by snmC2T-seq and          

snATAC-seq at cell-type-specific open chromatin sites. The left and right heatmaps           

show the density of methylated GCY sites and the density of ATAC-seq reads,             

respectively.  
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Figure 2. Integrated epigenomic atlas of the human frontal cortex. ​( ​A​) Methylome            

based technologies and datasets included in the integrative analysis. ( ​B​) Sunburst           

visualization of the two-level methylome ensemble clustering analysis. The 4 cell           

classes (inmost ring) and 20 major cell types (middle ring and outer annotation) are              

identified in level 1 analysis, the 63 subtypes are identified in level 2 analysis. ( ​C​) UMAP                

embedding of 15,030 cells colored and labeled by major cell types from level 1 analysis.               

Several examples of level 2 analysis are shown in insets with UMAP colored and              

labeled by subtypes. ( ​D​) Donor (left) and technology (middle) composition and cell            

count (right) of each major cell type. ( ​E​) Browser views of multi-modal data integration              

for ​ADARB2 and ​MEF2C gene in four major cell types. ( ​F​) UMAP embedding of the               

cross-modality integration of snmC2T-seq methylome and snATAC-seq profiles. The left          

panel is colored and labeled by level 1 major cell types; the right panel is color and                 

labeled by the technologies. 

 

Figure 3. snmC2T-seq identifies RNA and mC signatures of neuronal subtypes.           

( ​A-B​) UMAP embedding of snmC2T-seq transcriptome and snRNA-seq for all the           

inhibitory neurons after MNN-based integration with the cells colored by technology (A)            

and joint clusters (B). ( ​C​) The composition of cells profiled by snmC2T-seq and             

snATAC-seq in inhibitory neurons joint clusters (same cluster IDs as shown in (B)). The              

upper and lower bar plots show the counts and portion of cells profiled by the two                

technologies in each joint cluster, respectively. ( ​D​) Normalized expression and gene           

body mCH rate of inhibitory neuron subtype marker genes quantified using snmC2T-seq            
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transcriptome and snRNA-seq. ( ​E-F​) Sunburst visualization of inhibitory cell type marker           

genes enrichment in SynGO biological process terms. Each sector is a SynGO term             

colored by -log10(adjusted P-value) of snmC2T-seq transcriptome marker genes (E) or           

snRNA-seq marker genes (F) enrichment.  

 

Figure 4. Integrative analysis of RNA and mC features cross-validates neuronal           

cell clusters. ​( ​A​) Schematic diagram of the cluster cross-validation strategy using           

matched single-cell methylome and transcriptome profiles. ( ​B-C​) Mean squared error          

(MSE) between RNA expression profile (B) or mCH (C) of individual cells and cluster              

centroids were plotted as a function of the number of clusters. The points of minimum               

MSE and minimum MSE + 1 standard error are indicated by arrows. Cross-validation             

analysis was performed in reciprocal directions by performing Leiden clustering using           

mC (B) or RNA (C) profiles followed by cross-validation using the matched RNA (B) and               

mC (C) data, respectively. ( ​D​) Schematic diagram of the over- and under-splitting            

analysis using matched single-cell methylome and transcriptome profiles. ( ​E​)         

Over-splitting of mC-defined clusters were quantified by the fraction of cross-modal           

k​-partners found in the same cluster defined by RNA. Shades indicate confidence            

intervals of the mean. ( ​F​) Under-splitting of clusters was quantified as the cumulative             

distribution function of normalized self-radius. ( ​G​) Scatter plot of over-splitting (S​over​) and            

under-splitting (S​under​) scores for all neuronal clusters. Dot sizes represent cluster size.            

The actual data trend shows a linearly regressed line on both major clusters and sub               

clusters. ( ​H​) Joint UMAP visualization of snmC2T-seq transcriptome and methylome by           
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computational integration using the SingleCellFusion method, assuming snmC2T-Seq        

transcriptomes and methylome were derived from independent datasets. ( ​I​) Accuracy of           

computational integration determined by the fraction of cells with matched transcriptome           

and epigenome profile grouped in the same cluster. ( ​J​) Confusion matrix normalized by             

each row. Each row shows the fraction of cells from each joint cluster that are from each                 

cluster defined in Fig 2. Transcriptomes and DNA methylomes are quantified           

separately. 

 

Figure 5. Single-cell correlation analysis of RNA expression and gene body           

non-CG methylation. ​( ​A​) Scatter plots of gene body mCH (normalized by the global             

mean mCH of each cell) and gene expression (log ​10​(TPM+1)) of example genes            

(KCNIP4, ADARB2, GPC5) across all neuronal cells. Cells are colored by major cell             

types defined in Figure 2. The spearman correlation coefficient (r) is shown for each              

example gene. ( ​B​) Distribution of Spearman correlation coefficient between gene          

expression and gene body mCH. Blue represents the actual distribution; Gray           

represents the distribution with randomly shuffled cell labels. ( ​C-E​) Scatter plot of            

correlation coefficient of gene body mCH and RNA versus the fraction of variance             

explained by cell type ( ) from 3 different datasets/features: snmC2T-Seq mCH,    η2        

snmC2T-Seq RNA, and snRNA-Seq. ( ​F) ​Line plot of mean relative expression over            

developmental time points with 2 different gene groups (mCH-RNA coupled in blue;            

mCH-RNA uncoupled in orange). Relative expression level is defined as the           

log2(RPKM) minus mean log2(RPKM) over all time points for each gene. ( ​G​) Barplot of              
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the number of genes (protein-coding) in each of the 4 categories according to whether              

it’s developmentally up- or down- regulated, and whether its mCH-RNA is coupled or             

not. ( ​H ​) Left: Line plots of mean relative expression level over developmental time             

points for 5 gene bins. Genes are binned by gene expression ratio between early fetal               

(PCW 8-9) and adult (>2 yrs). Right: boxplot of TSS H3K27me3 signals at each of the 5                 

gene bins. ( ​I​) Scatter plot of Spearman correlation of gene body mCH and gene              

expression versus the mean H3K27me3 signal in neurons at gene body level. The             

H3K27me3 ChIP-seq data is from purified Glutamatergic and GABAergic neurons from           

human frontal cortex ( ​Kozlenkov et al, 2018). ( ​J​) Genome browser track visualization of             

CBLN2 and CDC27. ( ​K​) Gene level signal of CBLN2 and CDC27: scatter plot of              

normalized gene body mCH versus gene expression for all neuronal cells. Raw mCH             

level is normalized by the global mean mCH level of each cell.  

 

Figure 6. DMR phylogeny and transcription factor hierarchy in the human cortex.            

( ​A​) Inhibitory neuron subtype dendrogram. The node size represents the number of            

DMRs detected between the left and right branches. Nodes corresponding to known            

inhibitory cell type groups are annotated in the dendrogram. ( ​B​) Schematics of the three              

levels of molecular information we use to identify candidate TF related to the specific              

lineage. ( ​C​) The workflow of TF analysis using the NFI family as an example. Three               

kinds of information are gathered for each of the TF genes: 1. RNA expression; 2. Gene                

body mCH level; 3. TF motif enrichment in the branch-specific DMR. We create a              

combined dot plot view for all three kinds of information, the genes show lineage              
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specificity in both 1 and 2 are circled by black boxes. ( ​D-E​) The combined dot plot view                 

for TFs showing ChC vs. BC (D) or VIP vs. NDNF (E) specificity in motif enrichment,                

RNA or mCH levels. Colors for every two rows from bottom to top: TF motif enrichment                

log2(fold change), branch mean expression log(1 + CPM), lineage mean gene body            

mCH level. Sizes for every two rows from bottom to top: E-value of the motif enrichment                

test, relative fold change of expression level, relative fold change of mCH level between              

the two branches. Colors for the motif names: TF motif methylation preference            

annotated by methyl-SELEX experiment ​(Yin et al., 2017)​, orange indicate MethylPlus,           

green indicate MethylMinus. ( ​F​) The binding of TFs to hypermethylated regions           

validated by chromatin accessibility measurement using the snmC2T-seq NOMe-seq         

profile. ( ​G-I​) Enrichment or depletion of MethylPlus TFs (G), MethyMinus TFs (H) and             

TFs whose binding motif containing CA dinucleotides (I). ( ​J-L​) Examples of chromatin            

accessibility profiles at the binding motifs of ETV1 (MethylMinus) (J), RARB (motif            

contains CA) (K) and ATF4 (motif contains CA and CG) (L). ( ​M​) Comparison of the               

chromatin accessibility at the binding motifs containing CA or CG dinucleotides.  

 

Figure 7. Identification of brain cell types involved in neuropsychiatric traits.           

( ​A-H​) Partitioned heritability analysis using cell-type specific DMRs (A-D) or ATAC-seq           

peaks (E-H). ( ​I-L​) Partitioned heritability analysis using DMRs stratified for the overlap            

with open chromatin regions.  
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SUPPLEMENTARY FIGURE LEGENDS: 

 

Figure. S1 scmCT-seq and snmCT-seq capture transcriptome and DNA         

methylation signatures of H1 & HEK293 cells. (A-C) Number of detected genes (A),             

percentage of mapped reads that located in exons (B) and mapping rates of methylation              

and RNA reads (C) for scmCT-seq and snmCT-seq. (D-E) Separation of H1 and             

HEK293T cells by tSNE using transcriptome reads extracted from scmCT-seq (D) or            

snmCT-seq (E) datasets. (F) scmCT-seq and snmCT-seq detect genes specifically          

expressed in H1 or HEK293T cells. (G-H) Separation of H1 and HEK293T cells by tSNE               

using DNA methylation information extracted from scmCT-seq (G) or snmCT-seq (H)           

datasets. (I) Browser view of NANOG and CRNDE loci. (J-M) Distribution of mCG and              

mCH levels for single H1 and HEK293 cells/nuclei as determined by scmCT-seq and             

snmCT-seq. (N-O) scmCT-seq and snmCT-seq recapitulate bulk mCG patterns at          

CG-DMRs showing greater mCG levels in HEK293T (N) or H1 (O) cells. 

 

Figure S2. snmC2T-seq generates single-nucleus multi-omic profiles from human         

brain tissues. ​(A) The fraction of total snmC2T-seq reads derived from methylome and             

transcriptome. (B) The fraction of snmC2T-seq transcriptome reads mapped to exons,           

introns or gene bodies. (C) Boxplot comparing the number of reads detected in each              

cell/nucleus by different single-cell or single-nucleus RNA-seq technologies. (D-G)         

snmC2T-seq methylome was compared to other single-cell methylome methods with          

respect to mapping rate (D), library complexity (E), enrichment of CpG islands (F) and              
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coverage uniformity (G). (H-J) UMAP embedding of 4253 snmC2T-seq cells using           

single modality information: transcriptome (H), methylome (mCH and mCG, I) and           

chromatin accessibility (J). (K-L) Pearson correlation of gene expression levels          

quantified by snmC2T-seq transcriptome and snRNA-seq in MGE PVALB (K) and L1-3            

CUX2 (L) cells. (M) Pearson correlation of gene body non-CG methylation quantified            

with snmC2T-seq methylome and snmC-seq for MGE PVALB cells. (N) Pearson           

correlation of CG methylation at DMRs quantified with snmC2T-seq methylome and           

snmC-seq for MGE PVALB cells. (O) Genome-wide methylation level for all           

tri-nucleotide context (-1 to +2 position) surrounding cytosines shows the sequence           

specificity of GpC methyltransferase M.CviPI. (P-Q) Spearman correlation between the          

frequency of methylated GCY sites and ATAC-seq signal at open chromatin sites in             

L1-3 CUX2 (P) and Oligodendrocyte (Q) cells. (R-S) Overlap of open chromatin peaks             

identified by snmC2T-seq and snATAC-seq in L1-3 CUX2 (R) and oligodendrocyte (S)            

cells.  

 

Figure S3 snmC2T-seq recapitulates transcriptome and methylome signatures of         

neuronal subtypes. ​(A) Confusion matrix showing the overlap scores between          

inhibitory subtypes identified by ensemble methylome analysis and snRNA-seq. Known          

inhibitory cell type groups are annotated by boxes. The upper bar plot indicates the              

snRNA-seq cell counts per cluster; the right bar plot indicates the snmC2T-seq cell             

counts per cluster. (B-C) Confusion matrix showing the overlap scores between           

methylome ensemble subtypes and the original snRNA-seq inhibitory clusters for          
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excitatory neuron clusters (B) and non-neuron clusters (C). Known cell type groups are             

annotated by boxes. The upper bar plot annotates the snRNA-seq cell counts per             

cluster, the right bar plot annotates the snmC2T-seq cell counts per cluster. (D-E)             

UMAP embedding of all excitatory neurons profiled by snmC2T-seq and snRNA-seq           

after MNN-based integration, colored by technology (D) and joint clusters (E). Known            

cluster groups are also circled and annotated on UMAP. (F) The composition of cells              

profiled by snmC2T-seq and snATAC-seq in excitatory neurons joint clusters. The upper            

and lower bar plots show the counts and portion of cells profiled by the two technologies                

in each joint cluster, respectively. (G-H) UMAP embedding of all non-neuronal cells from             

snmC2T-seq and snRNA-seq after integration, colored by technology (G) and joint           

clusters (H). (I) The composition of cells profiled by snmC2T-seq and snATAC-seq in             

non-neuronal cell joint clusters.  

 

Figure S4. Evaluation of cluster quality with paired transcriptome and methylome           

profiles. (A) Intra-modality cross-validation of mC- or RNA- defined clusters. Line plots            

show mean squared error (MSE) between single-cell profile and cluster centroid as a             

function of the number of clusters. Black lines indicate training error; purple or orange              

lines indicate test error. Points corresponding to minimum MSE and minimum MSE + 1              

standard error are marked by arrows. For the analysis using snmC2T-seq mC            

information (left panels), gene body mCH profiles of odd (even) chromosomes were            

used for clustering whereas even (odd) chromosomes were used for testing. Similar            

analysis was performed using snmC2T-seq transcriptome information (right panels). (B)          
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Schematic diagram of the over- and under-splitting analysis using matched single-cell           

methylome and transcriptome profiles, complementing Figure 4D. (C) Over-splitting         

quantification of mC-defined major clusters (n=17) and subclusters (n=52) were          

quantified by the fraction of cross-modal neighbors found in the same cluster defined by              

RNA. (D) Under-splitting of clusters was quantified as the cumulative distribution           

function of normalized self-radius for mC-define major clusters and subclusters. For           

(C-D), gray lines represent individual clusters while colored lines represents means and            

confidence intervals. (E) Over-splitting score for each major cluster (in green) and            

associated sub-clusters (in yellow). Dot size of sub clusters represents cluster size            

normalized by the size of their “mother” major cluster. (F) Under-splitting score for each              

major cluster (in green) and associated sub-clusters (in yellow). (G) Joint UMAP            

embedding of snmC2T-seq transcriptome and mC profiles using the LIGER method,           

treating the two data modalities as generated from independent datasets. (H) Barplot            

showing the fraction of cells contributed by each data modality for each integrated             

cluster. (I) Scatter plot showing the fraction of consistent cells and the size of joint               

clusters. (J) Confusion matrix of LIGER cluster versus DNA methylation clusters. Values            

are normalized by each row. 

 

Figure S5. Diverse correlations between gene expression and gene body mCH.  

(A) Schematic diagram of 3 types of genes with different correlation between gene             

expression and DNA methylation. (B) Scatter plots of gene body mCH (unnormalized)            

and gene expression of example genes (KCNIP4, ADARB2, GPC5) across all neuronal            
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cells. Cells are colored by major cell types defined in Figure 2. (C) Contour density plot                

of gene body mCH rank versus gene expression rank for 3 example genes: GPC5,              

KCNIP4, and ADARB2. (D) Contour density plot of delta gene body mCH rank (rank of               

gene body mCH - cluster mean gene body mCH) versus delta gene expression rank              

(rank of gene expression - cluster mean gene expression) for 3 example genes: GPC5,              

KCNIP4, and ADARB2. (E) Venn diagram of 3 gene sets--genes significantly correlated            

between gene body mCH and gene expression called using cells from subject            

UMB5580, subject UMB5577, and from both subjects. (F) Distribution of spearman           

correlation coefficient between gene expression and gene level mCH quantified at gene            

body (red), gene body + 1 kilo-base upstream (blue), + 2 kilo-base upstream (orange)              

and + 4 kilo-base upstream (green). (G) Boxplot of gene length versus uncorrelated and              

correlated genes. (H) Boxplot of mean gene expression log10(TPM+1) versus          

uncorrelated and correlated genes. (I) Gene ontology enrichment of correlated genes.           

(J) Scatter plots comparing the fraction of variance explained by cell type ( ) for each            η2    

gene from different datasets or data modalities: RNA (from snmC2T-Seq), mCH (from            

snmC2T-Seq) and 10X (snRNA-Seq from 10X protocols). (K) Boxplots of the           

distribution of different histone marks at TSS over 5 gene bins grouped according to              

gene expression ratio of early fetal (PCW 8-9) to adult (>2 yrs). 

 

Figure S6. TF binding motif enrichment across human cortical neuronal          

hierarchy. ​(A) Excitatory neuron subtype dendrogram. The node size represents the           

number of DMRs detected between the left and right branches. (B-E) Dot plots view for               
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TFs showing lineage specific motif enrichment, expression and gene body mCH           

between lineages: IT-Deep-LRRK1 vs IT-Deep-MIX (B); IT-Deep-PDZRN4 vs IT-Sup         

(C); IT vs CT-NP (D); CT vs NP (E). Colors for every two rows from bottom to top:                  

lineage mean gene body mCH level, lineage mean expression log(1 + CPM), TF motif              

enrichment log2(fold change). Sizes for every two rows from bottom to top: relative fold              

change of mCH level from this branch to the other, relative fold change of expression               

level, E-value of the motif enrichment test. Colors for the motif names: TF motif              

methylation preference annotated by methyl-SELEX experiment ​(Yin et al., 2017)​,          

orange indicate MethylPlus, green indicate MethylMinus. (F-I) Dot plot view for TFs            

showing lineage specific motif enrichment, expression and gene body mCH between           

CGE vs. MGE (F), CALB1 vs. B3GAT2 (G), VIP/NDNF vs. LAMP5 (H) and Rosehip vs               

LAMP5-LHX6 (D). 

 

Figure S7. Prediction of causal cell types for neuropsychiatric traits using           

partitioned heritability analysis. (A) Partitioned heritability analysis using adult brain          

cell-type specific DMRs and bulk tissue DMRs for fetal cortex, adult NeuN+ population,             

adult NeuN- population and non-brain tissues. (B) Partitioned heritability analysis using           

adult brain cell-type specific ATAC-seq peaks and fetal brain DNase-seq peaks. (C-H)            

CG methylation and chromatin accessibility profiles at adult brain regulatory elements           

[DMR (ATAC-pos)] and vestigial enhancers. (I-L) Partitioned heritability analysis         

comparing adult regulatory elements and [DMR (ATAC-pos)] and vestigial enhancers.  
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SUPPLEMENTARY TABLES 

 

Table S1.​ Metadata for scmCT-seq data generated from H1 and HEK293 cells 

Table S2.​ Metadata for snmCT-seq data generated from H1 and HEK293 cells 

Table S3.​ Metadata for human brain specimens 

Table S4.​ Metadata for snmC2T-seq data generated from human brain frontal cortex 

Table S5.​ Cluster labels of the snRNA-seq dataset 

Table S6.​ Cluster labels of single-cell methylomes 

Table S7.​ Cluster labels of the snATAC-seq dataset 

Table S8.​ Marker genes of brain cell types identified using gene body mCH 

Table S9.​ Differentially methylated regions (DMRs) of major brain cell types 

Table S10.​ ATAC-seq peaks of major brain cell types 
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Figure 1. snmC2T-seq generates single-nucleus multi-omic profiles of the human brain. (A) 
Schematic diagram of snmC2T-seq. (B) Boxplot comparing the number of genes detected in each 
cell/nucleus by different single-cell or single-nucleus RNA-seq technologies. (C) Boxplot comparing the 
genome coverage of single-nucleus methylome between snmC2T-seq and snmC-seq. (D) UMAP 
embedding of human frontal cortex snmC2T-seq profiles. (E) UMAP embedding of transcriptome, meth-
ylome and chromatin accessibility profiled by snmC2T-seq for ADARB2. From left to right, the cells are 
colored by gene expression (CPM, counts per million), non-CG DNA methylation (HmCH ratio normal-
ized per cell) and chromatin accessibility (MAGIC imputed GmCY ratio, see methods). (F) Comparison 
of marker gene expression between clusters identified using snmC2T-seq and matching clusters identi-
fied using snRNA-seq. The matching clusters were merged from original snRNA-seq clusters based on 
cell integration and label transfer (see methods). Dot sizes represent the fraction of cells with detected 
gene expression. Dot colors represent the mean expression level across the cells with detected gene 
expression. (G) UMAP embedding of snmC2T-seq transcriptome and snRNA-seq cells after integration. 
(H) Confusion matrix comparing snmC2T-seq clusters to snRNA-seq clusters. The plot is colored by 
overlapping scores between clusters. (I) Comparison of marker gene non-CG methylation (HmCH) 
between clusters identified using snmC2T-seq and matching clusters identified using snmC-seq. Dot 
sizes represent the mean cytosine coverage per cell. Dot colors represent the mean HmCH ratio. *For 
non-neuronal cell markers, gene body CG methylation (HmCG) levels were compared between 
snmC2T-seq and snmC-seq. (J) Comparison of chromatin accessibility profiled by snmC2T-seq and 
snATAC-seq at cell-type specific open chromatin sites. The left and right heatmaps show the density of 
methylated GCY sites and the density of ATAC-seq reads, respectively. 
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Figure 2. Integrated epigenomic atlas of the human frontal cortex. (A) Methylome based technolo-
gies and datasets included in the integrative analysis. (B) Sunburst visualization of the two-level methy-
lome ensemble clustering analysis. The 4 cell classes (inmost ring) and 20 major cell types (middle ring 
and outer annotation) are identified in level 1 analysis, the 63 subtypes are identified in level 2 analysis. 
(C) UMAP embedding of 15,030 cells colored and labeled by major cell types from level 1 analysis. Sev-
eral examples of level 2 analysis are shown in insets with UMAP colored and labeled by subtypes. (D) 
Donor (left) and technology (middle) composition and cell count (right) of each major cell type. (E) Brows-
er views of multi-modal data integration for ADARB2 and MEF2C gene in four major cell types. (F) UMAP 
embedding of the cross-modality integration of snmC2T-seq methylome and snATAC-seq profiles. The left 
panel is colored and labeled by level 1 major cell types; the right panel is color and labeled by the tech-
nologies.
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Figure 3. snmC2T-seq identifies RNA and mC signatures of neuronal subtypes. (A-B) UMAP embed-
ding of snmC2T-seq transcriptome and snRNA-seq for all the inhibitory neurons after MNN-based integra-
tion with the cells colored by technology (A) and joint clusters (B). (C) The composition of cells profiled by 
snmC2T-seq and snATAC-seq in inhibitory neurons joint clusters (same cluster IDs as shown in (B)). The 
upper and lower bar plots show the counts and portion of cells profiled by the two technologies in each joint 
cluster, respectively. (D) Normalized expression and gene body mCH rate of inhibitory neuron subtype 
marker genes quantified using snmC2T-seq transcriptome and snRNA-seq. (E-F) Sunburst visualization of 
inhibitory cell type marker genes enrichment in SynGO biological process terms. Each sector is a SynGO 
term colored by -log10(adjusted P-value) of snmC2T-seq transcriptome marker genes (E) or snRNA-seq 
marker genes (F) enrichment. 
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Figure 4. Integrative analysis of RNA and mC features cross-validates neuronal cell clusters. (A) 
Schematic diagram of the cluster cross-validation strategy using matched single-cell methylome and 
transcriptome profiles. (B-C) Mean squared error (MSE) between RNA expression profile (B) or mCH (C) 
of individual cells and cluster centroids were plotted as a function of the number of clusters. The points of 
minimum MSE and minimum MSE + 1 standard error are indicated by arrows. Cross-validation analysis 
was performed in reciprocal directions by performing Leiden clustering using mC (B) or RNA (C) profiles 
followed by cross-validation using the matched RNA (B) and mC (C) data, respectively. (D) Schematic 
diagram of the over- and under-splitting analysis using matched single-cell methylome and transcriptome 
profiles. (E) Over-splitting of mC-defined clusters were quantified by the fraction of cross-modal k-partners 
found in the same cluster defined by RNA. Shades indicate confidence intervals of the mean. (F) 
Under-splitting of clusters was quantified as the cumulative distribution function of normalized self-radius. 
(G) Scatter plot of over-splitting (Sover) and under-splitting (Sunder) scores for all neuronal clusters. Dot 
sizes represent cluster size. The actual data trend shows a linearly regressed line on both major clusters 
and sub clusters. (H) Joint UMAP visualization of snmC2T-seq transcriptome and methylome by computa-
tional integration using the SingleCellFusion method, assuming snmC2T-Seq transcriptomes and methy-
lome were derived from independent datasets. (I) Accuracy of computational integration determined by 
the fraction of cells with matched transcriptome and epigenome profile grouped in the same cluster. (J) 
Confusion matrix normalized by each row. Each row shows the fraction of cells from each joint cluster that 
are from each cluster defined in Fig 2. Transcriptomes and DNA methylomes are quantified separately.
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Figure 5. Single-cell correlation analysis of RNA expression and gene body non-CG methylation. 
(A) Scatter plots of gene body mCH (normalized by the global mean mCH of each cell) and gene 
expression (log10(TPM+1)) of example genes (KCNIP4, ADARB2, GPC5) across all neuronal cells. 
Cells are colored by major cell types defined in Figure 2. The spearman correlation coefficient (r) is 
shown for each example gene. (B) Distribution of Spearman correlation coefficient between gene 
expression and gene body mCH. Blue represents the actual distribution; Gray represents the distribu-
tion with randomly shuffled cell labels. (C-E) Scatter plot of correlation coefficient of gene body mCH 
and RNA versus the fraction of variance explained by cell type (2) from 3 different datasets/features: 
snmC2T-Seq mCH, snmC2T-Seq RNA, and snRNA-Seq. (F) Line plot of mean relative expression over 
developmental time points with 2 different gene groups (mCH-RNA coupled in blue; mCH-RNA uncou-
pled in orange). Relative expression level is defined as the log2(RPKM) minus mean log2(RPKM) over 
all time points for each gene. (G) Barplot of the number of genes (protein-coding) in each of the 4 
categories according to whether it’s developmentally up- or down- regulated, and whether its mCH-RNA 
is coupled or not. (H) Left: Line plots of mean relative expression level over developmental time points 
for 5 gene bins. Genes are binned by gene expression ratio between early fetal (PCW 8-9) and adult 
(>2 yrs). Right: boxplot of TSS H3K27me3 signals at each of the 5 gene bins. (I) Scatter plot of Spear-
man correlation of gene body mCH and gene expression versus the mean H3K27me3 signal in neu-
rons at gene body level. The H3K27me3 ChIP-seq data is from purified Glutamatergic and GABAergic 
neurons from human frontal cortex (Kozlenkov et al, 2018). (J) Genome browser track visualization of 
CBLN2 and CDC27. (K) Gene level signal of CBLN2 and CDC27: scatter plot of normalized gene body 
mCH versus gene expression for all neuronal cells. Raw mCH level is normalized by the global mean 
mCH level of each cell. 
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Figure 6. DMR phylogeny and transcription factor hierarchy in the human cortex. (A) Inhibitory 
neuron subtype dendrogram. The node size represents the number of DMRs detected between the left 
and right branches. Nodes corresponding to known inhibitory cell type groups are annotated in the 
dendrogram. (B) Schematics of the three levels of molecular information we use to identify candidate 
TF related to the specific lineage. (C) The workflow of TF analysis using the NFI family as an example. 
Three kinds of information are gathered for each of the TF genes: 1. RNA expression; 2. Gene body 
mCH level; 3. TF motif enrichment in the branch-specific DMR. We create a combined dot plot view for 
all three kinds of information, the genes show lineage specificity in both 1 and 2 are circled by black 
boxes. (D-E) The combined dot plot view for TFs showing ChC vs. BC (D) or VIP vs. NDNF (E) specific-
ity in motif enrichment, RNA or mCH levels. Colors for every two rows from bottom to top: TF motif 
enrichment log2(fold change), branch mean expression log(1 + CPM), lineage mean gene body mCH 
level. Sizes for every two rows from bottom to top: E-value of the motif enrichment test, relative fold 
change of expression level, relative fold change of mCH level between the two branches. Colors for the 
motif names: TF motif methylation preference annotated by methyl-SELEX experiment (Yin et al., 
2017), orange indicate MethylPlus, green indicate MethylMinus. (F) The binding of TFs to hypermethyl-
ated regions validated by chromatin accessibility measurement using the snmC2T-seq NOMe-seq 
profile. (G-I) Enrichment or depletion of MethylPlus TFs (G), MethyMinus TFs (H) and TFs whose bind-
ing motif containing CA dinucleotides (I). (J-L) Examples of chromatin accessibility profiles at the bind-
ing motifs of ETV1 (MethylMinus) (J), RARB (motif contains CA) (K) and ATF4 (motif contains CA and 
CG) (L). (M) Comparison of the chromatin accessibility at the binding motifs containing CA or CG dinu-
cleotides. 
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Figure 7. Identification of brain cell types involved in neuropsychiatric traits. (A-H) Partitioned heritabil-
ity analysis using cell-type specific DMRs (A-D) or ATAC-seq peaks (E-H). (I-L) Partitioned heritability analy-
sis using DMRs stratified for the overlap with open chromatin regions. 
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Figure. S1 scmCT-seq and snmCT-seq capture transcriptome and DNA methylation signatures of 
H1 & HEK293 cells. (A-C) Number of detected genes (A), percentage of mapped reads that located in 
exons (B) and mapping rates of methylation and RNA reads (C) for scmCT-seq and snmCT-seq. (D-E) 
Separation of H1 and HEK293T cells by tSNE using transcriptome reads extracted from scmCT-seq (D) 
or snmCT-seq (E) datasets. (F) scmCT-seq and snmCT-seq detect genes specifically expressed in H1 
or HEK293T cells. (G-H) Separation of H1 and HEK293T cells by tSNE using DNA methylation informa-
tion extracted from scmCT-seq (G) or snmCT-seq (H) datasets. (I) Browser view of NANOG and 
CRNDE loci. (J-M) Distribution of mCG and mCH levels for single H1 and HEK293 cells/nuclei as deter-
mined by scmCT-seq and snmCT-seq. (N-O) scmCT-seq and snmCT-seq recapitulate bulk mCG 
patterns at CG-DMRs showing greater mCG levels in HEK293T (N) or H1 (O) cells.
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Figure S2. snmC2T-seq generates single-nucleus multi-omic profiles from human brain tissues. 
(A) The fraction of total snmC2T-seq reads derived from methylome and transcriptome. (B) The fraction 
of snmC2T-seq transcriptome reads mapped to exons, introns or gene bodies. (C) Boxplot comparing 
the number of reads detected in each cell/nucleus by different single-cell or single-nucleus RNA-seq 
technologies. (D-G) snmC2T-seq methylome was compared to other single-cell methylome methods 
with respect to mapping rate (D), library complexity (E), enrichment of CpG islands (F) and coverage 
uniformity (G). (H-J) UMAP embedding of 4253 snmC2T-seq cells using single modality information: 
transcriptome (H), methylome (mCH and mCG, I) and chromatin accessibility (J). (K-L) Pearson correla-
tion of gene expression levels quantified by snmC2T-seq transcriptome and snRNA-seq in MGE PVALB 
(K) and L1-3 CUX2 (L) cells. (M) Pearson correlation of gene body non-CG methylation quantified with 
snmC2T-seq methylome and snmC-seq for MGE PVALB cells. (N) Pearson correlation of CG methyla-
tion at DMRs quantified with snmC2T-seq methylome and snmC-seq for MGE PVALB cells. (O) 
Genome-wide methylation level for all tri-nucleotide context (-1 to +2 position) surrounding cytosines 
shows the sequence specificity of GpC methyltransferase M.CviPI. (P-Q) Spearman correlation between 
the frequency of methylated GCY sites and ATAC-seq signal at open chromatin sites in L1-3 CUX2 (P) 
and Oligodendrocyte (Q) cells. (R-S) Overlap of open chromatin peaks identified by snmC2T-seq and 
snATAC-seq in L1-3 CUX2 (R) and oligodendrocyte (S) cells. 
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Figure S3 snmC2T-seq recapitulates transcriptome and methylome signatures of neuronal sub-
types. (A) Confusion matrix showing the overlap scores between inhibitory subtypes identified by 
ensemble methylome analysis and snRNA-seq. Known inhibitory cell type groups are annotated by 
boxes. The upper bar plot indicates the snRNA-seq cell counts per cluster; the right bar plot indicates 
the snmC2T-seq cell counts per cluster. (B-C) Confusion matrix showing the overlap scores between 
methylome ensemble subtypes and the original snRNA-seq inhibitory clusters for excitatory neuron 
clusters (B) and non-neuron clusters (C). Known cell type groups are annotated by boxes. The upper 
bar plot annotates the snRNA-seq cell counts per cluster, the right bar plot annotates the snmC2T-seq 
cell counts per cluster. (D-E) UMAP embedding of all excitatory neurons profiled by snmC2T-seq and 
snRNA-seq after MNN-based integration, colored by technology (D) and joint clusters (E). Known clus-
ter groups are also circled and annotated on UMAP. (F) The composition of cells profiled by 
snmC2T-seq and snATAC-seq in excitatory neurons joint clusters. The upper and lower bar plots show 
the counts and portion of cells profiled by the two technologies in each joint cluster, respectively. (G-H) 
UMAP embedding of all non-neuronal cells from snmC2T-seq and snRNA-seq after integration, colored 
by technology (G) and joint clusters (H). (I) The composition of cells profiled by snmC2T-seq and snA-
TAC-seq in non-neuronal cell joint clusters. 
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Figure S4. Evaluation of cluster quality with paired transcriptome and methylome profiles. (A) 
Intra-modality cross-validation of mC- or RNA- defined clusters. Line plots show mean squared error 
(MSE) between single-cell profile and cluster centroid as a function of the number of clusters. Black lines 
indicate training error; purple or orange lines indicate test error. Points corresponding to minimum MSE 
and minimum MSE + 1 standard error are marked by arrows. For the analysis using snmC2T-seq mC 
information (left panels), gene body mCH profiles of odd (even) chromosomes were used for clustering 
whereas even (odd) chromosomes were used for testing. Similar analysis was performed using 
snmC2T-seq transcriptome information (right panels). (B) Schematic diagram of the over- and 
under-splitting analysis using matched single-cell methylome and transcriptome profiles, complementing 
Figure 4D. (C) Over-splitting quantification of mC-defined major clusters (n=17) and subclusters (n=52) 
were quantified by the fraction of cross-modal neighbors found in the same cluster defined by RNA. (D) 
Under-splitting of clusters was quantified as the cumulative distribution function of normalized self-radius 
for mC-define major clusters and subclusters. For (C-D), gray lines represent individual clusters while 
colored lines represents means and confidence intervals. (E) Over-splitting score for each major cluster 
(in green) and associated sub-clusters (in yellow). Dot size of sub clusters represents cluster size normal-
ized by the size of their “mother” major cluster. (F) Under-splitting score for each major cluster (in green) 
and associated sub-clusters (in yellow). (G) Joint UMAP embedding of snmC2T-seq transcriptome and 
mC profiles using the LIGER method, treating the two data modalities as generated from independent 
datasets. (H) Barplot showing the fraction of cells contributed by each data modality for each integrated 
cluster. (I) Scatter plot showing the fraction of consistent cells and the size of joint clusters. (J) Confusion 
matrix of LIGER cluster versus DNA methylation clusters. Values are normalized by each row.
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Figure S5. Diverse correlations between gene expression and gene body mCH. (A) Schematic 
diagram of 3 types of genes with different correlation between gene expression and DNA methylation. 
(B) Scatter plots of gene body mCH (unnormalized) and gene expression of example genes (KCNIP4, 
ADARB2, GPC5) across all neuronal cells. Cells are colored by major cell types defined in Figure 2. 
(C) Contour density plot of gene body mCH rank versus gene expression rank for 3 example genes: 
GPC5, KCNIP4, and ADARB2. (D) Contour density plot of delta gene body mCH rank (rank of gene 
body mCH - cluster mean gene body mCH) versus delta gene expression rank (rank of gene expres-
sion - cluster mean gene expression) for 3 example genes: GPC5, KCNIP4, and ADARB2. (E) Venn 
diagram of 3 gene sets--genes significantly correlated between gene body mCH and gene expression 
called using cells from subject UMB5580, subject UMB5577, and from both subjects. (F) Distribution of 
spearman correlation coefficient between gene expression and gene level mCH quantified at gene 
body (red), gene body + 1 kilo-base upstream (blue), + 2 kilo-base upstream (orange) and + 4 
kilo-base upstream (green). (G) Boxplot of gene length versus uncorrelated and correlated genes. (H) 
Boxplot of mean gene expression log10(TPM+1) versus uncorrelated and correlated genes. (I) Gene 
ontology enrichment of correlated genes. (J) Scatter plots comparing the fraction of variance explained 
by cell type (2) for each gene from different datasets or data modalities: RNA (from snmC2T-Seq), 
mCH (from snmC2T-Seq) and 10X (snRNA-Seq from 10X protocols). (K) Boxplots of the distribution of 
different histone marks at TSS over 5 gene bins grouped according to gene expression ratio of early 
fetal (PCW 8-9) to adult (>2 yrs).
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Figure S6. TF binding motif enrichment across human cortical neuronal hierarchy. (A) Excitatory 
neuron subtype dendrogram. The node size represents the number of DMRs detected between the left 
and right branches. (B-E) Dot plots view for TFs showing lineage specific motif enrichment, expression 
and gene body mCH between lineages: IT-Deep-LRRK1 vs IT-Deep-MIX (B); IT-Deep-PDZRN4 vs 
IT-Sup (C); IT vs CT-NP (D); CT vs NP (E). Colors for every two rows from bottom to top: lineage mean 
gene body mCH level, lineage mean expression log(1 + CPM), TF motif enrichment log2(fold change). 
Sizes for every two rows from bottom to top: relative fold change of mCH level from this branch to the 
other, relative fold change of expression level, E-value of the motif enrichment test. Colors for the motif 
names: TF motif methylation preference annotated by methyl-SELEX experiment (Yin et al., 2017), 
orange indicate MethylPlus, green indicate MethylMinus. (F-I) Dot plot view for TFs showing lineage 
specific motif enrichment, expression and gene body mCH between CGE vs. MGE (F), CALB1 vs. 
B3GAT2 (G), VIP/NDNF vs. LAMP5 (H) and Rosehip vs LAMP5-LHX6 (D).
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Figure S7. Prediction of causal cell types for neuropsychiatric traits using partitioned heritabili-
ty analysis. (A) Partitioned heritability analysis using adult brain cell-type specific DMRs and bulk 
tissue DMRs for fetal cortex, adult NeuN+ population, adult NeuN- population and non-brain tissues. 
(B) Partitioned heritability analysis using adult brain cell-type specific ATAC-seq peaks and fetal brain 
DNase-seq peaks. (C-H) CG methylation and chromatin accessibility profiles at adult brain regulatory 
elements [DMR (ATAC-pos)] and vestigial enhancers. (I-L) Partitioned heritability analysis comparing 
adult regulatory elements and [DMR (ATAC-pos)] and vestigial enhancers. 
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