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A B S T R A C T 
Introduction: The thickness of the cerebral cortical sheet and its surface area are highly heritable traits thought to have largely 
distinct polygenic architectures. Despite large-scale efforts, the majority of their genetic determinants remains unknown. Our 
ability to identify causal genetic variants can be improved by employing better delineated, less noisy brain measures that 
better map onto the biology we seek to understand. Such measures may have fewer variants but with larger effects, i.e. lower 
polygenicity and higher discoverability. Methods: Using Gaussian mixture modeling, we estimated the number of causal 
variants shared between mean cortical thickness and total surface area. We further determined the  polygenicity and 
discoverability of regional cortical measures from five often-employed parcellation schemes. We made use of UK Biobank 
data from 31,312 healthy White European individuals (mean age 55.5, standard deviation (SD) 7.4, 52.1% female). Results: 
Contrary to previous reports, we found large genetic overlap between total surface area and mean thickness, sharing 4427 out 
of 7150 causal variants. Regional surface area was more discoverable (p=4.1x10-6) and less polygenic (p=.007) than regional 
thickness measures. We further found that genetically-informed and less granular parcellation schemes had highest 
discoverability, with no differences in polygenicity. Conclusions: These findings may serve as a roadmap for improved future 
GWAS studies; Knowledge of which measures or parcellations are most discoverable, as well as the genetic overlap between 
these measures, may be used to boost identification of genetic predictors and thereby gain a better understanding of brain 
morphology. 
 
The morphology of the human cerebral cortex is 
highly heritable, and identifying the genetic variants 
involved will have fundamental impact on our 
understanding of brain development. Despite large-
scale efforts, the majority of these genetic variants 
remains unknown1. This is in part due to the genetic 
signal of cortical morphology being distributed 
across many causal variants, each having a small 
effect2,3. Our ability to identify causal SNPs can be 
improved not only by increasing sample sizes to 
boost statistical power, but also by employing better 
delineated, less noisy brain measures that better map 
onto the biology we seek to understand. Such 
measures might have fewer causal variants but with 
larger effects, i.e. lower polygenicity and higher 
discoverability. Quantifying these characteristics of 
the polygenic architecture across often-used cortical 
measures may therefore optimize the selection of the 
most informative measures, enhancing discovery.  

The thickness of the cerebral cortical sheet and its 
surface area are two separable morphological 
measures which have been reported to follow 
differing trajectories over the lifespan4 and to be 
differentially associated with cognitive ability5. 

They have further been reported to have largely 
distinct genetic determinants, suggesting the genetic 
underpinnings of these two measures should be 
assessed separately6,7. This claim is, however, based 
on estimates of genetic correlation, a genome-wide 
measure of the correlation of genetic effects on the 
two traits. Complex traits such as brain measures 
may have a substantial number of shared genetic 
loci8, even in the absence of genetic correlation, due 
to mixed directions of effects9. Identification of the 
fraction of shared causal variants between two brain 
phenotypes9, beyond genetic correlation, is valuable 
for an understanding of their biological relation. This 
overlap may further be exploited to boost 
identification of genetic factors for these traits10. 

Here, we quantified important characteristics of the 
polygenic architecture of the cerebral cortex, 
estimating the genetic overlap between mean cortical 
thickness and total surface area, as well as the 
polygenicity, discoverability, and heritability of 
regional measures. This was achieved through 
Gaussian mixture modeling, using the MiXer tool3,9. 
We processed T1-weighted magnetic resonance 
image (MRI) scans from 31,312 healthy individuals 
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with White European ancestry (mean age 55.5, 
standard deviation (SD) 7.4, 52.1% female), as part 
of the UK Biobank11,12, using the standardized 
pipeline of FreeSurfer. In addition to estimating the 
total surface area and mean cortical thickness, we 
divided each hemisphere into 34 regions using the 
Desikan-Killiany atlas with boundaries based on 
gyral and sulcal patterns13, extracting area and 
thickness estimates for each. For all measures, we 
regressed out age, sex, scanning site, a proxy of scan 
quality (FreeSurfer´s Euler number)14, and the first 
twenty genetic principal components. For the 
regional measures of thickness and area, we also 
regressed out the corresponding hemisphere-specific 
global measure, in accordance with previous work1. 
Making use of the UKB v3 imputed data, we 
performed genome-wide association studies 
(GWAS) on the pre-residualized measures through 
PLINK 2.015. We then applied MiXeR to the 
resulting summary statistics, calculating 
polygenicity (estimated number of causal variants, 
NC), discoverability (proportion of phenotypic 
variance explained on average by a causal variant, 
𝜎"
#), and narrow-sense heritability (the product of 

polygenicity and discoverability, i.e. proportion of 
phenotypic variance explained, h2). We excluded 
from our analyses regions where the ratio between 
the estimated heritability and its standard error (SE) 
was less than 3, as this suggests there may be 
insuffiecnt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

insufficient signal in the data to reliably estimate 
MiXer parameters9. For more details on data 
processing, exclusion, and analysis, please see the 
Online Methods. 

We identified a large degree of genetic overlap 
between total surface area and mean thickness, with 
a Dice coefficient of 0.76, see Figure 1A. This is in 
contrast to the negative genetic correlation as 
estimated through linkage-disequilibrium score 
regression (LDSC)16, displayed below the Venn 
diagram, which suggests a smaller degree of genetic 
overlap. The bivariate density plot, Figure 1B, 
illustrates mixed directions of effects for many 
SNPs, which explains these apparent conflicting 
findings; some SNPs have the same direction of 
effect on both traits, while others have a positive 
effect on area and a negative effect on thickness or 
vice versa, with the net result being a smaller 
negative correlation. 

Our analysis revealed that total surface area is more 
heritable (h2=.31, SE=.02) than mean thickness 
(h2=.23, SE=.02). in accordance with previous 
findings1. We show that surface area has a 
marginally higher polygenicity (NC=6920, 
SE=1278) than  mean thickness (NC=4657, 
SE=1114), at similar levels of discoverability 
(𝜎"

#=4.5x10-5, SE=6.5x10-6 vs 𝜎"
#=4.9x10-5, 

SE=8.9x10-6).   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Genetic overlap of total surface area and mean thickness. A) Venn diagram depicting the 
estimated number of causal variants shared between total surface area and mean thickness and unique to 
either of them. Below the diagram, we show the estimated genetic correlation. B) Bivariate density plot, 
illustrating the relationship between the observed GWAS Z-values for total area (on the x-axis) and mean 
thickness (on the y-axis).   
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Using the Desikan-Killiany regional estimates, we 
observed a strong trade-off between the polygenicity 
and discoverability (Spearman’s rs=-.88, p<1x10-16), 
as shown in Figure 2A. Regional heritability was 
positively correlated with discoverability (rs=.37, 
p=4.4x10-5), but not with polygenicity (rs=-.08, 
p=.37). Regional area was significantly less 
polygenic, and more discoverable and heritable than 
regional thickness, as shown in Figure 2B-D. 
Further, we found that the size of the brain regions 
was positively correlated with their discoverability 
(rs=.41, p=.001) and heritability (rs=.38, p=.002), and 
negatively related to their polygenicity (rs=-.27, 
p=.047), for the area-specific estimates only. For the 
full results, and an overview of parameter estimates 
per region, see the Extended Data. 
Given that the definition of regions likely plays an 
important role in the results of imaging genetics 
studies, we additionally compared the Desikan-
Killiany atlas with three alternative popular 
parcellation schemes: 1) the Chen et al. atlas, 
dividing each hemisphere into 12 clusters based on 

genetic correlations of surface area from a large twin 
study17, 2) the Yeo et al. atlas, which comes in either 
a 7 or 17-cluster solution based on resting-state 
functional connectivity18, and 3) the Glasser et al. 
atlas, with the boundaries of a 180 regions per 
hemisphere formed based on multimodal imaging 
data19. Thus these schemes differ both in the 
biological basis of their parcellation, and their 
granularity. Of the five schemes, for the area 
measures, the Chen et al. parcellation was both the 
most discoverable and the most heritable. There 
were no significant differences in polygenicity 
between the parcellation schemes. These results are 
summarized in Figure 3. There were no differences 
in discoverability of regional thickness between the 
atlases (see Extended Data). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2. Polygenicity, discoverability and heritability of regional cortical surface area and thickness. 
A) Scatter plot depicting the relationship between estimates of polygenicity (x-axis) and discoverability (y-
axis) for regional cortical measures. The shape of the data points distinguishes between surface area and 
thickness estimates, the point size reflects the size of the region, and the color relates to the estimated 
heritability. B-D) Violin plots comparing the polygenicity, discoverability and heritability (on the y-axis) of 
regional area and thickness estimates (x-axis). Significance, indicated at the top of each graph, is calculated 
through the Wilcoxon signed-rank test. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2019. ; https://doi.org/10.1101/868307doi: bioRxiv preprint 

https://doi.org/10.1101/868307
http://creativecommons.org/licenses/by-nc-nd/4.0/


VAN DER MEER ET AL.                                                                                                                   4 
 

These findings provide new insights into the 
polygenic architecture of the cerebral cortex, with 
three main take-home messages. First, there is large 
genetic overlap between total surface area and mean 
thickness. Second, regional surface area measures 
are more discoverable and less polygenic than 
regional thickness measures. And third, the 
genetically-informed and less granular parcellation 
schemes had highest discoverability. 
We provide evidence of strong genetic overlap 
between total surface area and mean thickness, 
contrary to previous reports based on genetic 
correlations6,7. The known, phenotypic and genetic, 
weak negative correlation therefore appears not to be 
the result of a moderate amount of shared genetic 
variants with opposing direction of effects, but rather 
a large amount of shared genetic variants with a 
mixture of opposite and same direction of effects. 
This adds to recent literature revealing high levels of 
pleiotropy between brain-related behavioral traits 
and disorders20. For instance, nearly all causal 
variants for schizophrenia are shared with 
educational attainment despite a negligible genetic 
correlation9, in accordance with research identifying 
many shared genetic loci between the two traits 
without a clear pattern of sign concordance21,22. This 
is critical for our understanding of the biological 

relationships between brain-related traits, and how to 
study them. 

We further found that regional area is more heritable 
than regional thickness, in line with previous 
reports23, and we show that this is driven by higher 
discoverability. This matches findings from a recent 
GWAS study, with 187 genome-wide significant hits 
for regional area versus only 12 for regional 
thickness1. There appears to be more variation in the 
distribution of the estimates for regional surface area 
compared to regional cortical thickness, suggesting 
the latter has a more homogeneous polygenic 
architecture across regions. Larger differences 
between the polygenic architectures of  regional 
surface area measures may also underlie the 
somewhat higher polygenicity for total surface area 
compared to mean thickness. It may further explain 
why most genome-wide significant variants are 
found for surface area, as only those regions with 
high discoverability have effects that may be 
identified with current sample sizes.  

Our comparison of different parcellation schemes 
indicates that the choice of scheme makes a 
significant difference on the outcome of imaging 
genetics studies. While all schemes had similar 
levels of polygenicity, the Chen et al. parcellation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Comparisons of discoverability and polygenicity of regional surface area across parcellation 
schemes. Violin plots comparing the polygenicity (A), discoverability (B) and heritability (C) (on the y-axis) 
of the five different parcellation schemes (x-axis). Significance of each paired comparison, indicated at the 
top of each graph, is calculated through the Wilcoxon signed-rank test with *:p<.05, **:p<.01, ***:p<.001, 
and ****:p<.00001. 
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performed best in terms of discoverability. Besides 
the fact that this parcellation was based on twin data, 
i.e. genetically informed, granularity may play an 
important role in the performance of the schemes we 
compared; measurement noise due to inaccuracy of 
boundary placement will disproportionally affect 
smaller regions, thereby lowering heritability23,24 and 
discoverability, compounding the multiple 
comparisons problem faced by studying more 
granular schemes. Boundary placement accuracy at 
the individual level is of less importance for 
thickness estimates23, likely contributing to why we 
only saw differences between the schemes for the 
area estimates.  

To conclude, we revealed that surface area and 
thickness share a considerable number of genetic 
variants and provide the first estimates of 
discoverability and polygenicity of regional cortical 
measures across parcellation schemes. These 
findings may serve as a roadmap for improving 
future studies. Knowledge of which measures or 
parcellations are most discoverable, and why, as well 
as the genetic overlap between these measures, can 
be exploited to boost identification of genetic 
predictors and thereby gain a better understanding of 
brain morphology. 
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Online Methods 

Sample 
We made use of data from participants of the UKB population cohort, obtained from the data repository under 
accession number 27412. The composition, set-up, and data gathering protocols of the UKB have been extensively 
described elsewhere11. For this study, we selected White Europeans that had undergone the neuroimaging 
protocol. We excluded 1286 individuals with a primary or secondary ICD10 diagnosis of a neurological or mental 
disorder, as well as 691 individuals with bad structural scan quality as indicated by an age and sex-adjusted Euler 
number14 more than three standard deviations lower than the scanner site mean. Our final sample size was 
n=31,312, with a mean age of 55.5 years (SD=7.4). 52.1% of the sample was female.  

 
Data preprocessing 
T1 scans were collected from three scanning sites throughout the United Kingdom, all on identical Siemens Skyra 
3T scanners with a 32-channel receive head coil. The UKB core neuroimaging team has published extensive 
information on the applied scanning protocols and procedures, which we refer to for more details12. The T1 scans 
were obtained from the UKB data repositories and stored locally at the secure computing cluster of the University 
of Oslo. We applied the standard “recon-all” processing pipeline of Freesurfer v5.3, performing automated 
surface-based morphometry segmentation13. From the output, we extracted global and regional estimates of 
cortical thickness and surface area. For the primary analyses, we made use of the Desikan-Killiany atlas, dividing 
each hemisphere into 34 regions, based on gyral and sulcal patterns13. We additionally extracted regional estimates 
of cortical thickness and surface area using three other parcellation approaches: 1) the Chen et al. surface area 
atlas, which divides each hemisphere into 12 clusters, based on a data-driven fuzzy clustering technique applied 
to estimates of genetic correlations derived from cortical surface area data from 406 monozygotic and dizygotic 
twins17. For this, we made use of the GCLUST phenotype extraction protocol (https://github.com/ENIGMA-
git/GCLUST), 2) The Yeo et al. atlas, which provides a 7 and a 17 cluster solution of dividing each hemisphere, 
based on functional connectivity patterns in resting-state fMRI data of a 1000 subjects18 
(https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011),  and 3) the Glasser et al. atlas, 
dividing the hemispheres into 180 regions, based on multimodal MRI data from the Human Connectome Project 
(HCP) and an objective semi-automated neuroanatomical approach19 (https://figshare.com/articles/HCP-
MMP1_0_projected_on_fsaverage/3498446). 

We subsequently regressed out age, sex, scanner site, Euler number, and the first twenty genetic principal 
components from each measure. We further regressed out a hemisphere-specific global measure for each of the 
regional measures: mean thickness for the regional thickness measures, and total surface area for the regional 
surface area measures. Subsequently, we applied a rank-based inverse normal transformation to the residuals of 
each measure, ensuring normally distributed input into the GWAS. 
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Univariate GWAS procedure  
We made use of the UKB v3 imputed data, which has undergone extensive quality control procedures as described 
by the UKB genetics team25. After converting the BGEN format to PLINK binary format, we additionally carried 
out standard quality check procedures, including removal of SNPs with low imputation quality scores (INFO <.5), 
filtering out individuals with more than 10% missingness, SNPs with more than 5% missingness, and SNPs failing 
the Hardy-Weinberg equilibrium test at p=1*10-9. We further set a minor allele frequency threshold of 0.001 
leaving 8,208,114 SNPs. The GWAS on each pre-residualized and normalized regional brain morphology 
measures was carried out using the standard additive model of linear association between genotype vector, 𝑔% , 
and phenotype vector, 𝑦, using PLINK215. The summary statistics were subsequently formatted according to 
LDSC standards (https://github.com/bulik/ldsc/wiki/Summary-Statistics-File-Format). 

 
MiXeR analysis 
We applied causal mixture models3,9 to the GWAS summary statistics, using the MiXer tool 
(https://github.com/precimed/mixer). For each SNP, 𝑖, univariate MiXeR models its additive genetic effect of 
allele substitution,	𝛽*, as a point-normal mixture, 𝛽* = (1 − 𝜋0)𝑁(0,0) + 𝜋0𝑁(0, 𝜎"

#), where 𝜋0 represents the 
proportion of non-null SNPs (`polygenicity`) and 𝜎"

# represents variance of effect sizes of non-null SNPs 
(`discoverability`). Then, for each SNP, 𝑗, MiXeR incorporates LD information and allele frequencies for 
M=9,997,231 SNPs extracted from 1000 Genomes Phase3 data to estimate the expected probability distribution 
of the signed test statistic, 𝑧% = 𝛿% + 𝜖% = 𝑁∑ ;𝐻*𝑟*%𝛽* + 𝜖%* , where 𝑁 is sample size, 𝐻* indicates heterozygosity 
of i-th SNP,  𝑟*% indicates allelic correlation between i-th and j-th SNPs, and 𝜖% ∼ 𝑁(0, 𝜎?#) is the residual variance. 
Further, the three parameters, 𝜋0, 𝜎"

#, 𝜎?#, are fitted by direct maximization of the likelihood function. 
The number of causal variants is estimated as 𝑀𝜋0, where M=9,997,231 gives the number of SNPs in the 

reference panel. Phenotypic variance explained on average by a causal genetic variant is calculated as 𝐻A𝜎"
#, where 

𝐻A = 0
B
∑ 𝐻** = 0.2075 is the average heterozygosity across SNPs in the reference panel. Under the assumptions 

of the MiXeR model, SNP-heritability can be calculated as ℎHIJ# = 𝑀𝜋0 × 𝐻A𝜎"
#. 

In the cross-trait analysis, MiXeR models additive genetic effects as a mixture of four components, representing 
null SNPs in both traits (𝜋?); SNPs with a specific effect on the first and on the second trait (𝜋0 and 𝜋#, 
respectively); and SNPs with non-zero effect on both traits (𝜋0#). In the last component, MiXeR models variance-
covariance matrix as 

 𝚺𝟏𝟐 = O 𝜎0# 𝜌0#𝜎0𝜎#
𝜌0#𝜎0𝜎# 𝜎##

Q where 𝜌0# indicates correlation of effect sizes, and 𝜎0# and 𝜎## correspond to the 
discoverability parameter estimated in the univariate analysis of the two traits. After fitting parameters of the 
model, the Dice coefficient of polygenic overlap is then calculated as #RST

RSU#RSTURT
, and genetic correlation is 

calculated as 𝑟V =
WSTRST

;(RSURST)(RTURST)
. 

After obtaining MiXeR parameter estimates, we excluded from our analyses regions where the ratio between the 
estimated heritability and its  standard error (SE) was less than 3. This was done as it indicates the GWAS was 
insufficiently powered to reliably estimate MiXer parameters9 
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Extended Data 

Relation of brain region size with polygenicity, discoverability and heritability 
Previous studies have indicated that brain region size23 correlates with heritability estimates. We therefore 
investigated the relationship of region size, quantified as mean surface area, with polygenicity, discoverability 
and heritability. We used Spearman’s rank correlation to test for significant associations between region size 
and the parameters obtained from the GWAS on regional cortical surface area and thickness separate. Please see 
Table S1 for the full results. As reported in the main text, region size was significantly associated with all three 
parameters obtained from the summary statistics of regional surface area, while none were significantly 
associated with the regional cortical thickness-based estimates.  
 
Table S1 Results from Spearman rank correlation tests between brain region size and MiXer parameter 
estimates, split by regional surface area and thickness-based estimates. 
 

 Surface area Thickness 
 Rs p-value Rs p-value 
NC -.254 .047 .110 .397 
𝜎"
# .412 .001 .022 .866 

h2 .387 .002 .216 .094 
 
 
Parameter estimates per region 
Please see Figure S1 for a visual representation of the polygenicity, discoverability and heritability of each of 
the regional cortical measures derived from the Desikan-Killiany atlas. 
 
Comparisons of cortical thickness-based parameter estimates between parcellation schemes    
In the main text, the comparison between the different parcellation schemes reflects regional surface area-based 
estimates only. In Figure S2, we present the results from the same comparisons based on cortical thickness. As 
mentioned in the main text, and as can be seen in the figure, there were no differences in discoverability of 
cortical thickness between the schemes, and only one significant difference in polygenicity, between Yeo-17 
and the Glasser parcellation. Note that the Chen et al. parcellation is missing from this comparison. None of the 
24 clusters passed the inclusion criterion of having a heritability estimate that is three times higher than its 
standard error. This attests to the specificity of this scheme, i.e. clusters formed on the basis of surface area do 
not produce meaningful cortical thickness estimates.   
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Figure S1. Brain maps with color coding 
reflecting MiXer parameter estimates for the 
Desikan-Killiany regional cortical measures, with 
A) indicating polygenicity, B) discoverability, and 
c) heritability. For each subplot, the top row 
indicates the estimates obtained from the regional 
surface area measures, and the bottom row those 
based on the regional thickness estimates. D) 
provides a legend of the regions. 
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Figure S2. Comparisons of discoverability and polygenicity of regional cortical thickness across 
parcellation schemes. Violin plots comparing the polygenicity (A), discoverability (B) and heritability 
(C) (on the y-axis) of the different parcellation schemes (x-axis). Significance of each paired comparison, 
indicated at the top of each graph, is calculated through the Wilcoxon signed-rank test with *:p<.05 and 
****:p<.00001. 
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