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Abstract 
 

Genetic factors and socioeconomic (SES) inequalities play a large role in educational 
attainment, and both have been associated with variations in brain structure and cognition. 
However, genetics and SES are correlated, and no prior study has assessed their neural effects 
independently. Here we used polygenic score for educational attainment (EduYears-PGS) as 
well as SES, in a longitudinal study of 551 adolescents, to tease apart genetic and environmental 
effects on brain development and cognition. Subjects received a structural MRI scan at ages 14 
and 19. At both time-points, they performed three working memory (WM) tasks. SES and 
EduYears-PGS were correlated (r = 0.27) and had both common and independent effects on 
brain structure and cognition. Specifically, lower SES was related to less total cortical surface 
area and lower WM. EduYears-PGS was also related to total cortical surface area, but in 
addition had a regional effect on surface area in the right parietal lobe, a region related to non-
verbal cognitive functions, including mathematics, problem solving and WM. SES, but not 
EduYears-PGS, affected the change in total cortical surface area from age 14 to 19. This is the 
first study demonstrating the regional effects of EduYears-PGS and the independent role of 
SES on cognitive function and brain development. It suggests that the SES effects are 
substantial, affect global aspects of cortical development, and exert a persistent influence on 
brain development during adolescence. 
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Introduction 
 

Adolescence is a critical phase in neural and cognitive development during which 
much of adult trajectories are shaped, yet there is still much we don’t know about the 
environmental and genetic influences on this developmental period 1–3. Socioeconomic status 
(SES) inequalities have been associated with differences in executive function, memory, 
emotional regulation and educational attainment 4–6. SES is also associated with functional 
and structural neural differences in a wide range of cortical areas, including those underlying 
higher cognitive functions 7–11.  

Although SES is commonly assumed to represent a purely environmental factor, large 
portions of variability in SES can be explained by additive genetic factors 12. Genetic 
differences are thus a confound that has not been adequately addressed by prior studies of 
SES and neural development 13,14. 

Recent advances in behavioral genetics have identified substantial genetic associations 
with educational attainment. In a genome wide association study with 1.1 million individuals, 
Lee and colleagues 15 described a polygenetic score (EduYears-PGS) which explained up to 
13% of the variance in educational attainment. A large proportion of the genetic variants 
identified are relevant for brain development and show tissue-specific expression in the 
cerebral cortex. Therefore, while SES is a strong environmental predictor for educational 
attainment, EduYears-PGS represents a powerful genetic predictor. 

Here we evaluated the independent effects of SES and EduYears-PGS in a 
longitudinal study of brain development and cognitive function in 551 adolescents. A major 
strength of our sample is that it was specifically designed to include poor communities for an 
accurate range of SES inequalities 16. Adolescent age at the first timepoint was 14, and at the 
second time point was 19, which represents an important developmental window which 
includes high school education.  Indeed, an impact on cognition is one likely pathway by 
which both SES and genetics could influence educational attainment. We chose working 
memory (WM) as a measure of cognitive function, since it is highly correlated with academic 
ability and was available at both timepoints 17. 

Genetics and environment effects could either be manifested in local cortical regions, 
such as a specific prefrontal area, or they could have global effects, for example via a 
molecular mechanism that involves most cortical neurons. The distinction is important 
because it tells us about the potential mechanisms in play, has functional consequences for the 
individual and could have implications for remedial interventions. Therefore, we tested for 
distinct global and regional effects, commonly ignored in the previously literature 7,8,11, with 
the exception of only one known study to date 18. The latter, however, did not control for any 
genetic component of SES. 

We used a bivariate latent change score model (bLCS) to analyze the independent 
effect of EduYears-PGS and SES on cognition and global measures of cortical thickness and 
surface area at age 14 and on the amount of change until 19, while controlling for age, gender, 
and scan site. Second, to examine regional effects in the cortex, we used cluster corrected 
vertex-wise analyses to isolate the independent effects of SES and EduYears-PGS, while 
controlling for respective global values. 
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Results 
 
Cognitive effects in Early Adolescence 

 
Data from 551 adolescents recruited by the IMAGEN consortium (https://imagen-

europe.com/) were included. First, global measures of cortical surface area and scores from 
three WM tasks were entered into a bLCS model.  

A strict measurement invariant, bivariate-LCS model (Fig. 1), with SES and 
EduYears-PGS as covariates of interest, fit the data well, RMSEA = .031, CFI = .997. We 
found that SES and EduYears-PGS were significantly and positively correlated (r = .27, p < 
.001). SES had a positive and significant association to WM, even when correcting for 
EduYears-PGS (β = .23, p < .001). EduYears-PGS also had a positive, independent, although 
weaker effect, on WM at 14 (β = .11, p < .05).  

Two subtests of an IQ test (WISC, perceptual reasoning and verbal comprehension) 
were available when participants were 14 years old, but not at 19. The results from both 
subtests mirrored the results from WM with significant, independent effects of both SES and 
EduYears-PGS (SI Table 1 and 2).  

 
Figure 1 Path diagram of a strict measurement invariant bLCS model with the change of surface area (SA) and working 
memory (WM) from 14 to 19. SES and EduYears-PGS are our exogenous variables of interest, all variables are standardized. 
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Following convention, squares represent observed variables and circles represent latent variables. Single headed arrows 
denote regressions while double headed arrows represent variances, co-variances or error. See SI Fig. 2 for a specification 
without SES and EduYears-PGS and with SA and WM at 14 as exogenous variables on change. 

 
Global Surface Area in Early Adolescence 

 
Global surface area in 14-year-olds was significantly associated with both SES (β = 

.18, p < .001) and EduYears-PGS (β = .12, p < .01), each contributing unique variance. Both 
effects were positive with a slightly stronger effect of SES (Fig. 2). As expected, surface area 
and WM were both correlated at age 14 (r = .17, p < .01). A linear model showed a 
relationship between surface area and gender, yet there was no interaction between gender 
and SES (see SI Table 3). 

An important question on SES and brain development is whether there is a threshold 
effect (such that only subjects below a certain SES level are affected), or whether the effects 
are gradual for all levels of SES. To evaluate this, we fitted models with the natural 
logarithmic and a 3rd degree polynomial for SES. In comparison to the linear model (AIC = -
1161), neither the logarithmic (AIC = -1161) nor the polynomial model (AIC = -1157) 
showed improved model fits. There was thus no evidence of a threshold effect in our sample. 
 
 

 
Figure 2 Partial residual plots of a) EduYears-PGS and b) SES on global surface area (SA) at age 14.  

 
Regional cortical effects in Early Adolescence  
 

Next, we investigated regional cortical effects of SES and EduYears-PGS on surface 
area at age 14. In this analysis, we corrected for average surface area, age, sex and scanning 
site. A vertex-wise analysis (CFT < .001, CWP < .05) identified one cluster, uniquely related 
to EduYears-PGS, located in the right intraparietal sulcus, partly covering the top of the 
supramarginal gyrus (309 mm2, [x = 49, y = -42, z = 39], p < .05) (Fig. 3).   
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Figure 3: The right IPS in which surface area at 14 relates to EduYears-PGS while controlling for SES and global effects. 

 
SES did not have any regional effects at age 14 when covarying for average surface area. 
Figure 4 illustrates this finding by showing uncorrected, vertex-wise, surface maps in which 
the mean image of all subjects 1 SD above the means for SES and EduYears-PGS (analyses 
are done separately for the two measures) are subtracted from the mean image of all subjects 
1 SD below the mean (SES-low n=83, SES-high n=86, PGS-low n=79, PGS-high n=80). To 
obtain representative mean and standard deviations of random data, this procedure was 
repeated 10,000 times on randomly sampled data without replacement (groups n = 85). 
Consistent with the statistical analyses, these maps and histograms suggest that almost all the 
cortex was affected by SES. Firstly, this effect is clearly shown by the density histogram of 
SES, in which almost every vertex value is above zero (i.e., the mean of randomly sampled 
data) (Fig. 4a). To further illustrate this widespread cortical effect, we took all vertex values 
from one hemisphere to produce a square, 2-dimensional flat-map which contained all data 
from the hemisphere in one matrix (Fig. 4b). We thereby reduced topographical information 
(i.e., localization to brain regions) in order to only focus on size and distribution of relative 
increases and decreases in surface areas.  This resulted in 3 flat maps (random, EduYears-
PGS and SES), the color bar was constrained to the minimum and maximum values of 
random data. 
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Figure 4: Global surface area effects of the left hemisphere displayed with (a) density histogram and, (b) flat maps. White 
area corresponds to missing values from the cerebellum. Data for EduYears-PGS (middle figure) and SES (right most) were 
calculated by vertex-wise averaging of subjects 1 SD above the mean subtracted from those 1 SD below. Random data were 
selected by random sampling without replacement (n = 85 for each group). The two groups were then separately averaged 
vertex-wise and subtracted from each other. This was repeated 10,000 times to calculate an average random mean and 
standard deviation. To produce plots for random data the first representative sample was chosen. 

Adolescent Development in Cognition  
 

There was significant improvement in WM from age 14 to 19 (β = 2.31, p < .001) and 
this was more pronounced in the subjects with lower WM scores at age 14 (r = -0.59, p < .01). 
However, inspection of the distributions and variation of performance on the WM tasks at the 
second timepoint suggested that there were ceiling effects, which could artificially lead to 
subjects who performed well at age 14 having less room for improvement. SES was not 
related to change in WM (p > .05), but EduYears-PGS was (β = -.27, p < .05). 
 
Adolescent Development in Surface Area 

 
Next, we investigated global changes in surface area over the course of five years. 

Correlation in global surface area between the ages of 14 (Mean = 181682mm2, SD = 
16130mm2) and 19 (Mean = 177625mm2, SD = 15860mm2) was very high (r = .99, p < .001). 
On average, there was a significant decrease in total surface area over five years (-4057mm2, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2019. ; https://doi.org/10.1101/866624doi: bioRxiv preprint 

https://doi.org/10.1101/866624
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

β = -2.57, p < .001; SI fig. 6a). SES, but not EduYears-PGS, was significantly related to 
change in surface area (β = -.15, p < .01). 

Subtracting each individual’s surface area at age 14 from their surface area at age 19 
removes inter-individual differences in total surface area. However, prior studies have shown 
that change is dependent on point of departure, as subjects with higher initial surface area 
show larger change 19. Therefore, we performed regional analyses both with and without 
correction for average surface area at 14. Using vertex-wise subtracted images, we found a 
cluster in left caudal superior frontal sulcus (138 mm2, [x = -28, y = 10, z = 48], p < .05) 
significantly associated with SES (SI Fig. 4). This cluster was no longer significant when 
covarying for global surface area at 14. Furthermore, in a post hoc analysis we found no 
significant association of change in this region to the change of WM. No clusters were found 
for the effect of EduYears-PGS on change in cortical surface area. 
  
Cortical thickness 
 

Global cortical thickness decreased from age 14 to 19 (-.25mm, p < .001; SI fig. 6b). 
A strict measurement invariant, bivariate-LCS model for global cortical thickness (Sup Fig. 
1b), with SES and EduYears-PGS as covariates of interest, fit the data well, RMSEA = .037, 
CFI = .988. Neither SES nor EduYears-PGS were significantly related to average cortical 
thickness at age 14 or to the thinning over adolescence. Furthermore, there was no significant 
regional effect (at 14 or from 14-19) on cortical thickness from either SES or EduYears-PGS, 
regardless of global correction.   
 

Discussion 
 

Here we have shown that both environmental (SES) and genetic (EduYears-PGS) 
factors, each of which influence educational attainment, play an important role in cognitive 
and brain development during adolescence. This is the first study to test for and confirm 
independent, non-overlapping effects of SES and EduYears-PGS. We found that although 
genetic and environmental determinants of educational attainment are correlated, they carry 
independent influences on cognition and brain development. Both SES and EduYears-PGS 
affected total cortical surface area at age 14, with SES having only a global effect, while 
EduYears-PGS also had a regional effect in the right intraparietal sulcus.  In analyzing 
developmental changes, we found that SES, but not EduYears-PGS, continued to  be relevant 
for surface area change from 14 to 19 years. 
 
Cognition in early adolescence  
 

Both SES and EduYears-PGS independently correlated with working memory (WM) 
in early adolescence, with SES having about twice as strong of an influence. The IQ-subtests 
displayed the same pattern, showing that the associations were not specific for WM, but likely 
reflect a general effect on cognition. This is consistent with the well-known correlation 
between educational attainment and IQ 20,21 and underscore the value of WM as a suitable and 
meaningful measure of adolescent cognition and cognitive development. 
 
Morphometry in early adolescence 
 

The strong relationship observed between SES and global surface area at age 14 is 
consistent with prior findings 7,11. There are multiple potential mechanisms mediating an 
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effect of SES on brain development, including stress and glucocorticoids during pregnancy, 
toxins, premature delivery, maternal care, lack of cognitive stimulation and chronic stress 
during childhood and adolescence 9,22. The global effect we observed could come from one or 
several factors with a global impact or be the result of several regional effects that together 
affect most of the cortex with wide-ranging behavioral effects 23. 

After correcting for global surface area, there were no regional effects of SES. 
Similarly, no clusters were significant when total intracranial volume was corrected for 
instead of global surface area. Although several studies report regional effects of SES on 
surface area and cortical thickness 7,11, these studies did not correct for global effects. A post-
hoc analysis of our data showed that if the global differences are not controlled for, several 
clusters reach significance, in agreement with prior studies (SI, Fig. 5).  

Contrasting the average surface area in high vs low SES subjects (Fig. 4), it is clear 
that almost the entire cortex is affected. Without total surface area correction the regional 
effects can give a false sense of localization 24,25. We view it as more accurate to describe the 
effect of SES on surface area as a global effect, where regional effects over-and-above this 
global effect cannot be statistically distinguished from noise. 

EduYears-PGS affected global surface area, consistent with prior findings showing a 
relationship between EduYears-PGS and intracranial volume 26,27. That was expected for our 
polygenic score for educational attainment, given that both intracranial volume and total 
surface area were also shown in the past to be correlated with IQ 19,28. In addition, here we 
found that EduYears-PGS was associated with regional surface area in the intraparietal 
sulcus.  

Regional effects are consistent with the fact that some of the genetic markers from the 
EduYears-PGS are associated with regional gene expression 15. The intraparietal sulcus is a 
region typically associated with a range of non-verbal cognitive abilities, including nonverbal 
reasoning, visuospatial WM and mathematics 29–31. Gray matter volume 32,33 and brain activity 
34–36 of the intraparietal sulcus predicts current and future mathematical skills in children and 
adolescents.  

A study spanning 6-18 year-old’s found that the right anterior intraparietal sulcus was 
first associated with visuo-spatial WM, and later during development associated with 
mathematics, suggesting a functional plasticity of this region 37. Given that both non-verbal 
reasoning, WM and mathematics are predictors of future educational attainment, it is of 
particular note that our data show the intraparietal sulcus to be specifically affected by 
EduYears-PGS above and beyond the polygeneic influences on global cortical surface area. 

We found no association between EduYears-PGS or SES with cortical thickness, in 
agreement with some previous studies on SES 7, but not others 8,11. It is important to 
emphasize that our quality control procedure were very strict and previous literature has 
shown cortical thickness results to change based upon strictness 38–40. This reasoning, 
combined with our large sample size and the presence of effects found for surface area, lead 
us to interpret this as an important null result. 
 
Adolescent Development 
 

Over the course of 5 years, we found a global decrease in surface area. The amount of 
decrease was related to SES, but not EduYears-PGS, showing a continuing effect of SES on 
brain development during adolescence. Although the effect of SES at age 14 was positive, the 
effect on change was negative (Fig. 1). This is likely related to the non-linear developmental 
trajectories of surface area during childhood and adolescence with an inverted u-form 
(typically a loss of surface area starting in adolescence) where height and delay of the peak 
can differ between individuals as well as between brain region 1,2,23. 
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There was an association between SES and regional change in the left caudal middle 
frontal gyrus, but this did not survive correction for global surface area at age 14. The 
interpretation of this regional finding is therefore unclear.  

One of the benefits of using a bLCS model is that it allows us to examine the influence 
of baseline measures (e.g., surface area and WM at 14) on the change of those measures. 
Interestingly, higher WM independent of surface area at 14, and after correction for SES and 
EduYears-PGS, affected the amount of global surface area decrease during adolescence. 
Recent research has shown intra-individual change in cognition affecting later change in 
surface area 41. An accelerated reduction of surface area during development has previously 
been observed in higher IQ subjects 19. In summary, SA typically decreases during 
adolescence. Higher WM enhances this decrease, suggesting that it is a beneficial 
developmental process blunted by low SES. 

WM at age 14 also negatively predicted the amount of WM change over adolescence. 
However, due to some ceiling in our WM tasks at the second time-point (an inherent problem 
in longitudinal studies), we interpret this result with caution. If this result reflects a true effect, 
it could represent a catch-up – subjects with lower WM show greater gains in WM during 
adolescence. However, a previous study of PGS and SES on IQ showed a widening gap 
between subjects with low and high EduYears-PGS 42. At least in part, our results here could 
alternatively be explained by ceiling effects, which could artificially lead to high performing 
subjects having less room to improve. 
 
Limitations 
 

A major caveat of current PGS studies is that they are often limited to subjects with 
European ancestry, which limits generalizability. The neural measures of this study were 
cortical surface area and cortical thickness. Of these, only surface area correlated with 
genetics, environmental factors and cognitive measures, which suggests that this is the more 
important measure for the present investigation. However, these surface area methods are 
limited to cortical structures thereby excluding subcortical regions such as the hippocampus. 
Finally, our aim was to use environmental and genetic predictors of educational attainment. If 
the sole goal were to isolate a “pure” measure of SES as an environmental factor, then this 
would have been better accomplished by using a PGS for SES. 
 
Conclusions 
 

Here we report, for the first time, distinct effects of EduYears-PGS and SES on 
cognition, brain structure, and brain development. These findings imply that behavioral and 
psychological consequences of SES are likely wide ranging, and less targeted towards a 
specific cognitive function or behavioral deficit. Importantly, SES has a significant effect on 
cognition, even after removing genetic variance. Future analyses should aim to disentangle 
the many aspects of SES. A continued greater insight into the genetics of cognitive 
development will help inform policy decision to tackle environmental influences.  
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Methods 
 
Study description 
 

IMAGEN is a European multi-site longitudinal genetic and neuroimaging study. All 
procedures were approved by each of the sites’ (Berlin, Dresden, Dublin, Hamburg, London, 
Mannheim, Nottingham, Paris) ethics committees. Written informed consent was obtained 
from the adolescents and parents involved in the study. Our study uses data from the first two 
neuroimaging waves, at ages fourteen (14.44, SD = 0.38) and nineteen (19.01, SD = 0.72). 
See Schumann and colleagues16 for more information on IMAGEN protocols and 
inclusion/exclusion criteria. 

For subjects to be included in our study, they had to be of European ancestry (due to 
limitations of the imputations and possible inferences for creating the EduYears-PGS) and 
have no siblings included in the study. Importantly, subjects also had to have all of the 
relevant data available; structural MRI’s at both timepoints, genetics, relevant demographics 
(e.g., gender and age) and three behavioral WM tasks at the first timepoint. Lastly, genetic 
and neuroimaging data had to pass their respective quality controls (criterion discussed in 
depth below). This resulted in a final sample of 551 subjects (321 females). 
 
Behavioral measures 
 

We estimated working memory (WM) based on three cognitive tasks from the 
CANTAB battery available in IMAGEN. We combined these into a latent factor that 
explained around 40% of the common variance. The tasks were: 1) Spatial WM task (SWM), 
in which participants must search for a token hidden in one of many boxes. The token does 
not repeat location, and the measure consisted of the number of times participants returned to 
search a box that had a token. 2) Pattern Recognition Memory task (PRM), in which 
participants must remember 12 abstract patterns shown in a sequence. The measure consisted 
of correct choices on a two alternative forced choice task immediately after encoding. 3) 
Rapid Visual Information Processing task (RVP), in which participants must monitor for a 3-
digit target sequence from a stream of 100 digits per minute. The measure used was correct 
responses. 
 
Socioeconomic status 
The socioeconomic status (SES) score was comprised of the sum of the following variables: 
Mother’s Education Score, Father’s Education Score, Family Stress Unemployment Score, 
Financial Difficulties Score, Home Inadequacy Score, Neighborhood Score, Financial Crisis 
Score, Mother Employed Score, Father Employed Score. 
 
EduYears Polygenic Score 
All participants in IMAGEN had DNA extracted from blood samples and were genotyped 
with the Illumina Human610-Quad Beadchip or the Illumina Human660-Quad Beadchip. A 
PCA approach was used to identify and exclude individuals with non-European ancestry. The 
quality control procedures excluded SNPs with call rates >95%, minor allele frequencies less 
than 5%, and SNPs that did not pass an exact test of Hardy-Weinberg equilibrium at P < 
5x10-4. After quality control, around 480,000 SNPs were then used for imputations via a 
reference file created by the ENIGMA2 Genetics Support Team. Haplotype phasing and 
imputation was performed using, respectively, Mach1 and Minimac codes from the MaCH 
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software suit 43, as specified in the ENIGMA2 protocol 
(http://enigma.ini.usc.edu/wpcontent/uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.pdf). 
 
We then used this genotype data to estimate EduYears-PGS in each participant based on the 
effect sizes of thousands of SNPs discovered by the most recent GWAS on educational 
attainment 15. We first obtained the summary statistics of the GWAS from the Social Science 
Genetic Association Consortium (https://www.thessgac.org/data). We decided which 
significance threshold to use in our sample by performing high resolution scoring in PRSice-2 
44 based on the phenotype of WM (from the latent factor of our three cognitive tasks). The 
threshold that optimally explains the variance in WM resulted in an EduYears PGS containing 
5709 SNPs. To guard against overfitting, we performed 1 million permutations and obtained a 
significant empirical p-value of our estimate (empirical p = 0.009). EduYears-PGS in our 
sample was standardized to have a mean of zero and a standard deviation of one for the 
population. All steps for creating the EduYears-PGS were performed using the R package 
PRSice-2 44 and PLINK version 1.90 45. 
 
Structural Imaging 

 
Image Acquisition and Preprocessing 

 
Structural imaging data were acquired using numerous 3T MRI scanners (Philips Medical 
Systems Achieva, Bruker, Siemens TrioTim, Siemens Verio, Bruker/GE Medical Systems 
Signa Excite, GE Medical Systems Signa HDx) with a T1-weighted gradient echo sequence 
(isotropic 1.1mm) based on the ADNI protocol 
(http://adni.loni.usc.edu/methods/documents/mri-protocols/) 46. Freesurfer (v6.0.0; 
http://surfer.nmr.mgh. harvard.edu/) was used for image preprocessing and SA/CT estimation, 
previously reported in depth 47. Specifically, the longitudinal pipeline was used as it is 
optimized for longitudinal data by registering the differing timepoints to a median image 
thereby reducing within-subject variability and avoiding registration bias 48. All processing 
was run using the high-performance computing (Bianca cluster) resources provided by SNIC 
through Uppsala’s Multidisciplinary Center for Advanced Computational Science 
(UPPMAX) under Project sens2018615 using gnuparallel 49. Since IMAGEN is a multi-center 
study we used ComBat at the vertex-wise level to remove unwanted site-based variability 50. 
Variables of interest (baseline age, EduYears-PGS, SES, scan interval, gender) also showed 
site specific variability, therefore we entered these in ComBat to retain these true site-specific 
differences. Mean CT and SA were calculated by averaging all of the vertices. For vertex-
wise analysis we smoothed the data with a gaussian smoothing kernel of 10mm FWHM. 
 

 
Quality Control 

 
The IMAGEN team provided anatomical quality control for the second time-point and 
partially for the first time-point. Following longitudinal preprocessing, two raters graded the 
Desikan–Killiany parcellated atlas and the white matter/pial boundary overlaid on the T1 
(norm.mgz) in a coronal view separately for both the final longitudinal timepoints and the 
base (median) image on a 3-point scale (pass, doubtful, fail). Any scan that was marked 
‘doubtful’ was reviewed by the other rater, and a consensus decision to include (pass) or 
exclude (fail) was made. A large number of scans were determined to have skull strip errors 
(via the pial boundary).  As previous research on cortical thickness has shown that quality 
control can impact the conclusions drawn 38, we reran recon-all on a subset of subjects 
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showing skull strip errors with ‘gcut’. If the error persisted in either timepoint the subject was 
excluded. From 1963 subjects, 1168 had structural scans at both timepoints, from these 748 
passed quality control (pass rate 64%). In a similar fashion to previous research with large 
sample sizes quality control was not entirely overlapping between the two raters 51. In the 
overlap sample of 101 subjects we found a high inter-rater agreement (kappa = 0.88).  
 
 
Statistical analysis 
 
Global measures 
 
We choose to use a bivariate latent change score (bLCS) model as it allowed us to examine 
the development of neural and behavioral measures simultaneously without the constraints of 
measurement error 52,53. A latent change score model can be conceptualized as a 
reparameterization of a paired t-test and has recently been highlighted for its usefulness in 
teasing apart the complex processes involved in longitudinal developmental research 54,55. 
bLCS models were estimated for average cortical thickness and average surface area. For 
model estimation we used full information maximum likelihood and a robust maximum 
likelihood estimator with a Yuan-Bentler scaled test statistic from the R (v. 3.6.0) package 
Lavaan (v. 0.6-3) 56,57. Missing follow-up behavioral data was imputed under the assumption 
of missing at random (see SI Fig. 3) 58. We assessed model fit using the comparative fit index 
(CFI; fit > 0.95) and the root mean square error of approximation (RMSEA; fit < .08)59. The 
subjects’ age and gender were regressed from all observed behavioral and neural measures in 
both timepoints before model fitting. All models have strict measurement invariance; 
intercepts, loadings and error variance were constrained to be equal across time. Prior to 
fitting a bLCS model we assessed fit on respective measurement models. If estimates present 
Heywood cases (negative error variances) we left them unconstrained as long as the null 
hypothesis could not be rejected with the use of confidence intervals 60. Any model presented 
will have a positive upper bound confidence interval; we chose this approach since 
constraining variance can lead to unintended consequences 60,61. 
 
Vertex-wise exploratory analysis 
 
An inherent goal in vertex-wise exploratory analysis is anatomical localization therefore we 
corrected for average values of surface area and cortical thickness. Correcting for global 
values in the analysis at age 14 allowed us to detect regional areas that are unrelated to the 
overall global effects (see discussion for further elaboration). Linear models were fit for each 
vertex in Freesurfer using Monte Carlo based cluster-wise correction with a cluster-forming 
threshold of .001, a cluster-wise alpha of .05 and Bonferroni correction for making two 
independent tests for the two hemispheres 62,63. 
 
We used two linear models to probe regional specificity of SES and EduYears-PGS, one for 
subjects at 14 and another on the vertex-wise subtracted images (age 19 subtracted from age 
14). Both models were fit for SA and CT separately, resulting in a total of 4 analyses. In the 
model at age 14 vertices were predicted by the EduYears-PGS and SES while being 
controlled for mean value of the modality analyzed, gender, age at the first scan and gcut. 
Gcut is a dummy variable coding for subjects who needed stricter skull strip processing to 
pass quality control. Subtracted vertices were predicted by SES and EduYears-PGS while 
being controlled for gender, between scan interval and gcut.  
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Supplementary: 
 
Supplementary Figures: 
 

 
Supplementary Figure 1a: A bLCS model with strict measurement invariance (CFI = .88, RMSEA = .04) showing the 
relationship of WM at 14 with the amount of cortical thickness change when covarying for cortical thickness at 14. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 6, 2019. ; https://doi.org/10.1101/866624doi: bioRxiv preprint 

https://doi.org/10.1101/866624
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

 
Supplementary Figure 1b: A bLCS model with strict measurement invariance for cortical thickness. 
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Supplementary Figure 2: A bLCS model with strict measurement invariance (CFI = .997, RMSEA = .048) showing cross & 
self-feedbacks as regressions, the results do not change much from a covariance model (in text Fig. 1).  
 
 

 
Supplementary Figure 3: Rain cloud showing the assumption of missing at random, for the imputed follow-up working 
memory tasks. 
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Supplementary Figure 4 The left caudal middle frontal in which change of surface area is related to SES. This cluster did not 
survive if we covaried for average surface area at 14. 

 
Supplementary Figure 5: Surface area clusters at age 14 related to SES while controlling for EduYears-PGS. Interpretation 
should be limited as they are not covaried for total intercranial volume or average surface area. 

 

 
Supplementary Figure 6a: Mean surface area change per hemisphere 
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Supplementary Figure 6b: Mean cortical thickness change per hemisphere 

 
Supplementary Tables: 
 
Table 1 
  
Regression results using WISC subtest perceptual reasoning as the criterion 
  

Predictor b 
b 

95% CI 
[LL, UL] 

sr2  
sr2  

95% CI 
[LL, UL] 

Fit 

(Intercept) 73.89** [28.36, 119.42]    
all_SES 1.05** [0.71, 1.38] .07 [.03, .11]  

PGS 0.47** [0.16, 0.77] .02 [-.00, .04]  
BL_MPRAGE_AGE 0.00 [-0.01, 0.01] .00 [-.00, .00]  

all_sexMale -2.22 [-4.66, 0.21] .01 [-.01, .02]  
     R2   = .118** 
      
      

 
Note. A significant b-weight indicates the semi-partial correlation is also significant. b 
represents unstandardized regression weights. sr2 represents the semi-partial correlation 
squared. LL and UL indicate the lower and upper limits of a confidence interval, respectively. 
* indicates p < .05. ** indicates p < .01. 
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Table 2  
  
Regression results using WISC subtest verbal comprehension as the criterion 
  

Predictor b 
b 

95% CI 
[LL, UL] 

sr2  
sr2  

95% CI 
[LL, UL] 

Fit 

(Intercept) 94.67** [52.12, 137.23]    
all_SES 1.22** [0.90, 1.53] .10 [.05, .15]  

PGS 0.30* [0.01, 0.59] .01 [-.01, .02]  
BL_MPRAGE_AGE -0.00 [-0.01, 0.00] .00 [-.00, .01]  

all_sexMale 2.86* [0.58, 5.13] .01 [-.01, .03]  
     R2   = .141** 
      
      

 
Note. A significant b-weight indicates the semi-partial correlation is also significant. b 
represents unstandardized regression weights. sr2 represents the semi-partial correlation 
squared. LL and UL indicate the lower and upper limits of a confidence interval, respectively. 
* indicates p < .05. ** indicates p < .01. 
 

 
 
Table 3 
  
Regression results using total_SA_MRI1 as the criterion 
  

Predictor b 
b 

95% CI 
[LL, UL] 

sr2  
sr2  

95% CI 
[LL, UL] 

Fit 

(Intercept) 1.17** [0.90, 1.43]    
all_SES 0.01** [0.00, 0.01] .03 [.01, .06]  

all_sexMale 0.13** [0.12, 0.15] .36 [.30, .43]  
BL_MPRAGE_AGE -0.00 [-0.00, 0.00] .00 [-.00, .00]  

     R2   = .390** 
      
      

 
Note. A significant b-weight indicates the semi-partial correlation is also significant. b 
represents unstandardized regression weights. sr2 represents the semi-partial correlation 
squared. LL and UL indicate the lower and upper limits of a confidence interval, respectively. 
* indicates p < .05. ** indicates p < .01. 
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