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Significance 
 
Genome sequences are being produced for more and more eukaryotic species. The bulk of 
these genomes is composed of parasitic, self-mobilizing transposable elements (TEs) that play 
important roles in organismal evolution. Thus there is a pressing need for developing software 
that can accurately identify the diverse set of TEs dispersed in genome sequences. Here we 
introduce RepeatModeler2, an easy-to-use package for the curation of reference TE libraries 
which can be applied to any eukaryotic species. Through several major improvements over the 
previous version, RepeatModeler2 is able to produce libraries that recapitulate the known 
composition of three model species with some of the most complex TE landscapes. Thus 
RepeatModeler2 will greatly enhance the discovery and annotation of TEs in genome 
sequences.   
   
Abstract 
 
The accelerating pace of genome sequencing throughout the tree of life is driving the need for 
improved unsupervised annotation of genome components such as transposable elements 
(TEs). Because the types and sequences of TEs are highly variable across species, automated 
TE discovery and annotation are challenging and time-consuming tasks. A critical first step is 
the de novo identification and accurate compilation of sequence models representing all the 
unique TE families dispersed in the genome. Here we introduce RepeatModeler2, a new 
pipeline that greatly facilitates this process. This new program brings substantial improvements 
over the original version of RepeatModeler, one of the most widely used tools for TE discovery. 
In particular, this version incorporates a module for structural discovery of complete LTR 
retroelements, which are widespread in eukaryotic genomes but recalcitrant to automated 
identification because of their size and sequence complexity. We benchmarked 
RepeatModeler2 on three model species with diverse TE landscapes and high-quality, manually 
curated TE libraries: Drosophila melanogaster (fruit fly), Danio rerio (zebrafish), and Oryza 
sativa (rice). In these three species, RepeatModeler2 identified approximately three times more 
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consensus sequences matching with >95% sequence identity and sequence coverage to the 
manually curated sequences than the original RepeatModeler. As expected, the greatest 
improvement is for LTR retroelements. The program had an extremely low false positive rate 
when applied to simulated genomes devoid of TEs. Thus, RepeatModeler2 represents a 
valuable addition to the genome annotation toolkit that will enhance the identification and study 
of TEs in eukaryotic genome sequences. RepeatModeler2 is available as source code or a 
containerized package under an open license (https://github.com/Dfam-
consortium/RepeatModeler, https://github.com/Dfam-consortium/TETools). 
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Introduction 
 
Most eukaryotic genomes contain a large number of interspersed repeats that by and large 
represent copies of transposable elements (TEs) at varying stages of evolutionary decay (Smit 
1999; Consortium and International Human Genome Sequencing Consortium 2001; Jurka et al. 
2007; Huang et al. 2012; Bourque et al. 2018). TEs are genomic sequences capable of 
mobilization and replication, generating complex patterns of repeats that account for up to 85% 
of eukaryotic genome content (International Wheat Genome Sequencing Consortium (IWGSC) 
et al. 2018). Different organisms have diverse TE landscapes, including a wide range of 
abundances, activity levels, and sequence degradation levels (Hua-Van et al. 2005; Smit 2012). 
As mutagens and major contributors to the organization, rearrangement, and regulation of the 
genome, TEs have had a profound impact on organismal evolution (reviewed in (Bourque et al. 
2018)). Our understanding of the biological impact of TEs has grown steadily through the study 
of both model and non-model organisms from which whole genome sequences can now be 
routinely assembled.  With each new species sequenced comes the challenge of identifying its 
unique set of TE families, which remains a tedious and largely manual endeavor. Yet, the 
accurate identification of TEs and other repeats is prerequisite to nearly all other genomic 
analysis, including the annotation of genes (Yandell and Ence 2012).   
 
What makes TEs so potent in remodeling the genome but also challenging to annotate is their 
diversity in structures and sequences, which greatly vary across species (Huang et al. 2012; 
Bourque et al. 2018). There are two major classes of TEs (reviewed in (Finnegan 1989; Wicker 
et al. 2007; Piégu et al. 2015); https://www.dfam.org/classification): class I retroelements 
replicate and transpose via an RNA intermediate; while class II elements (or DNA transposons) 
are mobilized via a DNA intermediate. Class I elements include long and short interspersed 
elements (LINEs, SINEs) and long terminal repeat (LTR) retrotransposons. The most common 
class II transposons are TIR (terminal inverted repeats) elements, which transpose via a “cut-
and-paste” mechanism (Feschotte and Pritham 2007). But other class II elements, such as 
Helitrons, also use replicative mechanisms (Thomas and Pritham 2015; Grabundzija et al. 
2018). Within each class, TE sequences are extremely diverse and evolve rapidly (Wicker et al. 
2007; Arkhipova 2017; Bourque et al. 2018). Additionally, once integrated in the host genome 
each element is subject to mutations, such as point mutations, and a vast array of 
rearrangements, including internal deletions, truncations, and nested insertions. The vast 
sequence diversity of TEs combined with the complexity of mutations that occur after insertion 
makes automated TE identification and classification a daunting task.   
 
The most elementary level of classification of TEs is the family, which designates interspersed 
genomic copies derived from the amplification of an ancestral progenitor sequence (Wicker et 
al. 2007). Each TE family can be represented by a consensus sequence approximating that of 
the ancestral progenitor. Such consensus sequence can be recreated from a multiple alignment 
of individual genomic copies (or “seeds”) from which each ancestral nucleotide can be inferred 
based on a majority-rule along the alignment. Similarly, the seed alignment may be used to 
generate a profile Hidden Markov Model for each family. Consensus TE sequences and HMMs 
are used for many downstream applications in the study and annotation of genomes. Notably 
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they are used to annotate or “mask” the genome using RepeatMasker, which is a prerequisite 
for gene annotation (Yandell and Ence 2012). Consensus sequences are generally stored in 
widely used databases such as Repbase (Bao et al. 2015) or along with seed alignments and 
HMMs in Dfam (Hubley et al. 2016). Seed alignments and accurate sequence models are 
critical for reconstructing the evolutionary history of TEs and are used for a variety of biological 
studies including the study of TE invasions and regulation (e.g. (Kofler et al. 2015)). Years of 
manual curation have resulted in high quality consensus libraries for a limited set of species, 
mostly model organisms (Lerat et al. 2003; Hubley et al. 2016; Stitzer et al. 2019). 
 
The number of whole-genome assemblies for species throughout the tree of life continues to 
grow at a very fast rate , and efforts are underway to produce thousands more (Koepfli et al. 
2015; Lewin et al. 2018). Long-read sequencing technologies are improving the quality of 
genome assemblies, especially in highly repetitive regions (e.g. (Chang and Larracuente 2019)). 
These developments bring a pressing need to improve tools that automate the discovery and 
annotation of TEs.  Although there are dozens of tools that tackle one aspect of de novo 
identification or one class of TE (Saha et al. 2008a; b), there are very few easy-to-use programs 
that can produce a comprehensive library of TE family seed alignments and consensus 
sequences from a genome assembly. 
 
RepeatModeler was released in 2008 by Hubley and Smit and is one of the most widely used 
TE discovery tools (cited 1462 times in publications as of 11/21/2019). RepeatModeler 
constructs seed alignments and consensus sequences for genome-wide repeat families de 
novo. However, the original version of RepeatModeler, like other existing TE-discovery 
software, falls short of producing a complete, non-redundant library of full-length consensus 
sequences. The most problematic issue is the representation of what should be a unique 
contiguous consensus sequence for a given TE family into many fragmented and partially 
redundant sequences in the output library. This issue, in turn, can hamper the classification of 
the TE families, inflates the number of actual TE families in the genome, and confounds 
genome annotation and downstream analyses. LTR retroelements are particularly recalcitrant to 
automated TE identification because of their size (up to 20 Kbp) and complexity in sequence 
and organization, which is driven in part by their ability to recombine within and between families 
(Vargiu et al. 2016). Yet these elements are widespread and often extremely abundant and 
diverse in eukaryotic genomes. For instance, the maize reference genome harbors >100,000 
LTR elements falling into ~20,000 distinct families accounting for about half of the genomic DNA 
(Jiao et al. 2017).  
 
To address these issues we developed a new version of RepeatModeler. Notably, we integrated 
an optional module dedicated to the identification of LTR elements in the genome through their 
structural characteristics (Ou and Jiang 2018; Ellinghaus et al. 2008). By benchmarking on three 
diverse model species, we demonstrate that RepeatModeler2 is a substantial improvement over 
the previous version both in terms of detection sensitivity and consensus sequence quality. The 
open-source package is designed to run on a single, multi-processor computer and is available 
as a source distribution or Docker/Singularity container for easier installation. 
(https://github.com/Dfam-consortium/RepeatModeler). 
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Methods 
   
RepeatModeler2 overview 
 
RepeatModeler is a pipeline for automated de novo identification of TEs that employs two 
distinct discovery algorithms, RepeatScout (Price et al. 2005) and RECON (Bao 2002), followed 
by consensus building and classification steps. In addition, RepeatModeler2 now includes the 
LTRharvest (Ellinghaus et al. 2008) and LTR_retriever (Ou and Jiang 2018) tools. Our tool 
takes advantage of the unique strengths of each approach as well as providing a tractable 
solution to analyzing large datasets such as whole genome assemblies. For instance, 
RepeatScout uses high frequency sequence word counts to identify interspersed repeat seeds 
(short regions of putative homology) and then performs an iterative extension of a multiple 
alignment around the aligned seeds, similar to the seed and extend phase of the BLAST 
pairwise alignment algorithm. While RepeatScout’s implementation of this algorithm is fast, the 
program input is currently limited to ~1 Gbp and the alignment scoring system ( +1/-1, and non-
affine gap penalty) limits the divergence of discovered families. Despite these limitations, 
RepeatScout serves well as a fast method to discover the youngest and most abundant families 
given a small sequence sample from a genome. RECON, on the other hand, provides 
sophisticated and TE biology-aware clustering and relationship determination approaches to 
generate TE families from exhaustive inter-genome alignments. RECON’s approach requires a 
computationally intensive but sensitive alignment (sophisticated scoring matrices, and affine gap 
penalties) and detects older TE families quite well.  
 
In order to comprehensively identify TE families in a genome we chose to employ a sampling 
and iterative (sample, mask, identify) search strategy (Figure 1). We begin by supplying 
RepeatScout with a random 40 Mbp sample of the genome to quickly identify young and 
abundant families.  In each successive round we mask a new genomic sample using all 
previously discovered TE families to avoid re-discovery and allowing for larger successive 
sample sizes as the computational burden of self-comparison is reduced on pre-masked 
sequence.  The second and subsequent rounds all employ the RECON approach starting with a 
3 Mbp sample (without replacement), tripling the sample size between rounds and continuing 
until a sample size maximum or round limit is reached (default: 243 Mbp, or 5 rounds).  For an 
average mammalian genome of 3 Gbp this would sample ~13% of the genome.   
 
The new RepeatModeler2 pipeline now includes an additional structural discovery approach to 
assist in the discovery LTR retrotransposons. Due to their unique structure and biology (two 
long terminal repeat  flanking a large 5-18 kb internal region) LTRs are often identified as 
fragments with disassociated LTR and internal regions or missing the internal segment 
completely using the RepeatScout/RECON methodologies. The LTR discovery is run on the 
complete unmasked genomic sequence and as such produces high quality LTR families with 
some redundancy to the previously discovered families. Therefore, we follow up LTR discovery 
with a merging and redundancy removal process as described in the LTR module section. 
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Due to constraints in the methods employed by TE discovery algorithms, their output is often 
either in the form of a complete or partial set of genome annotations (location ranges within the 
input sequence representing instances of a particular repeat), or is simply the pre-calculated 
consensus for each discovered TE family.  In addition, the quality of these pre-calculated 
consensus sequences may vary considerably. A basic goal of RepeatModeler has been to 
produce a high-quality seed alignment and consensus sequence for each TE family;  therefore 
we developed a seed alignment refinement method (see Refiner section below) which is 
employed on all families produced by the de novo tools.  
 
Once all rounds of discovery/refinement/merging are complete, the final library is run through a 
simple classification step (see Classification section for details), where each family is assigned 
(if possible) to a known TE class using the unified RepeatMasker/Dfam classification 
nomenclature. 
 

 

 
 
Figure 1: RepeatModeler2 Flow Diagram.  
 
Refiner description  
 
Given a set of putatively related TE family instances the RepeatModeler Refiner tool attempts to 
build a high-quality seed alignment and derive from it a consensus sequence for the family.  
Refiner bootstraps the generation of a seed alignment by selecting as the initial consensus, the 
sequence which scores the best against all others. From this initial alignment a new consensus 

Figure 1. 
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is generated and the process is repeated until the consensus stabilizes. Refiner employs an 
algorithm to identify low scoring subregions in the seed alignment, often caused by common 
indels relative to the consensus, and resolves them by globally aligning the sequences within 
the subregion and updating the consensus (see Supplemental Material). The consensus is not 
simply based on alignment column majority rule, rather each consensus position represents the 
highest scoring base using a scoring matrix similar to those developed for RepeatMasker, which 
reflects observed neutral substitution patterns in mammals. For instance, the algorithm is aware 
of the rapid decay of CpG sites to CpA and TpG dinucleotides in most eukaryotes due to 
accelerated deamination of methylated cytosines (Sved and Bird 1990; Colot and Rossignol 
1999) and calls a CG pair given enough instances of aligned CA and TG dinucleotides (see 
supplementary data for details). The final output of the analysis is a consensus sequence and a 
seed alignment in Stockholm format. The latter can be used for generating profile Hidden 
Markov Models (Wheeler and Eddy 2013) and preserves the provenance of the family’s 
representative sequences. 
 
LTR module description 
  
RepeatModeler2 uses the LTRharvest (Ellinghaus et al. 2008) package for structural LTR 
detection for both its overall sensitivity and speed (Ou et al. 2018, Ou et al. 2019). LTRharvest 
is both a discovery and annotation algorithm that does not attempt to group LTR instances into 
families.  In addition, any region in the genome demonstrating LTR-like structure (flanking 
repetitive sequence of the correct size, with the correct intervening sequence) is often 
incorrectly identified as an LTR instance. To solve this problem, Ou and Jiang developed 
LTR_retriever (Ou and Jiang 2018), a package for filtering false positive results, resolving 
nested (mosaic) annotations, and identifying internal regions of LTRs. Some genomes have 
challenging nested structures that are not always resolved by LTR_retriever, so we 
implemented an optional parameter (-LTRMaxSeqLen) that sets the maximum allowable LTR 
internal length to avoid inclusion of missed mosaic internal elements in the seed alignment (see 
supplementary material). 
 
We use LTR_retriever’s redundant library and perform our own clustering and consensus 
building process. Since LTR elements frequently contain internal deletions, and this often 
results in “over-splitting” elements when clustering with CD-HIT (Li and Godzik 2006), we 
implemented a clustering approach that scores alignment gaps as a reduced (single position) 
penalty. This step involves a multiple sequence alignment with MAFFT (Katoh et al. 2002), 
followed by nearest neighbor clustering into families with Ninja (Wheeler 2009). Families are 
then refined and consensus sequences generated in a similar fashion to results from 
RepeatScout/RECON. 
  
Combining libraries and reducing redundancy 
  
Combining results from multiple tools is a difficult but essential step for the production of a 
comprehensive and non-redundant library of TE families. The RepeatScout and RECON 
analysis rounds reduce redundancy by masking out previously identified families with each 
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iteration. With the addition of the LTR structural module as an independent analysis on the 
genome, we cannot avoid generating redundant LTR TE families. We tackled this problem by 
clustering the sequences between the modules with CD-HIT. Whenever RepeatModeler 
sequences cluster with an LTR pipeline sequence, we retain the LTR pipeline family as the 
representative. In addition, in RepeatModeler2 we extended this method to 
RepeatScout/RECON-produced families by labeling closely matching sequences as putative 
subfamilies (with a link to the accepted representative). Users can then choose whether to 
remove these subfamilies depending on the goals of their analyses. 
  
Classification 
 
RepeatModeler contains a basic homology-based classification module (RepeatClassifier) 
which compares the TE families generated by the various de novo tools to both the 
RepeatMasker Repeat Protein DB and to the RepeatMasker libraries (e.g. Dfam and/or 
RepBase). The Repeat Protein DB is a set of TE-derived coding sequences that covers a wide 
range of TE classes and organisms. As is often the case with a search against all known TE 
sequences, there will be a high number of false positive or partial matches. RepeatClassifier 
uses a combination of score and overlap filters to produce a reduced set of high confidence 
results.  If there is a concordance in classification among the filtered results, RepeatClassifier 
will label the family using the RepeatMasker/Dfam classification system and adjust the 
orientation (if necessary).  Remaining families are labeled “Unknown” if a call cannot be made. 
 
Benchmarking 
 
We benchmarked RepeatModeler2 on model species that have high-quality reference TE 
libraries: D. melanogaster, D. rerio, and O. sativa. We used Repbase 
for the D. melanogaster (release 20181026) and D. rerio (release 14.01) libraries, and the 
manually-improved library for O. sativa from  (Ou et al. 2019). We used RepeatMasker and 
parseRM (https://github.com/4ureliek/Parsing-RepeatMasker-Outputs/blob/master/parseRM.pl) 
to estimate the percentage of the genome masked by each subclass for the manually-curated 
and RepeatModeler2 libraries. 
 
An important aspect of our pipeline is its ability to produce accurate consensus sequences 
corresponding to unique TE families. Thus, we also assessed the quality of our families by 
comparing their sequences with the sequences of the manually-curated consensus sequences 
of reference libraries. We used RepeatMasker (v 1.332) with the reference library, and the 
RepeatModeler2 output library as the subject. We then used a custom bash script 
(https://github.com/jmf422/TE_annotation/blob/master/get_family_summary_paper.sh) to 
assess the sequence identity and coverage of matches between the libraries. We classify 
families as being “perfect”, “good”, “present”, or “not found” based on the following definitions. 
“Perfect” families are those for which one sequence in our de novo library matches with >95% 
nucleotide similarity and >95% length coverage to a family consensus  in the reference library. 
“Good” families are those in which multiple overlapping sequences in our output library match 
with >95% nucleotide similarity and >95% coverage to the curated consensus. A family is 
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considered “present” if one or multiple library sequences align with >80% similarity and >80% 
coverage to the reference consensus sequence. Below these thresholds, we consider a family 
“not found” (although there may be fragments present in our output library).  
 
Results and Discussion 
   
We benchmarked RepeatModeler2 on three model species (fruit fly, zebrafish, rice) with diverse 
TE landscapes for which reference TE libraries have been extensively curated over decades of 
study (Figure 2). As a first assessment of the ability of RepeatModeler2 to capture known TEs in 
each of these genomes, we use each output library to run RepeatMasker against the cognate 
genome assembly and measured the percent of the genome masked by each major TE 
subclass. We also counted the number of sequences in each library falling within each 
subclass. RepeatModeler2 was able to recover accurately the contrasted TE landscapes of 
these species (compare with curated libraries in Figure 2).  
 
As previously documented (e.g. Lerat et al. 2003), our results show that the genome of the fruit 
fly D. melanogaster is dominated by retrotransposons, especially LTR retroelements. This is 
reflected both by the amount of genomic DNA covered by these elements and by the number of 
unique  families (Figure 2). The zebrafish, D. rerio, is dominated by class II, DNA-TIR 
transposons, but also exhibits a very diverse assortment of LTR retroelements with many 
unique families (Howe et al. 2013). While our RepeatModeler2 library captures this general 
composition, it defines about twice less LTR families but twice more TIR families than in the 
original reference library. These differences may be caused by 1) a less stringent definition of 
LTR families in the reference library compared to the RM2 library; and 2) the fact that DNA-TIR 
elements are only identified by the RECON/RepeatScout module of RepeatModeler2, which 
tend to produce shorter, more fragmented sequences than the LTR structural module. Therefore 
the number of sequences classified as DNA-TIRs by RepeatModeler2 may be inflated and may 
rather represent variants or fragments of the same family (see Figure 3). The genome of rice, O. 
sativa, is known to contain almost equal proportions and numbers of DNA-TIR and LTR 
elements (Ou et al. 2019), and this profile is recovered by our RepeatModeler2 library (Figure 
2). In summary, RepeatModeler2 produces libraries that recapitulate the major TE subclass 
composition of these three model species. 
 
Next we assess the ability of RepeatModeler2 to accurately capture the diversity and sequence 
of unique TE families.  RepeatModeler2 produced 766, 3851, and 2648 library sequences for D. 
melanogaster, D. rerio, and O.sativa, respectively - all comparable to the number of individual 
sequences in the reference libraries (Table 1). In addition, RepeatModeler2 labels families that 
cluster within 20% similarity as “putative subfamily”, thus we also provided the number of 
sequences without the inclusion of subfamilies (Table 1). A TE library with more sequences is 
not necessarily more useful since it often indicates redundancy and fragmented sequences. 
Since we use a redundancy-removal step, RepeatModeler2 did not produce drastically more 
family models than the previous version of the program.  
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The most significant improvement of RepeatModeler2 over the previous release of the program 
is in the quality (accuracy) of the family consensus sequences delivered in the output library 
(Figure 3). We labelled the sequence matches between the RepeatModeler2 and reference 
libraries as “perfect”, “good”, or “present” based on the level of sequence similarity and 
coverage (Figure 3A, see also Methods). If the family did not meet the minimum criteria for 
being counted as “present”, it was reported as “not found”. RepeatModeler2 produced 2.9 to 4.7 
times more “perfect” families than the first version of RepeatModeler, and had more sequences 
closely matching the reference libraries overall (Figure 3B). Most of this improvement can be 
attributed to perfect LTR element families that are identified by RepeatModeler2, but were 
previously missed (Figure 3C). The evaluation criteria we used for families were relatively strict, 
probably explaining the large number of families “not found”. Indeed, when masking each 
genome with the cognate library, we were able to recapitulate the genomic proportions of each 
subclass as generally obtained with the reference library (Figure 2). 
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Figure2: Benchmarking of RepeatModeler2 on three model species. Top panel: genome composition (top) and 
number of families (bottom) of each TE subclass for the reference libraries. Bottom panel: genome composition (top) 
and number of families (bottom) of each TE subclass for the RepeatModeler2 library. 
 
Table 1: Number of sequences produced from RepeatModeler and present in the manually-curated libraries. The 
second column indicates the total number of families produced by RepeatModeler2 and the third column is the same 
except not including those annotated as subfamilies. The fourth column is the number of sequences in the curated 
library, and the fifth column is the number of sequences produced from RepeatModeler1.  
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Species 

RM2 
Families 

RM2 Families 
(no 

subfamilies) 
Curated 
library RM1 families 

D. melanogaster 734 509 207 699 

D. rerio 3851 3147 2322 2503 

O. sativa 2648 2284 2431 1652 

 
 

 
 
Figure 3: Evaluation family by family for RepeatModeler1 and RepeatModeler2. (A) Definitions of “Perfect”, “Good”, 
and “Present” families. “Perfect” families are those for which one sequence in our de novo library matches >95% in 
sequence identity and coverage to a family in the reference library. “Good” families are those in which multiple 
overlapping library sequences with alignments >95% similar to the reference consensus make up the >95% 
sequence coverage of the element. Finally, a family is considered “present” if one or multiple library sequences align 
with >80% similarity to the reference consensus sequence and cover >80% of the sequence. Otherwise, we consider 
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a family “not found” (although there may be fragments present) (B) Summary of families found by the last release of 
RepeatModeler (RM1) and RepeatModeler2 (RM2). (C) Number of perfect families by subclass for each benchmark 
species. 
 
 
Eukaryotic genomes contain complex structure and tandem repeats, which may result in false 
positives for TE discovery software. We assessed the false positive rate of RepeatModeler2 by 
running it on artificially-generated genomes devoid of TEs simulated by GARLIC (Caballero et 
al. 2014) for D. melanogaster and D. rerio. GARLIC generates background sequences with 
realistic complexity, isochore structure and tandem repeat content as the modeled genome. 
RepeatModeler2 produced only one false positive family on the D. melanogaster artificial 
genome and five false positive families on the D. rerio artificial genome. No false positive 
families were produced from the LTR module. These results suggest that the rate of false 
positives generated by RepeatModeler2 is very low.  
 
In addition to LTR retroelements, other types of TEs are sometimes considered challenging to 
identify ab initio with automated approaches. In particular, MITEs (miniature inverted-repeat 
transposable elements) can be challenging because they are typically non-coding and may be 
highly diverged in sequence from from their parental DNA:TIR element (Feschotte et al. 2002; 
Han and Wessler 2010). The zebrafish and rice genomes are known to contain a large number 
of MITE families (Jiang et al. 2004), but these elements did not appear under-represented in the 
RepeatModeler2 libraries generated for these two species (Figure 2). In comparison to the 
reference libraries, RepeatModeler2 also performed well with the identification of Helitrons, 
which also pose particular challenges for automated discovery (reviewed in (Thomas and 
Pritham 2015)) (Figure 2). Thus, RepeatModeler2 appears capable of recovering a wide 
diversity of TEs which have been traditionally considered recalcitrant to ab initio identification.  
 
We anticipate that additional improvements will further enhance the current version of the 
pipeline. Because of the modular architecture of RepeatModeler2, it should be relatively 
straightforward to add other modules tailored to the discovery of specific subclass of elements 
such as those dedicated to the identification of MITEs (Han and Wessler 2010) or Helitrons 
(Yang and Bennetzen 2009; Xiong et al. 2014). It is also important to emphasize that the 
classifier currently used by RepeatModeler2 remains rudimentary as it strictly relies on detection 
of sequence homology to known TEs and protein domains. This limitation hampers the ability to 
classify non-coding elements or elements with sequences highly diverged from those annotated 
in the databases. Integrating additional features used for TE classification, such as conserved 
TIR sequence motifs or target site duplications, as implemented in other TE classifiers 
(Feschotte et al. 2009) will further improve the ability of RepeatModeler2 to deliver high-quality 
libraries.      
 
The genome annotation community is in pressing need of a TE discovery program that is easy 
to use, has been thoroughly benchmarked, and can be applied to almost any eukaryotic species 
(Hoen et al. 2015). We believe that RepeatModeler2 will meet this demand. Other TE discovery 
programs exist, but either focus on finding instances in the genome instead of family consensus 
sequence building (e.g. Berthelier et al. 2018, Ou et al. 2019), or are challenging to install and 
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use (Flutre et al. 2011). RepeatModeler2 is easy to install and run, as we provide a container 
version to avoid installing independently all dependencies. We anticipate that the application of 
RepeatModeler2 to existing and future genome assemblies will result in more consistent 
genome annotations and improved TE family models, which will enhance a wide array of 
genomic analyses including but not limited to TE biology.  
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SUPPLEMENTARY MATERIALS 
 
LTRPipeline 
 
The development of RepeatModeler2 was motivated by author JMF working on annotating 
transposable elements in Drosophila with CG, AGC, and CF. In Drosophila, LTR elements are 
the most abundant subclass of TEs and are often present in heterochromatic regions where 
they frequently contain nested structures. JMF developed a bash pipeline incorporating 
RepeatModeler and an LTR-specific module, which resulted in greatly improved TE libraries for 
Drosophila. We found that this pipeline also performed better than RepeatModeler in other 
species we tested it on such as zebrafish. We believed that the TE community at large could 
benefit from the incorporation of the LTR pipeline, so we partnered with the authors of 
RepeatModeler (RH, JR, and AFS) to incorporate the LTR pipeline into an improved software 
we call RepeatModeler2. 
 
One of the main troubleshooting issues with incorporating a structural LTR identification 
program was that it identifies instances of LTR elements in the genome, whereas the goal of the 
RepeatModeler is to identify TE families. In order to remove redundancy and have one seed 
alignment (and consensus) per family, sequence similarity clustering is used. LTR_retriever 
performs similarity clustering with CD-HIT to accomplish this. However, we noticed that the CD-
HIT clustered output of LTR_retriever still contained redundancy. We hypothesized that this was 
because of CD-HIT’s gap scoring policy, as it scores each base pair of an indel as a penalty, 
rather than the indel as a single penalty, which is more biologically relevant (Flynn et al. 2015). 
This issue is especially evident for LTR elements, which commonly contain internal deletions. 
We originally used a multiple sequence alignment with MAFFT followed by nearest-neighbor 
clustering with MOTHUR (Schloss et al. 2009). MOTHUR clustering scores indels as a single 
gap penalty, and we found it worked to effectively cluster LTR elements into accurate family 
groups. In later versions of the pipeline, we made a custom clustering script with NINJA using 
the same procedure as MOTHUR. Instead of using the longest sequence in the cluster as the 
family representative as LTR_retriever does, we incorporated the Refiner module from 
RepeatModeler to build seed alignments and a family consensus from the cluster members. 
 
 
LTR internal length filtering  
LTR elements often acquire nested insertions. In RepeatModeler2 we utilize the LTR_retriever 
analysis tool, which attempts to remove nested insertions; however we found that some nested 
insertions still remain. This can reduce the quality of the LTR library. One way to prevent LTR 
elements with nested insertions from being included in the LTR library is to impose a maximum 
length of the internal sequence (optional parameter –LTRMaxSeqLen). For example, in 
Drosophila, almost all true LTR internal elements are <10 kb and it is known that nested LTR 
elements are common in heterochromatic regions, we would use –LTRMaxSeqLen 10000. 
Since using this parameter could potentially bias the results, we only recommend using it if the 
max LTR length is known or if nested insertions are a problem in the particular analysis. 
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Figure S1: RepeatModeler Refiner module flowchart. 
 
 
Family Refinement 
The RepeatModeler Refiner tool produces a multiple sequence alignment (seed alignment) from 
putatively related instances of a TE family.  Refiner uses an iterative process (Figure S1) to 
build and then improve the seed alignment for the family.  This process is bootstrapped by first 
performing a full pairwise comparison of all instance sequences to each other and selecting, as 
the initial consensus, the instance which aligns best to all others.  It is possible that the initial 
sequence chosen does not align to a small portion of the input sequences.  In this case the 
unaligned sequences are maintained in a candidate pool for possible inclusion in further 
iterations of consensus refinement.  The pairwise alignments to the chosen sequence are 
combined into the initial seed alignment and novel CpG-adjusted consensus caller is used to 
generate an updated consensus for the family. 
 
The consensus caller used in RepeatModeler differs from a standard majority-rule consensus 
caller in two ways: it scores each possible ancestral base or IUB code to the seed alignment 
column using a neutral substitution matrix, and it looks for overrepresentation of common CpG 
mutation products to correctly identify the ancestral state of CpG dimers.  The first step uses a 
matrix (Figure S2) that reflects observed neutral DNA substitution patterns.  This matrix and 
similar matrices used by RepeatMasker were derived from studies of neutrally decaying DNA 
transposon families in mammals.      
 
 
#   A   R   G   C   Y   T   K   M   S   W   N   -  
A   9   0  -8 -15 -16 -17 -13  -3 -11  -4  -2  -6  
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R   2   1   1 -15 -15 -16  -7  -6  -6  -7  -2  -6  
G  -4   3  10 -14 -14 -15  -2  -9  -2  -9  -2  -6   
C -15 -14 -14  10   3  -4  -9  -2  -2  -9  -2  -6  
Y -16 -15 -15   1   1   2  -6  -7  -6  -7  -2  -6  
T -17 -16 -15  -8   0   9  -3 -13 -11  -4  -2  -6  
K -11  -6  -2 -11  -7  -3  -2 -11  -6  -7  -2  -6  
M  -3  -7 -11  -2  -6 -11 -11  -2  -6  -7  -2  -6  
S  -9  -5  -2  -2  -5  -9  -5  -5  -2  -9  -2  -6  
W  -4  -8 -11 -11  -8  -4  -8  -8 -11  -4  -2  -6  
N  -2  -2  -2  -2  -2  -2  -2  -2  -2  -2  -1  -6 
-  -6  -6  -6  -6  -6  -6  -6  -6  -6  -6  -6   3 

 
Figure S2: Neutral substitution matrix used by the RepeatModeler consensus caller.  Rows and columns 
represent the ancestral and current nucleic acids respectively.  IUPAC codes, as well as a standard gap 
(“-”) characters are included.    
 
 
After the score for each possible ancestral base and at each column in the alignment is 
calculated, a 2 bp sliding window is run over the alignment and the highest dimer score is 
calculated for window.  Using the truth table (Table S3), an alternative score is developed for 
the hypothesis that the ancestral dimer was a CpG (CG_Score). If the total CG_Score is higher 
than the matrix score for the window the consensus is changed to a “CG” at these two positions 
in the alignment. 
 
 

Observation Matrix Score CG Score Description 

TG +6 +12 Direct result of current strand CpG 
deaminating the C and converting to a TG. 

CA +6 +12 Indirect result of CpG on opposite strand 
converting to TG and an incorrect repair of 
the current strand. 

TA -8 -5 Two step result.  CG -> TG followed by a 
common transition of either forward strand 
TG -> TA or reverse strand CA -> TA. 

TT -19 -13 CpG transition + transversion. E.g. CG -> 
TG -> TT. 

TC -18 -13 (dito) CG -> TG -> TC. 

AA -19 -13 (dito) CG -> CA -> AA. 

GA -18 -13 (dito) CG -> CA -> GA. 
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Table S3: Dimer score table for calling CpG sites.  This table represents the dimers which are most likely 
to be generated by mutation at CpG site.  For these cases a modified matrix score ( CG Score ) is used to 
calculate the alternative score for the alignment columns. 
 
The updated consensus is re-aligned to all seed alignment sequences as well as the candidate 
pool and the process is repeated until the consensus sequence stabilizes or a maximum 
iteration count is exceeded.  At this stage the seed alignment may often contain short regions of 
misalignment caused by tandem duplications or deletions within the original consensus choice.  
We identify these regions by calculating seed alignment quality using a sliding window approach 
(Ruzzo and Tompa 1999) and considering each region independently for consensus refinement.  
If there is a majority sequence length within the region, the consensus is called from only the 
sequences of this length, otherwise an all-vs-all global alignment is performed and the 
sequence scoring best against all others is used to align and then call the new sub-region 
consensus.  The sub-regions consensi are replaced in the full-consensus and the original 
consensus refinement process is repeated until the consensus stabilizes. 
 
Benchmarking Parameters 
The benchmarking analysis was performed on a research group-shared CentOS 7.6.1810 Linux 
machine (Intel(R) Xeon(R) CPU E7-4830 v4 @ 2.00GHz, 112 cores, 504 GB RAM). 
RepeatModeler utilizes a seeded random number generator in the selection of the genomic 
samples.  The seed is automatically chosen and displayed at runtime to facilitate reproducibility 
(using the -srand option). The runtime, and seeds are shown in Table S2. RepeatModeler 
1.0.11 benchmarks were generated using only the “-database” parameter using the program 
defaults.  The new “-LTRStruct” option to RepeatModeler2 was used in all benchmark runs.  In 
addition for D. melanogaster, the -LTRMaxSeqLen 10000 was used. 
 

Species Assembly 
size (Mb) 

RM Seed # RM 
cores 

RM 
runtime 

RM2 Seed # RM2 
cores 

RM2 
runtime 

D. 
melanogaster 

164 1572903982 
  

8 62:26:16 
  

1570222393 
  

8 12:55:59 
  

D. rerio 1372 
  

1570465657 
  

16 33:12:10 
  

1570222833 
  

16 40:35:56 

O. sativa 375 1570476015 
  

16 81:03:54 1570222971 
  

16 37:22:46 

 
Table S2: benchmarking information. RM = RepeatModeler1.0.11, RM2 = RepeatModeler 2.  
 
Genome assembly versions used for benchmarking: 
D. melanogaster - PBcr-BLASR Celera 8.1 assembly (Koren et al. 2012) 
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D. rerio - danRer10: https://www.ncbi.nlm.nih.gov/assembly/GCF_000002035.5/ 
O. sativa - Verson 7.0 
http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudo
molecules/version_7.0/all.dir/all.con 
 
The scripts used to produce the benchmarking statistics may be found here: 
(https://github.com/Dfam-consortium/RepeatModeler ).  RepeatModeler2 was configured using 
the following versions of dependent packages: 

- Mafft 7.407 
- RepeatMasker 4.0.9-p2 
- RECON 1.0.8 
- RepeatScout 1.0.6 
- RMBLast 2.9.0-p2 
- TRF 4.0.9 
- Ninja  0.97-cluster_only  
- CD-HIT  4.8.1  
- GenomeTools 1.5.10 
- LTR_retriever  2.6 
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