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Abstract: Domestic pig (Sus scrofa domesticus) has drawn much attention from 

researchers worldwide due to its implications in evolutionary biology, regenerative 

medicine and agriculture. The brain atlas of Homo sapiens (primate), Mus musculus 

(rodent), Danio rerio (fish) and Drosophila melanogaster (insect) have been 

constructed at single cell resolution, however, the cellular compositions of pig brain 

remain largely unexplored. In this study, we investigated the single-cell transcriptomic 

profiles of five distinct regions of domestic pig brain, from which we identified 21 

clusters corresponding to six major cell types, characterized by unique spectrum of gene 

expression. By spatial comparison, we identified cell types enriched or depleted in 

certain brain regions. Inter-species comparison revealed cell-type similarities and 
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divergences in hypothalamus between mouse and pig, providing invaluable resources 

for the evolutionary exploration of brain functions at single cell level. Besides, our 

study revealed cell types and molecular pathways closely associated with several 

diseases (obesity, anorexia, bulimia, epilepsy, intellectual disability, and autism 

spectrum disorder), bridging the gap between gene mutations and pathological 

phenotypes, which might be of great use to the development precise therapies against 

neural system disorders. Taken together, we reported, so far as we know, the first single 

cell brain atlas of Sus scrofa domesticus, followed by comprehensive comparisons 

across brain region and species, which could throw light upon future evo-devo, 

regenerative medicine, and agricultural studies. 

 

Introduction:  

The domestic pig (Sus scrofa domesticus), one of the most important livestocks, shares 

close interaction relationships with humans during evolution history[1–3]. It belongs to 

the eutherian mammal from cetartiodactyla order, a clade distinct from primates and 

rodents[4]. Domestic pig has been widely studied because of its significances in 

evolutionary biology and regenerative medicine[5]. During the past decades, pig is 

increasingly used in neuroscience researches, due to the much higher correspondence 

in its brain to human brain in anatomy, physiology, and development than that of 

commonly used small laboratory animals such as mouse and rat[6,7]. Similar to human 

brain, pig brain is gyrencephalic and easy to recognize anatomically. For example, the 

cerebral cortex is clearly differentiated into four lobes including temporal lobe (TL), 

frontal lobe (FL), parital lobe (PL), and occipital lobe (OL)[8]. Recently, a transgenetic 

pig Huntington’s disease (HD) model was established by a mutant huntingtin knockin, 

who shows classical HD phenotypes such as behavioral abnormalities, consistent 

movement and early death[9]. Accumulating genetic manipulation tools have facilitated 

the applications of pig as an animal model for researches into brain function, 

particularly studies concerning brain malfunctioning mechanism. Besides, for ethical 

and economical reasons, pig is a more acceptable lab animal than primate. Studying the 

pig brain is of crucial importance to understand the evolution, function and disease 
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pathology of the central nervous system. Historically, the domestication of pig can date 

back to early human civilization. Nowadays, pig has become a pivotal livestock and the 

main source of meat, as a result of which, it is drawing more and more attention to 

developing finer breeding programs [10,11]. Several genomic studies has been 

conducted to dissect the molecular mechanisms and cellular circuit associated with pig 

growth, diet and body weight regulation and fat accumulation[1,12–17]. 

 

The brain of vertebrates, composed of billions of cells, is an extremely complex organ 

with high heterogeneity. Brains from different species have been extensively 

investigated using a variety of methods[18–24]. Yet, bulk data is rather limited in 

revealing molecular signature within distinct cell types, especially rare cell populations 

such as stem cells or cells under intermediate status[25,26]. Little is known about the 

complicated structural configuration and functionalities of pig brain at single cell 

resolution, for instance, subtle neuron type classification and detailed intercellular 

crosstalks, narrowing their applications in functional and pathological studies. 

 

Since 2009, single cell RNA sequencing (scRNA-seq) technique has been applied to a 

wide range of studies due to its unique capability to disentangle the heterogeneity of 

complex tissues and precious samples with limited numbers of cells[27]. Brain, 

characterized by remarkable cellular diversity and intricate interplays, naturally fell into 

the ideal object of scRNA-seq inverstigations. Heretofore, scRNA-seq has been 

utiliezed to construct single cell atlas of certain brain region or nucleus from several 

species including human, mouse, fruit fly and zebrafish[28–33]. For human, developing 

cerebral cortex was first delineated at single cell level using Microfluidic C1 in 

2014[28]. Thereafter, a series of subsequent studies provided more detailed 

characterizations of human brain in regionally broader coverage (cerebral cortex, 

cerebellum, midbrain, and temporal lobe) [29–31]. Additionally, brains from patients 

under different pathological conditions, Alzheimer’s disease (AD), autism spectrum 

disorder (ASD), and Parkinson’s disease (PD) included, were also interrogated using 

scRNA-seq and extensive dysfunctions were observed at unprecedent resolution[32–
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34]. For mice, single cell transcriptome of cortex and hippocampus were reported by 

Zeisel et. al.[35]. After that, a variety of methods were applied to reconstruct cellular 

hierarchies and developmental trajectories of neural cells as well as interactions 

between neural cells and immune cells[36]. Brains of other model animals such as fruit 

fly and zebrafish were also under investigation using single cell methods. Briefly, 

olfactory projection neuron, aging brain, and midbrain were analyzed to understand 

neural cell subtypes[37]. In zebrafish, scRNA-seq was used to dissect cellular lineages 

and cell types in both brains from healthy and amyloid toxicity model[38]. 

 

Pig brain has been investigated in the apsects of genome, transcriptome and epigenome, 

establishing a basic preception structurally and functionally [24,39]. However, bulk 

data is intrinsically restricted in dissecting the heterogeneity and micro-environment of 

complex tissue. Considering the importance of pig brain for neuroscience study, it is of 

great necessity to elucidate the single cell atlas of it using scRNA-seq, particularly the 

key functional regions including cortex and hypothalamus. Leveraging the advantages 

of pig model, we aim to gain deeper understanding of human cognition functioning and 

also, to promote the refinement of current pig farming guidelines. Therefore, we, with 

the help of scRNA-seq, comprehensively delineated the cellular compostion and 

molecular circuits within cerebral cortex and hypothalamus, which is the center of 

cognition formation and hormonal regulation respectivly. In concrete terms, we 

generated transcriptomic profiles of individual cells from four lobes in cerebral cortex 

(temporal lobe (TL), frontal lobe (FL), parietal lobe (PL), and occipital lobe (OL)) and 

hypothalamus (HT). We identified 21 clusters of cells based on unsupervised clustering, 

and further revealed the existence of cellular interaction networks within pig brain. We 

also identified certain cell clusters that show significant correlations with certain 

nervous system diseases. By cross-species comparison, we revealed several important 

neural function genes may play critical roles in the pig neural system. Our study may 

enhance the understanding of pig brain fine structure at single cell level, providing a 

solid platform for further agricultural and pathological researches regarding the 

development of noval regenerative medicine, cost-efficient breeding strategies etc. 
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Results: 

Generation of pig brain atlas at single cell resolution 

To comprehensilvely characterize pig brain at single cell level, we constructed single 

cell libraries for each brain regions under platform, followed by high throughput RNA 

sequencing. After filtering, we obtained the single-cell transcriptome of 32250 cells 

from five brain regions, with 6829, 8812, 6162, 3145 and 7302 cells from OL, FL, PL, 

TL and HT respectively (Figure 1a). Generally, 21 cellular clusters were identified and 

visualized on a UMAP plot (Figure 1b). We, based on the expression of cell type marker 

genes, assigned 21 clusters to six major cell types: excitatory neurons (EX), inhibitory 

neurons (IN), oligodendrocyte progenitor cells (OPC), oligodendrocytes (OLG), 

astrocytes (AST), and microglias (MG). Cluster 3, 4, 8, 11, 13, 14, 15 were annotated 

as EX because of the expression of SATB2, TLE4, and CUX2 (Figure 1f). Cluster 10, 

12, 16, 19 and 20 were considered as IN due to the expression of GAD1, GAD2, and 

NXPH1 (Figure 1f). Cluster 2, 9 were considered to be OPC indicated by the 

preferential expression of VCAN, LHFPL3, and PTPRZ1 (Figure 1f). Cluster 0, 6 were 

recognized as OLG for the expression of MBP, ERBIN, and CNP (Figure 1f). Cluster 7 

was annotated as AST characterized by the expression of GFAP, SLC1A2, and SLC1A3 

(Figure 1f). Cluster 1 was annotated as MG because of the expression of P2RY12, 

CALCR, and ARHGAP24 (Figure 1f). We also identified a set of functionally diverse 

genes in each cluster and consistent with annotated cell identity, the specific gene set 

found in each cluster converge to specific biological functions matched cell identities, 

further confirming the validity of the identification of cell types. For example, the 

cluster specific genes of EX and IN were enriched for GO terms like “synapse 

organization” and “axonogenesis”. While, for OPC, OLG, and AST, the cluster specific 

genes showed enrichment for molecular functions associated with “gliogenesis”. 

Specific genes of MG were enriched for GO terms related to “lymphocyte 

differentiation” and “regulation of myeloid cell differentiation”. Apart for this, different 

combinations of these molecular fingerprints can be employed for the sorting of specific 

clusters of interests (Table S1, Figure1d). 
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Heterogeneity of transcription factors and functional genes within clusters 

Transcription factors hold a pivotal role in molecular function activation by spatially 

and temporally regulating the precise expression patterns of certain gene modules. We 

then asked, to what extent, TFs expression varied among clusters. As expected, we 

identified a variety of cluster specific TFs. For example, C9 (OPC) specifically 

expressed 11 TF encoding genes (ARNTL, TCF7L2, NPAS2, DACH1, SOX6, FOXP3, 

PBX3, SOX13, POU6F2, SOX5, and TOX (Table S1)). TCF7L2 is essential for 

neurogenesis and has been reported to be associated with diabetes[40–42]. ARNTL is a 

well-known circadian clock gene[43,44]. NPAS2 regulates anxiety-like behavior and 

non-rapid eye movement sleep[45,46]. SOX6 is associated with the inhibition of 

neuronal differentiation[47]. TOX is proposed to be a versatile TF regulating 

mammalian corticogenesis[48].  

 

C11 (EX) specifically expressed 16 TF encoding genes (REV1, ZSCAN31, NEUROD2, 

ARID3B, TOX3, SATB2, ZNF831, ARNT2, MEOX1, POU3F2, PBX1, POU6F2, PRRX1, 

SOX5, ONECUT1, and SETBP1 (Table S1)). TOX3 was reported to regulate the neural 

progenitor identity, and was proposed to promote neuronal survival[49,50]. SATB2 

regulates the identity of callosal projection neuron and contributes to the cognitive 

ability[51,52]. RFX2 were specifically expressed in C7 (AST). 

 

In addition to master regulators like TFs, we also scrutinized the expression of other 

functional genes (CD markers, transporter genes, glutamatergic associated genes, and 

GABAergic associated genes) that were also important for the biological functions of 

neural and glia cells [53] (Figure 1e). We noticed that two CD markers IL10RB and 

PTPRC were specifically expressed in C1 (MG). Transporter gene SLC1A2 was 

specifically expressed in C2 (OPC) and C7 (AST). The neurological function gene 

GFRA1 was specifically expressed in C9 (OPC) and C6 (OLG). RELN, also a 

neurological function gene, was specifically expressed in C12 (EX), C16 (IN) and C19 

(IN). Interestingly, an obesity related gene HCRTR2 was found to be specifically 
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expressed in C8 (EX), C16 (IN) and C20 (IN) .  

 

Besides those well-defined clusters, we also found three clusters (C5, C17, C18), 

probably correspond to previously poorly characterized cell types. C5 preferentially 

expressed 27 genes including SNAP25, NPY, and CCK (Table S1). SNAP25, encoding 

a 25 kDa synaptosomal-associated protein, is related to several neurological diseases 

including schizophrenia[54] and attention-deficit/hyperactivity disorder (ADHD)[55]. 

NPY encodes a neuropeptide involved in multiple homeostatic and physiological 

processes of the nervous system[56,57]. CCK is a versatile molecular switch of neural 

circuits[58]. C17 specifically expressed 15 TF encoding genes (TCF7L2, TBX15, ID3, 

NR3C2, AHR, NR2F1, SMAD3, PRDM6, PRDM5, THRB, KLF5, LIN28B, BNC2, ESR2, 

and KLF12). SMAD3 co-activate neural developmental program with JMJD3 and 

regulates neuronal differentiation[59]. LIN28B regulates proliferation and 

neurogenesis in NPCs[60]. KLF12 is linked with cell proliferation[61,62]. C18 

specifically expressed 19 TF encoding genes (GTF2IRD1, GLI3, ETV1, ID3, SATB1, 

TEAD1, NPAS4, DACH1, AHR, ARID3B, ONECUT2, KLF5, MEOX1, BNC2, SOX13, 

TBX18, HIVEP1, and RORA). Among them, GLI3 is required for the maintenaning and 

fate specifying of cortical progenitors, and it is proposed to regulate the migration of 

precerebellar neurons[63,64].  

 

Spatial orgins of each cluster  

To measure the contribution of each brain region to every cell cluster, we calculated a 

customized metric named CI (contribution index) , defined as the proportion of cell 

from a specific brain region in a given cell cluster, followed by normalization of the 

total number of cells from the brain region (Table S2). We used a intuitionistic criterion 

to measure the enrichment or depletion of certain brain regions in each cluster. Cluster 

with CI less than 10% or greater than 40% was considered to be depleted or enriched 

for a specific cell cluster. In this regrad, we noticed that EX subpopulations were mainly 

dominant by cells from OL (C3, C4, C8 , C13, C14, C15), with one exception that C11 

was dominant by cells from PL. We observed a distinct phenomenon in terms of IN 
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where different IN subpopulations displayed a region-specifc distribution: C10 and C20 

were enriched with cells from TL while C16 was prevailed by OL cells. Besides, HT 

showed predominance in C12. On the other hand, glial cells dispersed relatively equally 

across different brain regions and only C7 (AST) and C9 (OPC) exhibited enrichment 

with HT and TL respectively. We presumed that theses observations may indicate a 

conserved role of glial cells in cerebral cortex and hypothalamus. Nonetheless, neurons 

were comparatively more region-restricted, implying their contribution to the formation 

of the derivation of region-specific functions (Figure 1c, Table S2).  

 

Cellular heterogeneity and micro-environment in hypothalamus 

The hypothalamus coordinates appetite control, energy balance through neuroendocrine 

circuits, essential for maintaining body homeostasis[65]. In total, 15 cellular clusters 

were identified in pig hypothalamus, corresponding to EX (C9, C14), IN (C4, C10, 12), 

MG (C1), OLG (C0, C2), OPC (C3, C6) and AST (C5, C7) (Figure 2a). CD markers 

(ALK, BMPR1B, CD38, CD44, CDCP1, CDH2, FGFR1, ITGA6, KIT, MME, NRP1, 

SDC2, TFRC, and TNFRSF) showed specific expression patterns in C3 (OPC), C4 (IN), 

C5 (AST), C6 (OPC), C7 (AST), C8, C9 (EX), C10 (IN), C11, C12 (IN), and C14 (EX) 

(Figure 2c). Appetite regulators (CCKAR and HCRTR2) were specifically expressed in 

C10 (IN) and C4 (IN) respectively. Alpha chain of type VIII collagen encoding gene 

COL8A1 was specifically expressed in C5 (AST), C9 (EX), C10 (IN), and C11, while 

COL4A2 was preferentially expressed in C9 (EX) and C11. Epinephrine receptor 

ADRA1A was expressed in C12 (IN). Dramamine receptor (DRD2) was expressed in 

C10 (IN) and dopamine receptor SLC6A3 was specifically expressed in C10 (IN) and 

C13. GABA receptors (GABBR2, GABRA1, GABRA2, GABRA3, GABRA5, GABRB1, 

GABRB2, GABRB3, GABRD, and GABRG2) were mainly expressed in C3 (OPC), C4 

(IN), C5 (AST), C7 (AST), C9 (EX), C10 (IN), C12 (IN), and C14 (EX). Glutamate 

receptors (GRIA2, GRIA3, GRIA4, GRM5, GRIA1, GRIA2, GRIA3, GRIA4, GRM1, 

GRM4, GRM5, GRM8, GRM5, GRIA1, GRIA3, GRIA4, GRIA1, GRIA2, GRIA3, GRM1, 

GRM4, GRIA1, GRIA2, GRIA3, GRIA1, GRIA2, GRIA3, GRIA4, GRM1, GRM5, GRM8, 

GRIA1, GRIA2, GRIA3, GRM1, GRM5, and GRM8 ) were mainly expressed among C3 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 12, 2019. ; https://doi.org/10.1101/2019.12.11.872721doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.11.872721


(OPC), C4 (IN), C5 (AST), C6 (OPC), C9 (EX), C10 (IN), C12 (IN), and C14 (EX) 

(Figure 2c). Mucin (CEMIP) was mainly expressed in C8 (Figure 2c). Nicotinic 

acetylcholine receptors (CHRNA4, CHRNA6, and CHRNB3) were specifically 

expressed in C10 (IN), while CHRNA7 was specifically expressed in C12 (IN). Obesity 

related gene HCRTR2 was specifically expressed in C4 (IN) (Table S13).  

 

Transcriptomic profiles of receptors and ligands at single cell resolution could help to 

construct the complex communication network of cell clusters with tissues. Here, we 

constructed the interaction network of HT cell clusters (see methods), resulting in 2880 

pairs of putative interactions mediated by ligands and receptors (Figure 2e). Generally, 

IN (C4, C10, C12) and EX (C9, C14) interacted most frequently with other clusters. 

Notably, C1 (MG) interact most frequently with C9 (EX) (Figure S5e, Table S14).  

  

Cellular heterogeneity and micro-environment in cerebral cortex 

Cerebral cortex can be divided into four major regions: FL, PL, OL, TL and each of 

them was confered a series of crucial biological functionalities. Here we performed 

unsupervised clustering and cell type assignment separately for each cerebral cortex 

lobe. 

FL principally realizes cognitive skills that play fundamental and critical roles. 

However, transcriptome at single cell resolution of FL has not been achieved in pig. 

We identified 12 clusters by clustering 8812 cells of frontal lobe (Figure S2a), and all 

the 12 clusters were mainly annotated as six major cell types: OLG (C0, C5), MG (C1, 

C6), OPC (C3), EX (C2, C4, C7, C10), IN (C8) and AST (C9, C11) according to the 

expression of cell type markers (Figure S2b). In accordance with marker expression, 

we found cluster specific genes and revealed the molecular marker of FL. Such as BNC2 

and TCF7L2, specific expression in C9 (AST), and TCFL2 is a key transcription factor 

in the Wnt signaling pathway[66]. Transporter genes SLC1A2 and SLC7A11 expression 

in C11 (AST). SLC1A2 has been known essential for excitatory neurotransmitter 

glutamate clear[67] and SLC7A11 mainly functions in cysteine and glutamate transport 
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systems[68] (FigureS2c). In addition, we found some CD markers that have a specific 

expression pattern in C4 (EX), C8 (IN), C10 (EX), C11 (AST), such as CDH2, CD47, 

and IGF1R (Table S7). Intriguingly, the most frequent communications were found 

within excitatory neurons and identified between excitatory neurons and inhibitory 

neurons (Figure S2e).  

PL incorporates perceptual information from different modalities, including spatial 

sense, sense of touch, and vision [69]. We generated the PL dataset comprising 6162 

cells, resulted in 13 clusters (Figure S3a). Based on reported markers, we identified 

OLG (C0, C1), OPC (C3, C8), EX (C2, C5, C6, and C9), IN (C10, C11), and AST (C7) 

cell populations in PL (Figure S3a). We observed that each of the clusters showed 

distinct gene expression patterns, supporting the validity of the clustering result (Figure 

S3b). We found that IL10RB, a cytokine receptor play an important role in 

inflammation[70], enriched in C4 (MG). GLI3 showed a specific expression pattern in 

C7 (AST), which is an essential TF in sonic hedgehog (Shh) pathway[71](Figure S3c). 

In addition, there are some markers associated with GABA and glutamate transport 

system, such as GABBR2 and GRIA1 (Table S9). We also performed communication 

network analysis within parietal lobe. Similar to FL, we found that cellular interplay 

also enriched in some populations of excitatory neurons (C6 (EX) and C9 (EX)) and 

inhibitory neurons (C10 (IN)) (Figure S3e). 

TL is vital for various functions including the formation of long-term memory, the 

modulation of auditory, visual sensory input, and the recognition of language[72–74]. 

Here we provided a dataset containing 3145 individual cells from pig TL. Unsupervised 

clustering resulted in 12 clusters (Figure S4a), corresponding to major cell types in 

temporal lobe (Figure S4b). Based on reported markers, we identified OLG (C0), MG 

(C3), OPC (C1, C4), EX (C2, C6, C8, and C10), IN (C5, C7), and AST (C9) cell 

populations in parietal lobe. Also, we found the specific expression of several important 

markers in specific clusters, such as CD marker IL10RB in C3 (MG) (Figure S4c). TF 

encoding gene TCF7L2 in C1 (OPC), and alpha chain of type XII collagen encoding 
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gene COL12A1 expressed in C6 (EX) (Figure S4c). Neuron-related markers such as 

GABRB1 and GRM5 showed specific expression patterns in inhibitory neurons and 

excitatory neurons (Figure S4c). To further dissect the heterogeneity within the 

temporal lobe, we examined the expression of cluster specific genes and observed clear 

patterns across clusters (Figure S4d). Cellular ligand-receptor pairs distributed 

relatively uniformly among clusters compared with other brain regions we examined 

(Figure S4e).  

OL is the center of visual processing and can be divided into several functional visual 

areas including primary visual cortex and visual association cortex[75]. We sequenced 

6829 cells, yielding 16 clusters (Figure S5a). Based on reported markers, we identified 

OLG (C0), MG (C2), OPC (C5, C13), EX (C1, C3, C4, C6, C8, and C14), and IN (C7, 

C9, C10, and C12) cell populations in OL (Figure S5b, d). We found that transcription 

factor encoding gene RUNX2 was specifically expressed in C2 (MG) (Figure S5c). And 

RUNX2 was reported to have an important role in controlling mouse rhythmic 

behaviors[76]. The transporter gene ABCA9 was found specifically expressed in the C5 

(OPC) (Figure S5c). An appetite regulating gene NMBR was found specifically 

expressed in the C9 (IN) (Figure S5c). CD marker JAM2 specifically expressed in C11 

(Figure S5c), while CD22 specifically expressed in the C13 (OPC) (Figure S5c). The 

neural function gene TACR1 specifically expressed in two inhibitory neuron clusters 

(C9 (IN) and C11) (Figure S5c). Previous study shows that TACR1 is associated with 

several mental health disorders, such as bipolar affective disorder (BPAD), attention-

deficit hyperactivity disorder (ADHD), and alcohol dependence syndrome (ADS)[77]. 

Unlike other cerebral cortex regions, OL showed more extensive and complicated 

intercellular interactions (Figure S5e). Concretely, neurons, especially C3 (EX) and C4 

(EX), broadcasted diverse ligands and showed strong interactions with glia and other 

neurons. 

 

Enrichment of disease associated genes in specific cell types 

As the primary meat source in Chinese dietary structure, domestic pigs are widely 
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studied to formulate the feed efficiency to control their weights[78,79]. In this section, 

we aim to gain a deeper understanding of the underlying mechanism of weight 

regulation in pig hypothalamus, by investigating eating disorders including obesity 

(OB), Anorexia nervosa (AN), and Bulimia nervosa (BN). We first retrieved diseases 

associated genes from DisGeNET[80,81] and performed disease enrichment analysis 

(Methods) to see whether and to what extent, the cell subpopulations contribute to 

certain diseases. OB, defined as an excess of body fat accumulation for a given height, 

is the outcome of a gradual energy imbalance between ingestion and expenditure[82]. 

Among 15 clusters in the hypothalamus, however, no any cluster showed significant 

enrichment of OB risk genes (Figure 3a). AN, featured as food avoidance and 

malnutrition, is known as a serious psychiatric disorder[83]. We observed that C2 

(OLG), C4 (IN), C9 (OPC), C10 (IN), C12 (IN), and C14 (EX) were significantly 

associated with AN but to a varying extent (Figure 3b). Notably, we found DRD2 was 

distinguishably expressed in C10 (IN) (Figure 3b) and the decreasing expression of 

DRD2 could lead to a reduction in food intake. Furthermore, DRD2 could form a 

heterodimer with ghrelin receptor in neurons in hypothalamus, resulting in the 

exacerbation of AN[84]. In this regard, we assume that C10 (IN) play a crucial role in 

AN genesis under DRD2-dependent mechanism. BN is featured with repeated binge 

eating, following compensatory behaviors[85]. In our hypothalamus dataset, disease 

enrichment analysis manifested close connection of C4 (EX), C7 (AST), and C10 (IN) 

with BN (Figure 3c). We noticed that SLC6A3 displayed specific expression in C10 (IN) 

(Figure 3c). SLC6A3 encodes a dopamine transporter, which is responsible for the 

reuptake of dopamine from the synaptic cleft to presynaptic neurons. Several studies 

have reported that dopamine plays an important role in the energy intake process, 

especially when it comes to high-calorie foods[86]. 

 

Employing the similar method, we next utilized the comprehensive molecular atlas of 

pig frontal lobe to identify the cell types where hazardous mutations for 

neuropsychiatric disease take effect, so as to provide a reference for further researches 

regarding neuropsychiatric disease mechanisms and circuits. Genes associated with 
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neuropsychiatric diseases, including epilepsy (EP), intellectual disability (ID), and 

autism spectrum disorder (ASD), has been identified using experimental or gnomic 

methods in recent years. However, the link between gene mutation and disease 

progression is still missing. To link neuropsychiatric diseases to specific cell types, we 

performed enrichment analysis of neuropsychiatric diseases related genes on each cell 

type of the other four brain regions respectively. In the analysis of FL, we first examined 

the enrichment of high confidence EP associated genes[87]. Certain neurons 

subpopulations, including C4 (EX), C8 (IN) and C10 (EX), were found to be highly 

associated with the occurrence and development of EP and ID, indicating these 

neuropsychiatric diseases were primarily connected with neuron malfunctioning. 

Nonetheless, glial cells were also observed to be related to these disease, but of a much 

lower significance. Concretely, C1 (MG), C3 (OPC), and C11 (AST) were considered 

to show enriched expression pattern of EP-risk genes (Figure 3d) while C3 (OPC), C5 

(OLG), and C11 (AST) specifically expressed a significant part of ID risk genes [88,89] 

were enriched in (Figure 3e). Although no glial population was significantly linked to 

ASD, it is worth noting that the enrichment of ASD-risk genes [90] in C5 (OLG) was 

nearly significant, indicating its possible contribution to ASD (Figure 3f).  

 

Divergence of brain functions in pig and mouse 

Hypothalamus is a small but crucial part of the brain, shared by all vertebrates[91]. 

According to molecular genetic evidence, it is widely believed that human, rodent, and 

pig share the same ancestor about 97 million years ago (Figure 4a)[1]. With the question 

that to what extent the hypothalamus is conserved in the course of evolution, we 

performed cross-species comparison by integrating hypothalamus dataset of mouse[92] 

and pig, to figure out the conserved and divergent cell types in the light of evolution. 

Unsupervised clustering results yielded 23 clusters, with seven neuron subpopulations 

(C4, C6, C7, C11, C16, C20, C22) and 16 non-neuron clusters (Figure 4b, c). For the 

purpose of further characterization of the heterogeneity of 23 clusters, we identified 

conserved cluster specific markers for the two species. All clusters exhibited distinct 

molecular patterns, providing further evidence for hypothalamus cellular heterogeneity 
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(Figure 4g). OPALIN, a central nervous system-specific myelin protein 

phylogenetically unique to mammals[93] was specifically expressed in C0 (OLG), C3 

(OLG), C9 (OLG), and C13 (OLG). TNR and SEMA5A showed high expression in C1 

(OPC) and C12 (OPC), have previously been reported to be detectable in developing 

oligodendrocytes[94,95]. P2RY12, specifically marking microglial cells in rodent and 

human CNS[96–98], was observed to show distinct expression in C2 (MG) and C14 

(MG). We next noticed that clustering result showed a relatively uniform distribution 

of two datasets (Figure 4b) with cells from the two species in certain clusters aligned 

well together, indicating little batch effects. In order to better understand the 

distinguishing features of each species, we next defined species-specific clusters based 

on contribution index (Methods). Surprisingly we found two cell populations (C2 (OLG) 

and C20 (EX)) showed enrichment in pig hypothalamus tissue while 10 clusters were 

defined as shared clusters between mouse and pig. Additionally, we observed that 11 

out of 23 clusters were enriched in mouse hypothalamus, most of which were neurons 

populations (Figure 4e), suggesting that neurons are relatively divergent while glia cells 

are more conserved between mouse and pig. 

 

We next sought to discover important genes that were expressed differently between 

pig and mouse in shared clusters (Figure 4f, Figure S7). We focus on oligodendrocytes 

due to its pivotal role in evolutionary advancement. Oligodendrocytes, functioning as 

Schwann cells peripheral nervous system, is responsible for the formation of myelin 

sheath whose existence is essential for motor, sensory, and higher-order cognitive 

function[99,100]. Furthermore, oligodendrocytes have proved to be the most abundant 

glial cells in brain[101]. Firstly in C0 (OLG), we found ADAMTS4, a protease that 

controls the degradation of a brain-specific extracellular matrix protein - brevican[102], 

specifically expressed in mouse cells (Figure 4f). Previously ADAMTS4 has been 

reported to be a marker of mature oligodendrocytes in mouse brain and may promote 

the generation of myelin sheath[103]. Additionally, TMEM125 and TSPAN2, both 

known to contribute to neuron myelination in mouse or rat [104,105], also displayed a 

similar expression pattern as ADAMTS4 (Figure S7). The scarce expression of these 
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genes (ADAMTS4, TMEM125, and TSPAN2) in pig oligodendrocytes suggested that 

they may play a more critical role in mouse oligodendrocytes than in pig and the 

myelination process in pig may be driven by other genes. We also noticed a series of 

genes, including PLS1, PLIN3, ARPC1B, ARSG and so on, that have no reported 

function in oligodendrocytes evolution but showed distinct expression patterns between 

mouse and pig (Figure S7). These genes may need further researches to uncover their 

unknown mechanism of the differences. In C1 (OLG), CAV1 and CAV2 were 

extensively expressed in mouse cells with only sporadic cells expressing CAV1 and 

CAV2 in pig (Figure 4f). CAV1 can heterodimerize with CAV2 to drive the formation 

of caveolae which can facilitate the high-fidelity neuronal intracellular signaling[106] 

and modulate the differentiation and regeneration of oligodendrocytes[107]. Besides, 

CAV1 is also a primary marker of caveolae in endothelial cells[108], thus explaining 

the expression of CAV1 in C8 and C10. On top of that, we observed C1QL2 exhibit 

high and specific expression in mouse cells while it was deprived of pig cells (Figure 

S7). C1QL2 is a secreted protein[109] that may be engaged in the regulation of the 

number of excitatory synapses in mouse hippocampus[110]. This may suggest the 

unknown function of C1QL2 in hypothalamus and highlight the pivotal role of C1QL2 

in mouse than in pig. 

 

Meanwhile, we also noticed numbers of genes were specifically expressed in pig cells. 

In C0 (OLG) and C3 (OLG), the expression of FAM135B was high and vast in the pig 

cells, but things are not true in the mouse cells (Figure 4f). In the previous report, 

scientists found the FAM135B may play an important role in the process of Spinal and 

bulbar muscular atrophy (SBMA)[111]. The survival of normal spinal motor neurons 

(sMN) derived by iPSC was reduced, after the knockdown of the FAM135B gene, and 

neurite defects were also detected in these cells[111]. It indicated that the FAM135B 

gene may play a more important role in pig sMN growth and survival than in mouse. 

Besides, CORO2B which was known to play critical roles in reorganizing the structure 

of neuronal actin[112], also exhibits a similar expression spectrum. The higher and 

more specific expression of CORO2B in pig cells than in mouse cells (Figure 4f) may 
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suggest the significance of CORO2B in the cell structure organizing of pig 

oligodendrocytes. SHROOM4, which takes part in the process of cytoskeletal 

organization, was reported critical for human brain structures and survival of some 

specific neuronal cell types[113]. The deletion of the SHROOM4 gene was believed 

may contribute to severe psychomotor retardation and Dent disease[114]. We observed 

the SHROOM4 gene was highly and specifically expressed in the pig cells of C0 (OLG) 

and C3 (OLG), while deprived in the mouse cells (Figure 4f). Implying SHROOM4 

may be more important for the structure of pig oligodendrocytes than mouse by 

influencing the cytoskeletal organization. Other than those genes, there are also a series 

of genes showing the same expression pattern as FAM135B, CORO2B, and SHROOM4. 

Such as TGFBR3, ZDHHC14, and MYO1E, they all show highly and specific 

expression in pig cells other than mouse cells (Figure S7), indicating their significant 

roles in the pig brain oligodendrocytes. 

 

Discussion 

Pig has been adopted as a model animal for regenerative medicine research in recent 

years due to its relatively quick development time and suitable body size. As a putative 

donor for organ transplantation, the development of pig has been studied widely using 

genomic and experimental methods. Because of its incredible complexity, the brain 

remain to be the most mysterious organ to be explored. In this study, we surveyed the 

pig brain using single cell RNA sequencing followed by comprehensive bioinformatic 

analysis. The major cell types and related molecular features were identified using 

unsupervised methods based on single cell transcriptome data. The 32250 cells derived 

from OL (6829 cells), FL (8812 cells), PL (6162), TL (7302 cells), and HT (3145 cells) 

were classified into 21 clusters. At spatial level, we identified clusters enriched or 

depleted in five brain regions, reflecting the cellular composition difference of each 

brain region. Furthermore, we performed unsupervised clustering for each brain region 

and identified molecular signatures of TFs, CD marker, ligands, and receptors for OL, 

FL, PL, TL, and HT, thus providing a comprehensive cellular and molecular taxonomy 

for pig brain, which represent an valuable resources for understanding pig brain 
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functions at cellular and molecular levels. 

 

Neuropathic diseases such as OB, AN, BN, EP, ID, and ASD have been studied in 

human brain and a significant proportion of genes have been proposed to be closely 

related to these diseases. However, there remains a huge gap between gene dysfunction 

and organ malfunction. As the basic unit of biological functions, cells are crucial for 

gene expression and function. Several attempts have been made to link human neural 

diseases to specific cell types. In this study, we systematically assayed six diseases and 

found the cell types most closely associated with each disease. Overall, we found that 

different diseases generally linked to a few specific cell types. Our study linked 

pathology genes to cell types, thus bridging the gap between gene mutation and disease 

occurrence, which could provide novel insights in understanding disease at cell level. 

Those cell types related to certain diseases could probably represent targets for medical 

intervention, which might throw light upon precise medicine based on genomic editing 

and drug therapy. 

 

The development of organism should be interpreted under evolutionary view. 

Comparative genomic and transcriptomic studies revealed DNA elements or gene 

expression modules in different species, which helped us understand species evolution 

and adaptation at molecular level. The development of scRNAseq brought species-

comparison to single cell resolution. The evolution of the neural system in different 

species reflected their adaptation of its unique environment. The comparison between 

human and mouse midbrain revealed the species specific features of cell proliferation 

and developmental timing[31]. The comparative study of monkey and retina reflected 

the divergence of retina cell types[115]. In this study, we compared the cell diversity 

and molecular circuits between the hypothalamus of pig and mouse. We found that C0 

(OLG), C1 (OPC), C3 (OLG), C4 (NEU), C5 (AST), C6 (NEU), C9 (OLG), C12 (OPC), 

C16 (EX), and C18 (UN) were shared by mouse and pig hypothalamus. Pig-specific 

clusters included C2 (MG) and C20 (EX), probably contributing to pig specific biologic 

functions. Mouse hypothalamus contains more species-specific clusters, most of which 
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were neuron subpopulations, suggesting a more conserved role of glia cells in evolution. 

Taking a step further, we observed that ADAMTS4, TMEM125, TSPAN2 and other genes 

that are critical in the process of myelination, showed distinctly high expression in 

mouse oligodendrocytes, indicating the divergent regulation system of myelin sheath 

generation in pig and mouse. 

 

Taken together, for the first time, we generated a comprehensive cellular atlas for the 

brain of the domestic pig, an important species of great value in regenerative medicine, 

agriculture, and evolution. We investigated the composition and molecular features of 

each cell type and performed spatial and species comparison. Our study revealed 

divergent cell types at spatial and species levels, as well as conserved cell types with 

divergent molecular features, which could be invaluable for understanding pig brain 

development, species specific adaptation and applications to precision medicine.  

 

Material and methods: 

Ethics Statement 

The study was approved by the Institutional Review Boards on Ethics Committee of 

Huazhong Agriculture University. All procedures were conducted following the 

guidelines of animal experimental committee of Huazhong Agriculture University. 

 

Sample Collection and Nuclei Extraction  

Temporal lobe(TL), frontal lobe(FL), parital lobe(PL), hypothalamus (HT), and 

occipital lobe(OL) were carefully dissected from a 3 months old male domestic pig 

following the ethics guidance. Dissected tissues were washed with cold PBS and 

quickly frozen in liquid nitrogen, then stored in a -80 freezer until use. To start the 

library construction, tissues were thawed, then cut into small pieces and put into 1.5ml 

tissue homogenate containing 30mM Cacl2, 18mM Mg(Ac)2, 60mM Tris-Hcl (pH 7.8), 

320mM sucrose, 0.1%NP-40 and 0.1mM EDTA. Tissue homogenate was transferred to 

2ml Dounce homogenizer and stroked with the loose pestle for 15 times, followed by 
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15 times of tight pestle on the ice. The nuclear extraction was filtered with the 40um 

strainer and spin down at the speed of 500g for 10 min at 4 degrees to carefully discard 

the supernatant and resuspended with PBS containing 0.1% BSA and 20U/ul RNase 

Inhibitor prepared for 10x Genomics 3’ library construction. 

 

Single Cell RNA-seq Library Construction and Sequencing 

Libraries were constructed using 10XGenomics V2 kit (PN-120237) following the 

manufacturer’s instructions and libraries’ conversion were performed using the 

MGIEasy Universal DNA Library Preparation Reagent Kit and sequenced on BGISEQ-

500. 

 

Pre-processing and Quality Control of Single Cell RNA-seq Data 

Cell Ranger 2.0.0 (10X Genomics) was used to process raw sequencing data. Next, 

Seurat[116] was used for selecting variable genes, dimension reduction, clustering and 

marker gene identification. Briefly, the top 20 PCs were used for cell clusters and genes 

with P value of 0.01 and FC of 0.25 were considered as cluster specific genes. 

 

GO Term and KEGG Pathway Enrichment Analysis 

ClusterProfiler R package[117] was used for enrichment analysis and the BH method 

was employed for multiple test correction. GO terms with a P value lower than 0.01 

were considered as significantly enriched. 

 

Construction of cellular communication network 

The construction of cellular communication network of each brain region cells clusters 

were performed by using our previously described method[118]. 

 

Disease gene enrichment analysis 

ASD, ID, EP, OB, AN, and BN high risk gene list were retrieved from 

DisGeNET[80,81]. We assumed the overlap of cluster-specific genes and disease risk 

geneset comforn to hypergeometric distribution. enrichment significance was 
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calculated using statistical test, in our case, hypergeometric test. P vlaue is corrected 

using BH method and 0.05 is used as threshold of significance. 

 

Cross-species Comparison  

Single cell RNA-seq dataset of mouse hypothalamus was downloaded from 

GSE87544[92]. We first merge expression matrix of the two species (pig and mouse) 

together based on the intersect of the detected homologous genes. Next, we performed 

expression matrix preprocessing separately for the two species using Seurat, followed 

by the integration of two datasets utilizing functions in Seurat. The same filter 

parameters were chosen as figure 1a. Resolution was set to 1 to yield 23 cell clusters.  

To determine species-specific clusters, we defined the contribution index 𝑆𝐶𝐼: 

𝑆𝐶𝐼$% =
𝑃$%

𝑃$% + 𝑃$)
 

Where 𝑎, 𝑏  stands for two different species respectively and 𝑃$%  denotes the 

proportion of cells in cluster 𝑖 from species 𝑎 with respect to the total cell number of 

species 𝑎. When 𝑆𝐶𝐼$%	is greater than 0.1, we defined cluster 𝑖 as species 𝑎 specific 

cluster. 
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