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32 Abstract
33 Brain networks are complex dynamical systems in which directed interactions between different areas 

34 evolve at the sub-second scale of sensory, cognitive and motor processes. Due to the highly non-

35 stationary nature of neural signals and their unknown noise components, however, modeling dynamic 

36 brain networks has remained one of the major challenges in contemporary neuroscience. Here, we 

37 present a new algorithm based on an innovative formulation of the Kalman filter that is optimized for 

38 tracking rapidly evolving patterns of directed functional connectivity under unknown noise 

39 conditions. The Self-Tuning Optimized Kalman filter (STOK) is a novel adaptive filter that embeds 

40 a self-tuning memory decay and a recursive regularization to guarantee high network tracking 

41 accuracy, temporal precision and robustness to noise. To validate the proposed algorithm, we 

42 performed an extensive comparison against the classical Kalman filter, in both realistic surrogate 

43 networks and real electroencephalography (EEG) data. In both simulations and real data, we show 

44 that the STOK filter estimates time-frequency patterns of directed connectivity with significantly 

45 superior performance. The advantages of the STOK filter were even clearer in real EEG data, where 

46 the algorithm recovered latent structures of dynamic connectivity from epicranial EEG recordings in 

47 rats and human visual evoked potentials, in excellent agreement with known physiology. These 

48 results establish the STOK filter as a powerful tool for modeling dynamic network structures in 

49 biological systems, with the potential to yield new insights into the rapid evolution of network states 

50 from which brain functions emerge. 

51

52 Author summary
53 During normal behavior, brains transition between functional network states several times per second. 

54 This allows humans to quickly read a sentence, and a frog to catch a fly. Understanding these fast 

55 network dynamics is fundamental to understanding how brains work, but up to now it has proven 

56 very difficult to model fast brain dynamics for various methodological reasons. To overcome these 

57 difficulties, we designed a new Kalman filter (STOK) by innovating on previous solutions from 

58 control theory and state-space modelling. We show that STOK accurately models fast network 

59 changes in simulations and real neural data, making it an essential new tool for modelling fast brain 

60 networks in the time and frequency domain.

61

62
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63 Introduction
64 Neural systems like the human brain exhibit highly dynamical patterns of neuronal interactions that 

65 evolve very quickly, at timescales of tens to hundreds of milliseconds. These temporal dynamics are 

66 fundamental for the coordination of large-scale functional networks at various oscillatory frequencies 

67 (1–4), both during rest (5–7) and in response to environmental events (8–11). It is from such rapid 

68 and continuous reorganization of distributed neuronal interactions that sensory, motor and cognitive 

69 functions most likely arise (1–3). To understand the workings of complex neural systems, it is 

70 therefore important to develop adequate models of their intrinsic dynamics that rely on the accurate 

71 estimation of time-varying functional connectivity patterns (12–16).

72 In the last decades, analysis of large-scale brain networks has successfully characterized the 

73 spatial layout and topology of functional connections (16–20), but their temporal dynamics have 

74 remained largely unexplored. The focus on network topologies instead of dynamics persists even 

75 though neural recordings with high temporal resolution are now readily available from advanced 

76 electrophysiology and neuroimaging techniques (21–25). A major issue in modeling dynamic 

77 networks, particularly in the context of event-related responses, originates from the highly non-

78 stationary nature of neural activity. Non-stationary signals pose severe modeling problems because 

79 of their  unstable statistical properties, their time-varying spectral components and the multiple 

80 unknown sources of noise they contain (22,24,26). To circumvent some of these problems, dynamic 

81 functional connectivity has been mostly estimated in a static or quasi-static sense, using for instance 

82 stationary measures applied to relatively long  sliding windows (27–29). Alternatively, model-based 

83 (30) and Markov Chain Monte Carlo methods (31,32) have been proposed for estimating dynamic 

84 connectivity under detailed a priori assumptions about the candidate generative processes and number 

85 of functional states (4,31,33,34). Given the fast and flexible nature of brain activity, however, it is 

86 essential to move beyond static approximations of dynamical systems. This requires new algorithms 

87 that allow data-driven and large-scale exploration of functional brain networks at the sub-second scale 

88 of sensory, cognitive and motor processes.

89 Here, we present a new algorithm derived from control theory that is specifically designed to 

90 model dynamic changes in large-scale functional networks: the Self-Tuning Optimized Kalman filter 

91 (STOK). STOK belongs to the family of linear adaptive filters for estimating the temporal evolution 

92 of states in dynamical systems (35) and inherits the fundamental concepts of Kalman filtering (36). 

93 The STOK filter combines three innovative solutions that set it apart from existing algorithms: 1) a 

94 simple least-squares minimization to recover latent and dynamic functional connectivity states 

95 through the adaptive estimation of time-varying multivariate autoregressive processes (tvMVAR), 

96 without any explicit approximation of unknown noise components; 2) a recursive regularization that 
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97 guarantees robustness against noise while preventing overfitting; 3) a self-tuning memory decay that 

98 adapts tracking speed to time-varying properties of the data, increasing the sensitivity to rapid 

99 transitions in connectivity states. Together, these three innovations define a new adaptive filter for 

100 modeling latent connectivity structures from fast-changing neural signals with unknown noise 

101 components. 

102 We present an extensive validation of the proposed algorithm using a new simulation 

103 framework that mimics the realistic behavior of large-scale biological networks, and two datasets of 

104 event-related potentials recorded in rodents and humans. In all quantitative tests and comparisons 

105 against the general linear Kalman filter (KF; 37,38), we found that STOK shows unprecedented 

106 ability and precision in tracking the temporal dynamics of directed functional connectivity. The 

107 results establish the STOK filter as an effective tool for modeling large-scale dynamic functional 

108 networks from non-stationary time-series.

109 In the Methods section, we provide a detailed technical description of the STOK filter and of 

110 the limitations of the KF that it overcomes. Matlab and Python code for STOK, KF and the simulation 

111 framework are available on GitHub (https://github.com/PscDavid/dynet_toolbox; 

112 https://github.com/joanrue/pydynet).

113 Results

114 Simulations
115 A critical first step in the validation of the STOK filter was to evaluate whether the new filter 

116 successfully overcomes a well-known limitation of KF: the dependency of the filter’s performance 

117 on a free parameter —the adaptation constant c (see Methods), that determines the trade-off between 

118 tracking speed and smoothness of the estimates. As a proof of concept, we first compared a non-

119 regularized version of the STOK filter against the KF in a simple two-nodes simulation. We used a 

120 bivariate AR(1) process (samples = 1000, Fs = 200 Hz, trials = 200) to generate signals with fixed 

121 univariate coefficients (A[1,1] = A[2,2] = 0.9) and a short sequence of causal influences from one 

122 node to the other (A[1,2] = 0.5). The results illustrate how KF performance depends critically on the 

123 fixed adaptation constant c. KF showed poor tracking ability at the lower bound (c = 0.0001) and 

124 large noisy fluctuations at the higher bound (c = 1) (Fig. 1A). In contrast, the STOK filter thanks to 

125 its self-tuning c automatically maintained a good level of performance by increasing its tracking speed 

126 at the on- and offsets of time-varying connections (Fig. 1B). Computing the root-mean squared error 

127 against the imposed connection indicated that the optimal c for KF lies at a point, within the two 

128 extremes, where the estimated coefficients from both filters are maximally correlated (Fig. 1A, 

129 bottom plot). Note that, however, the determination of the optimal c in real data is not straightforward 
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130 and no objective or universal criteria are available (39). This simulation shows that STOK can reach 

131 the peak performance of KF without prior selection of an optimal adaptation constant. 

132

133

134

135

136

137

138

139 Fig. 1. Performance of KF and STOK on a simple simulated bivariate AR(1) process.  (A) Performance of the KF 
140 filter at recovering the imposed structure of AR coefficients (top panel; black dashed lines) under two extreme values of 
141 the adaptation constant (c = 0.0001, c = 1), highlighting the drastic variability of the estimates as a function of c: poor 
142 tracking performance is observed at the lowest (cyan line) and spurious noisy fluctuations at the highest c (blue line). The 
143 optimal c that minimizes the root-mean squared error (rmse, blue line), lies at a point where KF and STOK performance 
144 are highly correlated (bottom panel; correlation shown by the grey dashed line). (B) Performance of the STOK filter, 
145 showing the high tracking ability and robustness to noise due to the self-tuning memory decay (top panel; orange line) 
146 which automatically increases tracking speed at relevant transition points between AR coefficient states (bottom panel; 
147 grey rectangles).
148

149 To statistically compare KF and STOK, we used a realistic framework with complex patterns 

150 of connectivity in the time and frequency domain. Our simulation framework allows for parametric 

151 variations of various signal aspects that can be critical in real neural data (see Methods; Simulation 

152 framework). As a first test, we evaluated the effect of regularization and the robustness of each filter 

153 against noise, comparing the performance of KF, STOK without regularization and STOK under 

154 different levels of SNR (0.1, 1, 3, 5, 10 dB). We used detection theory to compare simulated 

155 functional connectivity and estimated connectivity from KF and STOK, with area under the curve 

156 (AUC) as the performance metric (see Fig. 2A and Methods). AUC values from 0.7 to 0.8 indicate 

157 fair performance, AUC from 0.8 to 0.9 indicate good performance (40). A repeated measures 

158 ANOVA with factors Filter Type (KF, STOK without regularization, STOK) and signal-to-noise ratio 

159 (SNR), revealed a statistically significant interaction (F(8, 232) = 68.54, p < 0.001, ηp
2 = 0.70; Fig. 

160 2B). This effect demonstrated the advantages of regularization: STOK showed better performance 

161 than KF across all noise levels (paired t-test, all p < 0.001), but the non-regularized STOK 

162 outperformed KF only for SNR larger than 0.1 (paired t-test, p (SNR = 0.1) > 0.05; all other p < 0.01). 

163 Therefore, we kept regularization as a default component of STOK.

164
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165

166

167 Fig. 2. Comparison of the KF and STOK filters under the realistic simulation framework. (A) Method for evaluating 
168 the performance of KF and STOK against simulated data (ground truth). Ground truth PDC was binarized setting to 1 all 
169 connections larger than 0. Estimated Partial Directed Coherence (PDC) (41) was binarized using different criteria, based 
170 on the quantile discretization of the estimates (criterion q; top panel). Signal detection indexes were calculated for each 
171 criterion and the area under the curve (AUC) was used as performance measure. The color code of the dots in the ROC 
172 plot (bottom panel) reflects the different criteria and correspond to the colorbar for estimated PDC strength (top panel). 
173 (B) Comparison of KF, STOK without regularization and STOK as a function of different SNR, showing the overall 
174 larger AUC using STOK. Error bars reflect 95% confidence intervals. (C) AUC curves for KF and STOK as a function 
175 of linear mixing. (D) Performance of the two filters with increasing sample size: regularization favors strongest 
176 connections and sparse networks as the network size increases (right panel), reducing overall weakest connections (left 
177 panel). (E) Correlation matrices at varying model orders for KF and STOK (top two panels) and their difference (bottom 
178 panel, STOK minus KF). (F) Correlations extracted at specific orders (p  [2,15], with ground-truth model order = 6) 
179 showing the higher consistency of models estimated as p changes with STOK compared with KF.
180
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181 As a second test, we evaluated the robustness of KF and STOK against instantaneous linear 

182 mixing. Linear mixing, or spatial leakage (42,43), is an important issue when estimating functional 

183 connectivity from magneto- and electro-encephalographic data (M/EEG) because the 

184 multicollinearity and non-independence of multiple time-series can lead to spurious connectivity 

185 estimates (44,45). Spatial leakage usually contaminates signals in nearby sources with a mixing 

186 profile that is maximal at around 10-20 mm of distance and fades out exponentially at around 40-60 

187 mm (42–44). To simulate linear mixing, we randomly assigned locations in a two-dimensional grid 

188 (150x150 mm) to each node of the surrogate networks (n = 10) and we convolved the signals, at each 

189 time point, with a spatial Gaussian point spread function (mixing kernel) of different standard 

190 deviations (10, 15, 20, 25, 30 mm). We then evaluated performance of the KF and STOK filters as a 

191 function of the mixing kernel width (Fig. 2C). The results of a repeated measures ANOVA revealed 

192 an interaction between Filter Type and Mixing Kernel (F(4, 116) = 23.99, p = 0.009, ηp
2 = 0.45), with 

193 STOK outperforming KF for mixing functions up to 20 mm of width (paired t-test, p < 0.001). These 

194 results suggest that the STOK filter is preferred for small and intermediate mixing profiles that are 

195 observed in source imaging data (42,43) and in connectivity results (44). For higher mixing levels, 

196 the filters showed indistinguishable but still fair performance. 

197 Another critical aspect that determines the quality of the estimated parameters in the context 

198 of both multi-trial Kalman filtering (46,47) and ordinary least-squares solutions (48,49) is the number 

199 of parameters (e.g., nodes in the network). In general, to obtain robust parameter estimates and to 

200 avoid overfitting, a small ratio between parameters and number of trials is recommended (the one-in-

201 ten rule of thumb) (50–52). When this ratio is large (many parameters, few trials), the model is 

202 underdetermined and in this case regularization may help to prevent overfitting and to ensure that a 

203 unique solution is found (53). Thus, increasing the number of nodes in our simulation allowed to test 

204 the behavior of the KF and STOK filters, as well as the effect of regularization, as the number of 

205 parameters in the model increased. We ran a set of simulations with fixed numbers of trials (n = 200) 

206 and increasing number of nodes (20, 30, 40). As expected, a repeated measures ANOVA with factors 

207 Filter Type and Number of Nodes revealed a significant interaction (F(2, 58) = 112.28, p < 0.001, ηp
2 

208 = 0.79; Fig. 2D) showing a decrease in performance with increasing number of nodes (main effect of 

209 the Number of Nodes, F(2, 58) = 63.68, p < 0.001, ηp
2 = 0.68). The interaction was due to a faster 

210 performance decrease for the STOK filter, which performed below KF levels for 30 and 40 nodes 

211 (paired t-test, p < 0.01).

212 Regularization is designed to shrink weak coefficients toward zero and retain the strongest 

213 connections. We therefore examined whether the greater sensitivity to the number of nodes for the 

214 STOK filter was due to the diminishing of existing weak connections, by quantifying performance 
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215 for the strongest connections only (magnitude above the 50% quantile). This reanalysis revealed an 

216 interaction between Filter Type and Number of Nodes (F(2, 58) = 45.73, p < 0.001, ηp
2 = 0.61; Fig. 

217 2D) in which the STOK outperformed KF for networks with 20 and 30 nodes (paired t-test, p < 0.001), 

218 while there was no significant difference for 40 nodes. Thus, for large-scale networks with a 

219 suboptimal ratio between the number of nodes and the number of trials, the regularized STOK filter 

220 provides a reliable sparse solution that accurately tracks the strongest dominant connections, while 

221 potentially preventing overfitting. Note that overall, however, performance was relatively good for 

222 both filters (AUC > 0.75).

223 As a final test in simulations, we investigated the robustness against variations in model order. 

224 The model order p (eq. [2]) is a key free parameter in tvMVAR modelling that determines the amount 

225 of past information used to predict the present state influencing the quality and frequency resolution 

226 of the estimated auto-regressive coefficients (Porcaro, Zappasodi, Rossini, & Tecchio, 2009a; Seth, 

227 2010). Whereas previous work has shown that the multi-trial KF is relatively robust to variations in 

228 model order (46,54), we asked whether the innovations in STOK also make it more robust against 

229 changes in model order. We simulated data with an imposed order of p = 6 samples, and estimated 

230 PDC for both the STOK and the KF using a range of model orders from p = 2 to p = 15. As shown 

231 in Fig. 2E-F, the correlation between PDC values obtained with different p was overall higher for the 

232 STOK filter than for the KF. Particularly, the correlation was higher not only for p  6, but also for ≥

233 smaller model orders, that usually lead to biased PDC estimates and poor frequency resolution.

234 In sum, the four tests in a realistic simulation framework showed that the STOK filter has 

235 superior performance, higher tracking accuracy and greater robustness to noise than the KF. STOK 

236 achieves these results without the need to set an adaptation constant, and with greater robustness to 

237 selecting a sub-optimal model order, two properties that are highly desirable when modeling real 

238 neural time-series. We next tested STOK performance in event-related EEG data recorded during 

239 whisker stimulation in rats, and during visual stimulation in humans. 

240

241 Somatosensory evoked potentials in rat
242 To compare STOK and KF along two objective performance criteria we used epicranial EEG 

243 recordings in rats from a unilateral whisker stimulation protocol (54–57). Criterion I tests the ability 

244 to detect contralateral somatosensory cortex (cS1, electrode e4) as the main driver of evoked activity 

245 at short latencies after whisker stimulation (8-14 ms) in the gamma frequency band (40-90 Hz). 

246 Criterion II tests the identification of parietal and frontal areas (e2 and e6, respectively) as the main 

247 targets of cS1 (e4) in the gamma band, at early latencies (54,56). To evaluate criterion I, we compared 

248 the summed outflow from cS1 with the largest summed outflow observed from the other nodes. To 
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249 evaluate criterion II, we compared functional connectivity strengths from cS1 to e2 and e6 to that of 

250 the strongest connection directed to any of the other nodes. To determine the latencies at which KF 

251 and STOK are able to reliably identify cS1 as the main driver, and parietal-frontal cortex as their main 

252 targets, both criteria were evaluated at each timepoint around whisker stimulation (from -10 to +60 

253 ms).

254 We evaluated performance on the two criteria using different sampling rates (1000 Hz, 500 

255 Hz). The sampling rate determines the number of lags required to use a given model order in 

256 milliseconds, thus, it also determines the number of parameters in the model and the risk of overfitting 

257 (58). Previous work has demonstrated that downsampling can have adverse effects on connectivity 

258 estimates (54,59) and that multi-trial KF requires lower sampling rates to achieve good performance 

259 (e.g., 500 Hz for the present dataset, 54). For comparison, the model order for both methods and the 

260 adaptation constant for the KF were set to their previously reported optimal values (p = 4 ms; c = 

261 0.02) (54).

262

263

264

265

266

267

268

269
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271 Fig. 3. Results in benchmark rat EEG. (A) Layout of the multi-electrode grid used for recordings with the electrode 
272 and label codes used for all the plots. (B) Grand-average somatosensory evoked potentials at electrodes contralateral to 
273 stimulation (n = 10) showing the sequence of maximum voltage peaks, starting at e4 and propagating to e2-6. The gray 
274 line shows the evolution of the self-tuning memory parameter of the STOK filter. (C) Summed outflow in the gamma 
275 range (40-90 Hz) from all electrodes at the sampling rate of 500 Hz, revealing similar dynamics estimated with KF and 
276 STOK, but higher temporal precision with STOK filtering. (D-E) Criterion I and II: STOK and KF similarly identified e4 
277 as the main driver at expected latencies (top panel), however, STOK recovered more temporally localized dynamics and 
278 evoked patterns in the total inflow of gamma activity from e4 to the two main targets e2-e6 (bottom panel). Colored 
279 squares at the bottom of each plot indicate time points of significance after bootstrap statistics (n = 10000, p < 0.05; see 
280 Results). (F-H) Same set of results using a sampling rate of 1000 Hz, revealing the compromised estimates of KF and the 
281 consistent and almost invariant results obtained with STOK.
282

283 At a sampling rate of 500 Hz, both the KF and the STOK filter revealed a peak in the summed 

284 gamma outflow from cS1 at early latencies from whisker simulation, Fig. 3C. Both filters identified 

285 cS1 as the main driver (criterion I), by showing a significant increase of summed gamma outflow 

286 from cS1 at the expected latencies (bootstrap distribution of differences against the 2nd largest driver 

287 at each time point, n[bootstrap] = 10000, p < 0.05; Fig. 3D). Similarly, for criterion II both methods 

288 identified e2 and e6 as the main targets of cS1 gamma influences, but the pattern was more restricted 

289 to the temporal window of interest in the STOK results (bootstrap distribution against the 2nd largest 

290 receiver at each time point; Fig. 3E).

291 At the higher sampling rate of 1000 Hz, the STOK filter returned an almost identical pattern 

292 of outflow and good performance on both criteria (Fig. 3F-H). The KF, however, presented 

293 inconsistent outflows and poor performance on criterion I, failing to identify cS1 (e4) as the main 

294 driver of gamma activity. On criterion II, KF still performed well at high sampling rate (Fig. 3H).

295 Overall, these benchmark results in real data show that STOK performs well on both 

296 performance criteria. In addition, it suggests that STOK has better specificity in the temporal domain, 

297 as compared to the KF results that presented interactions persisting at longer latencies without 

298 returning to baseline. Importantly, STOK performance was unaffected by downsampling.

299

300 Visual evoked potentials in human
301 As a final step, we compared the STOK and KF filters in real human EEG data from a motion 

302 discrimination task. The processing of coherent visual motion is known to induce characteristics time-

303 frequency patterns of activity in cortical networks, with early selective responses occurring from 150 

304 ms after stimulus onset (60,61) that likely originate in temporo-occipital regions (e.g., MT+/V5, V3a), 

305 and more pronounced responses from 250 ms on (62,63). A hallmark of coherent motion processing 

306 is the induced broadband gamma activity from about 200 ms onward (64–66), which is usually 

307 accompanied by event-related desynchronization in the alpha band (67). 
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308 To evaluate the performance of the STOK and KF filters at recovering known dynamics of 

309 coherent motion processing, we first compared the parametric power spectral density (PSD) obtained 

310 with each filter against the non-parametric PSD computed using Morlet wavelet convolution with 

311 linearly increasing number of wavelet cycles (from 3 to 15 cycles over the 1-100 Hz frequency range 

312 of interest; see Methods). As shown in Fig. 4C, KF and STOK recovered the main expected dynamics 

313 in a qualitatively similar way as the non-parametric estimate. However, the STOK PSD showed 

314 significantly higher correlation with the non-parametric PSD as compared to the one obtained with 

315 the KF (Fig. 4D, rKF = 0.53 ± 0.18; rSTOK = 0.85 ± 0.05; p < 0.001). This shows that STOK produces 

316 more consistent PSD estimates across participants than KF. We note that both parametric methods 

317 appear to have higher temporal resolution than the non-parametric one, where temporal smoothing 

318 results from the trade-off between temporal and spectral resolution (68). 
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343

344 Fig. 4. Results in real human evoked potentials during visual motion discrimination. (A) The visual motion 
345 discrimination paradigm presented during EEG recordings. Participants (n=19) reported the presence of coherent motion 
346 in a briefly presented dot kinematogram (300 ms). (B) Shows grand-average event-related responses recorded at the scalp, 
347 with typical early (~100 ms) and late (~200 ms) components of visual processing. The orange line indicates the temporal 
348 dynamics detected by the self-tuning memory parameter c, that increases in anticipation of evident changes in the scalp 
349 signals. (C-D) Comparison of the non-parametric (wavelet) and parametric power spectrum densities (PSD) obtained with 
350 KF and STOK for one representative regions (MT+), with the violin plot showing the overall higher (and less variable) 
351 correlation between wavelet and STOK PSDs. (E) Global connectivity results from KF and STOK. Time-frequency plots 
352 show the results obtained with the two filters and their difference (STOK minus KF), graphically showing more evident 
353 dynamics obtained using the STOK filter. Line plots collapsing frequency and time highlight the statistical difference 
354 between STOK and KF results: STOK recovered multiple dynamic changes in overall connectivity patterns at 
355 physiologically plausible latencies (bottom plot) and characterized network desynchronization in the alpha range with 
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356 higher precision (right-side plot). At frequencies (70-90 Hz) and latencies (180-200 ms) of interest for motion 
357 discrimination, the STOK revealed increased contribution to network activity (e.g., increased outflow) from visual 
358 regions, including MT+, and the frontal eye field (FEF; right-bottom plot). 
359

360 We next evaluated the overall time-frequency pattern of evoked functional connections 

361 obtained with STOK and KF. To this aim, we calculated PDC values from the tvMVAR coefficients 

362 estimated with the two filters and we averaged the results across nodes and hemifields. In this way, 

363 we obtained a global connectivity matrix of 16 cortical regions of interest (ROIs; see Methods, 

364 Human EEG) that summarized the evoked network dynamics in the time and frequency domain for 

365 each participant (69). These matrices were then z-scored against a baseline period (from -100 to 0 ms 

366 with respect to stimulus onset) (70) and averaged across participants. 

367 The resulting matrices of global event-related PDC changes revealed two critical differences 

368 between the STOK and the KF estimates. Firstly, STOK showed increased specificity in the temporal 

369 domain, as observed after collapsing across frequencies. While both filters showed an initial increase 

370 in global connectivity at early latencies (~110-120 ms post-stimulus), only the STOK filter, after a 

371 significantly faster recovery from the first peak (STOK vs. KF at 144-160 ms, p < 0.05), identified a 

372 second peak at critical latencies for motion processing (STOK vs. KF at 188-204 ms, p < 0.05) and a 

373 more pronounced decrease of global connectivity at a later stage (STOK vs. KF at 328-340 ms, p < 

374 0.05; see Fig. 4E). Interestingly, the second peak that STOK identified consisted of increased network 

375 activity in the high gamma band (70-90 Hz), and was due to due to increased outflow from motion- 

376 and vision-related ROIs that included areas MT+, V1 and FEF (see Fig. 4E, bottom right). Secondly, 

377 the STOK filter showed increased specificity in the frequency domain. After collapsing the time 

378 dimension, STOK clearly identified decreased network activity at lower frequencies with a distinct 

379 peak in the higher alpha band (15 Hz), in agreement with the typical event-related alpha 

380 desynchronization, Fig. 4C and E (67). Contrarily, the network desynchronization profile estimated 

381 by the KF was less specific to the alpha range and more spread at lower and middle frequency bands 

382 (Fig. 4E).

383 Discussion
384 The non-stationarity nature of neuronal signals and their unknown noise components pose a severe 

385 challenge for tracking dynamic functional networks during active tasks and behavior. In the present 

386 work, we have introduced and validated a new type of adaptive filter named the Self-Tuning 

387 Optimized Kalman filter (STOK). The STOK is optimized for tracking rapidly evolving patterns of 

388 directed connectivity in multivariate time-series of non-stationary signals, a challenge that makes 

389 most traditional algorithms inefficient. We designed the new adaptive filter with the goal to provide 
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390 a tool for dynamic, frequency-resolved network analysis of multivariate neural recordings that is 

391 computationally efficient. 

392 We validated the STOK filter using signal detection theory and an exhaustive battery of tests 

393 in simulated and real data. In a newly developed realistic simulation framework we showed that 

394 STOK outperforms the classical Kalman filter with better estimation accuracy in the time-frequency 

395 domain, higher tracking ability for varying SNR, and greater robustness to noise under signal mixing 

396 and simulated volume conduction effects (42,43). In real data, STOK showed an unprecedented 

397 ability to recover physiologically plausible patterns of time-varying, frequency-resolved functional 

398 connectivity during whisker-evoked responses in rats and during visually evoked EEG responses in 

399 humans. It achieved such performance without any explicit approximation of unknown noise 

400 components and requiring only a single free parameter (the autoregressive model order p). Additional 

401 tests demonstrated that STOK performance was robust against variations of the model order and of 

402 the sampling rate, two aspects that are known to be critical for other algorithms (54,55,71). These 

403 results validate STOK as a powerful new adaptive filter, optimized for uncovering network dynamics 

404 in multivariate sets of simultaneously recorded signals. This can have potentially broad applications 

405 in the field of systems and cognitive neuroscience, for the investigation of time-varying networks 

406 using evoked M/EEG response potentials, multi-unit activity, local field potentials (LFPs) and 

407 calcium imaging, or event-locked analyses like spike-triggered averages and traveling waves 

408 (21,23,24,72).

409 The accurate and robust performance of the STOK filter results from innovations based on 

410 existing engineering solutions. These innovations equip the filter with three important strengths: 1) it 

411 overcomes the problem of unknown design components in adaptive filtering (73), 2) it prevents 

412 overfitting and 3) it can track dynamical systems at variable speed (74,75). Below, we discuss each 

413 of these three important properties.

414 To overcome the problem of unknown design components the STOK filter extends an elegant 

415 solution for Kalman filtering under unknown noise components (73) to the case of multi-trial neuronal 

416 and physiological recordings. In Kalman filtering, noise components are covariance matrices that 

417 represent the assumed uncertainty in the data measurements and model parameters. In the simple 

418 form suggested by Nillson (2006), these unknown covariance matrices cancel out in the expression 

419 for the Kalman gain, and a multivariate least-squares reconstruction is used to estimate the latent 

420 process. This leads to a simplified version of the Kalman filter in which no explicit definition of 

421 uncertainty is required. The advantages of this formulation are greatest when sources of uncertainty 

422 cannot be determined in advance, as is the case for recordings of neural activity. Recorded neural 

423 signals are usually contaminated by mixtures of noise that are hardly separable, including 
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424 measurement noise, noise from the recording environment, biological artefacts and intrinsic 

425 fluctuations that are not pertinent to the process under investigation (22,24,26). Approaches based on 

426 Kalman filtering can be drastically affected by suboptimal strategies for modelling noise components 

427 (35,73,76). We therefore exploited the rationale and assumptions behind Nilsson’s formulation to 

428 provide a multi-trial adaptive filter that is agnostic to the measurement and process noise and uses a 

429 simple least-squares reconstruction to recover time-varying structures of autoregressive coefficients 

430 from present and past signals.

431 To approximate unknown noise components directly from the data, several methods have been 

432 proposed. These include methods based on innovations and residuals (77–79), covariance matching 

433 techniques (80), Bayesian, maximum-likelihood and correlation-based approaches (73,81), and other 

434 strategies adopted for neuroimaging (37,47,82). However, in many cases the covariance matrices 

435 estimated with such approximation methods may act as containers for unknown modelling errors 

436 (73), which leads to erroneous models and inadequate solutions (76,78). To overcome these risks, we 

437 adapted Nilsson’s approach, which retains a simple and flexible formulation of the filter that is 

438 applicable to the case of multi-trial recordings. An important caveat for a filter of this form, however, 

439 is that it is by definition suboptimal: while avoiding potentially inaccurate approximations of filter’s 

440 components, overfitting and the inclusion of noise in the estimates becomes very likely.

441 In order to prevent overfitting, we introduced a regularization based on singular value 

442 smoothing (83). Singular value smoothing, or damped SVD (84) retains information up to a given 

443 proportion of explained variance, reducing the effect of singular values below a given threshold (the 

444 filtering factor, eq. 20). Theoretically, how much to retain depends on the SNR and on the partitioning 

445 of variance among the main components of the data under investigation. For instance, lowering the 

446 amount of explained variance may result in connectivity estimates that are driven by only a few 

447 components. Whether this is desirable or problematic depends upon the hypothesis under 

448 consideration, and on the component structure in the data. At the other extreme, regularization can be 

449 avoided for very low-dimensional problems (e.g., bivariate analysis) or very high signal-to-noise ratio 

450 datasets. Following previous work, we set the filtering factor to retain 99% of the explained variance 

451 (85–88), and found that this threshold yields high and reliable performance for surrogate data of 

452 variable SNR, and for two sets of real EEG recordings. 

453 As a least-squares regularization, the SVD smoothing also promotes sparse solutions by 

454 shrinking tvMVAR coefficients of irrelevant and redundant components toward zero. This feature 

455 helps to overcome the curse of dimensionality by favoring sparser connectivity patterns. Moreover, 

456 in real functional brain networks sparsity is expected because of the sparse topology of underlying 

457 structural links (89,90). Promoting a certain degree of sparseness in functional networks has been the 
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458 objective of several recent works combining Granger causality and MVAR modelling with 

459 regularization procedures (e.g., ℓ1 or ℓ2 norm) (51,90–92). Moreover, adding group-LASSO penalties 

460 has been shown to improve the Kalman filter’s sensitivity and the robustness of the estimates (93). In 

461 contrast, STOK encourages sparse solutions by using a well-established technique for regularizing 

462 least-squares problems (SVD smoothing). The simplicity and flexibility of the least-squares 

463 reconstruction has the additional advantage that it becomes straightforward to implement other 

464 families of sparsity constraints, and to combine multiple constraints for the same estimate (90). 

465 Comparing the SVD smoothing with alternative penalizations is an interesting direction for future 

466 work.

467 The third methodological innovation of the STOK filter is a self-tuning memory decay that 

468 automatically calibrates adaptation speed at each timepoint. The adaptation parameter is a critical 

469 factor in adaptive filtering that determines the trade-off between the filter’s speed and the smoothness 

470 of the estimates (38,47). Methods that use a fixed adaptation constant assume that the system under 

471 investigation has a constant memory decay. But this assumption is unlikely to hold for neural systems 

472 that show non-stationary dynamics and sequential states of variable duration (6,34,74,94). To allow 

473 flexible tracking speed, adaptive filters with variable forgetting factors have been previously 

474 introduced, but these always require additional parameters that need to be chosen a priori, for instance 

475 to regulate the window length in which the forgetting factor is updated (75,95,96). Here we developed 

476 a new solution to determine the memory of the system in a completely data-driven fashion, by 

477 updating the filter’s speed using a window length of the model order p. At each time step, the residuals 

478 from independent past models of length p are used to derive a recursive update of the filter, through 

479 the automatic regulation of an exponential running average factor c. By combining the self-tuning 

480 memory decay with SVD regularization, the filter can run at maximum speed without the risk of 

481 introducing noisy fluctuations in the estimates, a problem that we observed for the classical Kalman 

482 filter in both surrogate and real data (Fig 1, Fig 4). Unlike other algorithms, therefore, the STOK filter 

483 can accurately track phasic and rapid changes in connectivity patterns, such as those that may underlie 

484 sequential evoked components during tasks and event-related designs.

485 The temporal evolution of the memory parameter c can potentially be used to indicate the 

486 presence of state transitions and stable states. When the model used to predict past segments of data 

487 is no longer a good model for incoming data, the memory of the filter decreases and the algorithm 

488 learns more from new data than from previous predictions, indicating a potential state transition. 

489 Conversely, when past models keep predicting new data with comparable residuals, the filter presents 

490 longer memory and slower updates, suggesting a stable state. In this way, the temporal evolution of 

491 the memory decay provides information about time constants and transition points in the multivariate 
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492 process under investigation, an additional indicator that can be used to quantify the temporal evolution 

493 of neural systems (4,16,94). Measures of state stability and changes, for instance, have been 

494 previously used in topographic EEG analysis (25,97), and we expect these be related to temporal 

495 variations in system memory.

496 In its current form, the STOK filter is a multi-trial algorithm, leveraging regularities and 

497 correlations across trials under the assumption that multiple trials are coherent, temporally aligned 

498 realizations of the same process (38,98). In principle, however, the algorithm can be adapted for real-

499 time tracking and single-trial modelling, provided that the least-squares reconstruction at its core is 

500 not ill-conditioned. This can be achieved, for instance, by adding more of the past measurements to 

501 the observation equation (e.g., eq. [4] in Nilsson, 2006). Future work will address the suitability of 

502 the STOK for single-trial and real-time tracking with dedicated tests.

503 As a note of caution, STOK can be used to derive directed functional connectivity measures 

504 within the Granger causality framework which has well-known strengths and limitations (99–101). 

505 As such, it estimates linear temporal dependencies and statistical relationships among multiple signals 

506 in a data-driven way, without a guaranteed mapping onto the underlying neuronal circuitry (26,102–

507 104). However, STOK provides a novel formulation that is well-suited for incorporating model-based 

508 or physiologically-derived information that could favor more biophysically plausible interpretations. 

509 Structural connectivity matrices, for instance, or models of cortical layers’ communication, can be 

510 easily incorporated as priors for constraining the least-squares solution (105,106), thus allowing the  

511 estimation of dynamic functional connectivity on the backbone of a detailed biophysical model.

512 As evident from our tests on real stimulus-evoked EEG data, the STOK filter can recover key 

513 patterns of dynamic functional connectivity with high temporal and frequency resolution. This 

514 positions STOK to provide new insights into the fast dynamics of neural interactions that were 

515 previously unattainable due to methodological limitations. In the rat EEG data, for instance, STOK 

516 results indicated that gamma-band activity flows mainly from contralateral somatosensory cortex to 

517 neighboring regions in a restricted temporal window around the peak of evoked activity, followed by 

518 a global decrease of interactions that may underlie local post-excitatory inhibition and global 

519 desynchronization in the gamma range (107,108). Before whisker stimulation, gamma-band 

520 influences from somatosensory cortex already showed increased functional connectivity with 

521 anterior, but not posterior, regions. Such detailed and temporally well-defined patterns of functional 

522 connections provide new valuable information for models of somatosensory processing in rats. 

523 Likewise, our results with human EEG recordings clearly indicated two critical windows of network 

524 interactions in the gamma range that emerged at plausible latencies of motion processing (64–66). 

525 These interactions involved increased outflow from temporal-occipital regions, including MT+, and 
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526 from the human homologue of the frontal eye field, providing a clear view on the network 

527 organization of motion processing.

528 While STOK was designed for connectivity analysis, it implements a tvMVAR model that 

529 can also be used for time-varying power spectrum density estimation. Our results in human EEG 

530 suggest that the PSD estimated by STOK has better time and frequency resolution than wavelet 

531 decomposition. Previous work has shown that a window-based MVAR approach can outperform 

532 multi-taper approach for time varying PSD estimates (109). The choice of model order is often 

533 considered a drawback of parametric approaches (98), but our result show that STOK is less affected 

534 by the choice of the model order, and does not require setting a window size. As such, STOK is also 

535 a promising tool for PSD analysis. Its ability to track fast temporal dynamics while maintaining high 

536 frequency specificity provide an advantage over non-parametric approaches that are subject to the 

537 trade-off between temporal and frequency resolution (68). 

538 To conclude, the STOK filter is a new tool for tvMVAR modeling non-stationary data with 

539 unknown noise components. It accurately characterizes event-related states, rapid network 

540 reconfigurations and frequency-specific dynamics at the sub-second timescale. STOK provides a 

541 powerful new tool in the quest of understanding fast functional network dynamics during sensory, 

542 motor and cognitive tasks (13,110,111), and can be widely applied in a variety of fields, such as 

543 systems-, network- and cognitive neuroscience.

544

545 Methods

546 Time-varying multivariate autoregressive modelling under the general linear Kalman Filter
547 Physiological time-series with multiple trials can be considered as a collection of realizations of the 

548 same multivariate stochastic process :𝑌𝑡

549 𝑌𝑡 = [𝑦(1)
1,𝑡 ⋯ 𝑦(1)

𝑑,𝑡
⋮ ⋱ ⋮

𝑦(𝑁)
1,𝑡 ⋯ 𝑦(𝑁)

𝑑,𝑡
] 𝑡 = 𝑡1,..,𝑡𝑇

550 [1]

551 where  refers to time,  is the length of the time-series,  the total number of trials and  the  𝑡 𝑇 𝑁 𝑑

552 dimension of the process (e.g., number of channels/electrodes). The dynamic behavior of  over time 𝑌

553 can be adequately described by a tvMVAR model of the general form:

554 𝑌𝑡 = ∑𝑝

𝑘 = 1
𝐴𝑘,𝑡𝑌𝑡 ‒ 𝑘 + 𝜀𝑡

555 [2]
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556 where  are  matrices containing the model coefficients (AR matrices),  is the zero-mean 𝐴𝑘,𝑡 [𝑑 𝑥 𝑑] 𝜀𝑡

557 white noise with covariance matrix  (also called the innovation process), and  is the model order. ∑𝜀 𝑝

558 An efficient approach to derive the AR coefficients and the innovation covariance  in eq. ∑𝜀

559 [2] is the use of state-space models (Arnold, Milner, Witte, Bauer, & Braun, 1998; Gelb, 1974; Milde 

560 et al., 2010). State-space models apply to problems with multivariate dynamic linear systems of both 

561 stationary and non-stationary stochastic variables (112) and can be used to reconstruct the set of 

562 linearly independent hidden variables that regulate the evolution of the system over time (26). The 

563 general linear Kalman filter (KF) (36,38) is an estimator of a system state and covariance that has the 

564 following state-space representation:

565

566 𝑥𝑡 =  Φ𝑡 ‒ 1𝑥𝑡 ‒ 1 + 𝜔𝑡 ‒ 1

567 [3]

568           𝑧𝑡 = 𝐻𝑡𝑥𝑡 + 𝜈𝑡

569 [4]

570 Equations [3] and [4] are called the state or system equation and the observation or measurement 

571 equation, respectively. In eq. [3], the hidden state  at time  has a deterministic component given by 𝑥 𝑡

572 the propagation of the previous state  through a transition matrix , and a stochastic component 𝑥𝑡 ‒ 1 Φ

573 given by the zero-mean white noise sequence  of covariance . In eq. [4], the observed data  at 𝜔 𝑄𝑡 𝑧

574 time  are expressed as a linear combination of the state variable  with projection measurement 𝑡 𝑥

575 matrix , in the absence of noise. The term  is a random white noise perturbation (zero mean, 𝐻 𝜈𝑡

576 covariance ) corrupting the measurements. 𝑅𝑡

577 To recursively estimate the hidden state  at each time , the Kalman filter 𝑥 (𝑡 = 𝑡1,..,𝑡𝑇)

578 alternates between two steps, the prediction and the update step. In the prediction step, the state and 

579 the error covariance are extrapolated as:

580 𝑥( ‒ )
𝑡 = Φ𝑡 ‒ 1𝑥( + )

𝑡 ‒ 1

581 [5]

582 𝑃( ‒ )
𝑡 = Φ𝑡 ‒ 1𝑃( + )

𝑡 ‒ 1Φ 𝑇
𝑡 ‒ 1 +  𝑄𝑡 ‒ 1 

583 [6]

584 where  and  are the a priori or predicted state and the error covariance at time , based on 𝑥( ‒ )
𝑡 𝑃( ‒ )

𝑡 𝑡

585 the propagation of the previous estimated state and covariance  and  through the transition 𝑥( + )
𝑡 ‒ 1 𝑃( + )

𝑡 ‒ 1

586 matrix . The superscript T denotes matrix transposition. Note that eq. [6] contains an explicit term Φ

587 for the process noise covariance matrix . 𝑄
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588 In the update step, a posteriori estimates of the state and error covariance are refined according 

589 to:

590 𝐾𝑡 =  𝑃( ‒ )
𝑡 𝐻𝑇

𝑡(𝐻𝑡𝑃( ‒ )
𝑡 𝐻𝑇

𝑡 + 𝑅𝑡) ‒ 1

591 [7]

592 𝑥( + )
𝑡 = 𝑥( ‒ )

𝑡 +  𝐾𝑡(𝑧𝑡 ‒ 𝐻𝑡𝑥( ‒ )
𝑡 )

593 [8]

594 𝑃( + )
𝑡 =  (𝐼 ‒  𝐾𝑡𝐻𝑡)𝑃( ‒ )

𝑡

595 [9]

596 where  is the identity matrix, and  is the Kalman Gain matrix reflecting the relationship between 𝐼 𝐾𝑡

597 uncertainty in the prior estimate and uncertainty in the measurements (in more simple form, 𝑘 =  

598 , with  = variance). The Kalman Gain thus quantifies the relative reliability of 
𝜎2

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝜎2
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝜎2

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
𝜎2

599 measurements and predictions and determines which one should be given more weight during the 

600 update step: if measurements are reliable, the measurement noise covariance  is smaller and  𝑅𝑡 𝐾𝑡

601 from eq. [7] will be larger; if measurements are noisy (larger ),  will be smaller. The effect of  𝑅𝑡 𝐾𝑡 𝐾𝑡

602 on the updated a posteriori state estimate  is evident from eq. [8], where the updated state at time 𝑥( + )
𝑡

603  is a linear combination of the a priori state  and a weighted difference between the current 𝑡 𝑥( ‒ )
𝑡

604 measurements  and the predicted measurement based on  (e.g., the residuals or measurement 𝑧𝑡 𝑥( ‒ )
𝑡

605 innovation term  on the right-hand side of eq. [8]). Thus, when the Kalman Gain (𝑧𝑡 ‒ 𝐻𝑡𝑥( ‒ )
𝑡 )

606 increases following reliable measurements, the contribution of the measurement innovation will 

607 increase as well, and the a posteriori estimate will contain more from actual measurements and 𝑥( + )
𝑡  

608 less from previous predictions. Conversely, when the Kalman Gain decreases following noisy 

609 measurements, the a posteriori estimate  will be closer to the a priori predicted state . It is 𝑥( + )
𝑡 𝑥( ‒ )

𝑡

610 important to note that the Kalman Gain minimizes the trace of the prediction error covariance  𝑃( + )
𝑡

611 (35) and depends on the innovation covariance term in eq. [7], which includes (𝐻𝑡𝑃( ‒ )
𝑡 𝐻𝑇

𝑡 + 𝑅𝑡) ‒ 1

612 explicitly the measurement noise  and the process noise covariance  from eq. [6]. When both  𝑅 𝑄 𝑤

613 and  are Gaussian with  and , and the design and noise matrices 𝜈 𝑤 ~𝑁(0,𝑅),  𝜈~𝑁(0,𝑄) 𝐸[𝑤𝑡𝜈𝑇
𝑡] = 0

614 , , , and  are known, the state-space Kalman filter is the optimal linear adaptive filter (35).𝐻 Φ 𝑅 𝑄

615 In the context of physiological time-series, however, the optimal behavior of the Kalman filter 

616 is not assured and the algorithm requires some specific accommodations to account for: 1) the lack 

617 of known transition matrix  and measurement matrix , and 2) the unknown covariance matrices Φ 𝐻

618 , and . To accommodate 1), the transition matrix  is usually replaced by an identity matrix  𝑅 𝑄 Φ 𝐼
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619 (37,38), which propagates the state  from time  to , such that the state in equation [3] follows 𝑥 𝑡 ‒ 1 𝑡

620 a first order random walk model (113):  

621 .𝑥𝑡 =  𝑥𝑡 ‒ 1 + 𝜔𝑡 ‒ 1

622 [10]

623 The objective of the filter is to reconstruct the hidden tvMVAR process generating the observed 

624 physiological signals for each time , which implies the following links between the state-space 𝑡

625 representation in eq. [3-4] and the tvMVAR model in eq. [1-2]:

626 𝑥𝑡 = [𝐴(1)
1,𝑡
⋮

𝐴(𝑁)
𝑝,𝑡

],  𝑧𝑡 =  𝑌𝑡

627 [11]

628 where  has dimensions [d p x p] and  [N x d] contains the measured signals at the current time .𝑥𝑡 ∗ 𝑧 𝑡

629 To establish the connection with the tvMVAR model, the measurement projection matrix  is 𝐻

630 redefined as:

631 𝐻𝑡 = (𝑌𝑡 ‒ 1, …, 𝑌𝑡 ‒ 𝑝) 

632 [12]

633 such that measurement equation [4] now expresses the observed data as a linear combination of the 

634 state  and past measurements  with additional perturbation . This formulation suggests that the 𝑥𝑡 𝐻𝑡 𝜈𝑡

635 hidden state  can be represented as a noise-contaminated least-squares reconstruction from present 𝑥𝑡

636 and past measurements:

637 .𝑥𝑡 = 𝐻 ‒ 1
𝑡 𝑧𝑡 ‒ 𝜈𝑡

638 [13]

639 The second critical step in applying Kalman filtering to physiological data is the determination 

640 of the filter covariance matrices , and . A widely used approach is to derive  recursively from 𝑅 𝑄 𝑅

641 measurement innovations and to approximate  as a diagonal weight matrix that determines the rate 𝑄

642 of change of  (37,38,47,see also 114 for a list of alternative methods). With this approach,  is 𝑃( ‒ )
𝑡 𝑅

643 initialized as  [d x d] and adaptively updated from the measurement innovations (the pre-update 𝐼

644 residuals) as:

645 Σ𝑟 =  
(𝑧𝑡 ‒ 𝐻𝑡𝑥( ‒ )

𝑡 )𝑇(𝑧𝑡 ‒ 𝐻𝑡𝑥( ‒ )
𝑡 )

𝑁 ‒ 1 ,  𝑅𝑡 =  𝑅𝑡 ‒ 1 + 𝑐(Σ𝑟 ‒ 𝑅𝑡 ‒ 1)

646 [14]
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647 where  is the covariance of measurement innovations,  is the total number of trials and  Σ𝑟 𝑁 𝑐

648  is a constant across time that regulates the adaptation speed for  (38).  is computed (0 ≤ 𝑐 ≤ 1) 𝑅𝑡 𝑅𝑡

649 before the Kalman update to replace the unknown  in the Kalman Gain with𝑅𝑡

650 𝐾𝑡 =  𝑃( ‒ )
𝑡 𝐻𝑇

𝑡(𝐻𝑡𝑃( ‒ )
𝑡 𝐻𝑇

𝑡 + 𝑡𝑟(𝑅𝑡)𝐼𝑁) ‒ 1

651 [15]

652 where  denotes the trace of a matrix and  is the identity matrix [  x ]. The other unknown 𝑡𝑟 𝐼𝑂 𝑁 𝑁

653 process noise covariance , is replaced by a rate of change matrix  added to the diagonal of 𝑄 𝐶2𝐼[𝑑 𝑥 𝑝]

654  in eq. [6] (115). The two constants  and  are usually selected as identical and determined a 𝑃( ‒ )
𝑡 𝑐 𝐶

655 priori (Ghumare, Schrooten, Vandenberghe, & Dupont, 2018; Ghumare, Schrooten, Vandenberghe, 

656 & Dupont, 2015; Leistritz et al., 2013) or through cost functions that minimize residual errors 

657 (37,118,69). In what follows we assume  and  to be identical and denote them as adaptation constant 𝑐 𝐶

658 .𝑐

659 The lack of a known transition matrix (eq. [5]) and the way that  and  are approximated 𝑅 𝑄

660 makes the adaptation constant  the critical free parameter that determines the trade-off between fast 𝑐

661 adaptation and smoothness: a small  value adds inertia to the system, reducing the ability to track 𝑐

662 and to recover from dynamic changes in the true state while a large  value increases the contribution 𝑐

663 of measurements to each update in eq. [7] and the uncertainty associated with . Thus, setting  𝑃( ‒ )
𝑡 𝑐

664 too large yields highly variable estimates that fluctuates around the true state introducing disturbances 

665 to the estimated state, rather than filtering them out (119). Although there exists no objective criterion 

666 to determine the optimal  in real data (39), several optimization approaches are available 𝑐

667 (69,114,118), but they are not universal to all types of data (39). Choosing a priori or based on 𝑐 

668 previous findings is complicated by a further non-trivial aspect of the filter: the trace approximation 

669 of  in eq. [15] (  implies that the system’s dimensionality co-determines the uncertainty in 𝑅 𝑡𝑟(𝑅𝑡))

670 measurements, the Kalman gain and the relative weight assigned to measurements. Thus, the effect 

671 of  on the update depends on the number of signals considered. Moreover, c is assumed stationary 𝑐

672 and constant for every time step , but this assumption may not be warranted in the context of non-𝑡

673 stationary neuronal time-series (74).

674 These critical aspects, along with the lack of an objective criterion for selecting , increases 𝑐

675 the risk of erroneous models and suboptimal filtering of physiological data which complicates the 

676 validity of inferences and the generalization of findings.

677
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678 The STOK: Self-Tuning Optimized Kalman filter
679 The critical role of the adaptation constant  when both  and  are unknown motivated us to develop 𝑐 𝑅 𝑄

680 a new adaptive filter that presents the following properties: 1) It does not require any explicit 

681 knowledge of  and  (73,120); 2) It embeds a self-tuning factor that auto-calibrates the adaptation 𝑅 𝑄

682 speed at each time step. Property 1) is achieved by extending the solution for Kalman filtering with 

683 unknown noise covariances proposed in Nilsson (2006) to the case of multi-trial time-series. 

684 According to Nilsson (2006), a reasonable tracking speed avoiding noise fluctuations can be achieved 

685 assuming the following relationship:

686

687 𝐻𝑃𝐻𝑇 ≈ 𝑐𝑅

688 [16]

689 that is, the error covariance matrix , projected onto the measurement space, is a scaled version of 𝑃

690 the measurement noise covariance matrix , with  a scalar positive tuning factor (see 73 for a 𝑅 𝑐

691 complete derivation). Assumption [16] allows a new formulation of the Kalman gain in eq. [7] as:

692 𝐾𝑡        =  𝑃( ‒ )
𝑡 𝐻𝑇

𝑡(𝐻𝑡𝑃( ‒ )
𝑡 𝐻𝑇

𝑡 + 𝑅𝑡) ‒ 1

693 =  𝐻 +
𝑡 𝑐𝑅𝑡(𝑐𝑅𝑡 + 𝑅𝑡) ‒ 1

694                  = 𝑐𝐻 +
𝑡 (𝑐 + 1) ‒ 1     =  

𝑐
1 + 𝑐𝐻 +

𝑡

695 [17]

696 where the apex  stands for the Moore-Penrose pseudoinverse. By substituting  from eq. [17] in + 𝐾𝑡

697 eq. [8], the new state update becomes:

698 𝑥( + )
𝑡          = 𝑥( ‒ )

𝑡 +  𝐾𝑡(𝑧𝑡 ‒ 𝐻𝑡𝑥( ‒ )
𝑡 )

699                                = 𝑥( ‒ )
𝑡 +  

𝑐
1 + 𝑐𝐻 +

𝑡 (𝑧𝑡 ‒ 𝐻𝑡𝑥( ‒ )
𝑡 )

700 =
𝑥( ‒ )

𝑡 + 𝑐𝐻 +
𝑡 𝑧𝑡

1 + 𝑐

701 [18]

702 in which the update of  is a weighted average of past predictions  and a least-squares 𝑥( + )
𝑡 𝑥( ‒ )

𝑡

703 reconstruction from recent measurements . When  is defined as in eq. [12],  is 𝐻 +
𝑡 𝑧𝑡 𝐻𝑡 𝐻 +

𝑡 𝑧𝑡

704 equivalent to finding the set of MVAR coefficients at each time , by least-squares regression of the 𝑡

705 present signals  on the past signals , with multiple trials as observations.  𝑧𝑡 𝐻𝑡
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706 The link with a least-squares problem was already suggested in eq. [13], however, by 

707 comparing eq. [13] with eq. [18], it is evident that the new state update does not incorporate any 

708 component of measurement noise . This implies that in the presence of noisy measurements, the 𝜈𝑡

709 new filter might be susceptible to overfitting and sensitive to noise. To overcome this issue, we 

710 introduced regularization, a widely-used strategy to reduce model complexity and to prevent 

711 overfitting in the domain of least-squares problems (90,91,121). More precisely, we employed a 

712 singular value decomposition (SVD)-based noise filtering with a standard form regularization 

713 (121,122) and a data-driven determination of the tuning parameter. Consider , the SVD of the 𝐻

714  matrix :𝑁 𝑥 𝑑𝑝 𝐻

715 𝐻 = 𝑈𝑆𝑉𝑇

716 [19]

717 where  and  are orthonormal matrices and  is a  diagonal matrix of singular values in 𝑈 𝑉 𝑆 𝑁 𝑥 𝑁

718 decreasing order. A regularized solution for the pseudoinverse  used in eq. [18] can be derived 𝐻 +

719 from eq. [19] as

720 𝐻 + = 𝑉Γ +
𝑟 𝑈𝑇,                  Γ +

𝑟 = [𝑆1,1
𝑆 2

1,1 + 𝜆 ⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝑆𝑁,𝑁

𝑆 2
𝑁,𝑁 + 𝜆

]
721 [20]

722 in which the diagonal elements of  correspond to the diagonal of the inverse of , subject to a Γ +
𝑟 𝑆

723 smoothing filter that dampens the components lower than a tuning factor  (122). To determine  in 𝜆 𝜆

724 a completely data-driven fashion and to avoid excessive regularization, we use a variance-based 

725 criterion: At each time step,  takes on the value that allows to retain components that together explain 𝜆

726 at least 99% of the total variance in . The 99% criterion is a canonical conservative threshold 𝐻𝑡

727 recommended in dimensionality reduction and noise filtering of physiological time-series (85–88), 

728 but the value of this threshold can in principle be tuned to the signal-to-noise ratio.

729 The second property that we introduced in the STOK filter is a self-tuning memory based on 

730 the adaptive calibration of the tuning factor  in eq. [18]. The single constant  is a smoothing 𝑐 𝑐

731 parameter in the exponential smoothing of the state  and determines the exponential decay of 𝑥( + )
𝑡

732 weights assigned to past predicted states, as they get older —the fading memory of the system. 

733 Whereas a fixed adaptation constant  assumes a steady memory decay of the system, which could not 

734 be appropriate in modelling neuronal processes and dynamics (74), solutions for variable fading 

735 factors have been widely explored (see 123 for a comprehensive list), also in relation to intrinsic 
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736 dynamics of physiological signals (124). Here we propose a new method based on monitoring the 

737 proportional change in innovation residuals from consecutive segments of time, according to:

738 𝑐𝑡 = min(𝑏 + [|𝑡𝑟(Σ𝑛𝑒𝑤
𝜀 ) ‒ 𝑡𝑟(Σ𝑜𝑙𝑑

𝜀 )|
𝑡𝑟(Σ𝑜𝑙𝑑

𝜀 ) ],1 ‒ 𝑏)
739 [21]

740 where  is a baseline constant (  that prevents the filter to perform at excessively slow 𝑏 𝑏 = 0.05)

741 tracking speed, such that , and  is the trace of the estimated 𝑐 ∈  (0.05,0.95) 𝑡𝑟(Σ𝑛𝑒𝑤/𝑜𝑙𝑑
𝜀 )

742 measurements innovation covariance for consecutive segments of data:  is a segment comprising 𝑛𝑒𝑤

743 samples from  to , and  is a segment from  to  . The use of successive 𝑡 𝑡 ‒ 𝑝 𝑜𝑙𝑑 𝑡 ‒ (𝑝 + 1) 𝑡 ‒ 2𝑝

744 residuals to adjust variable fading factors, as well as the choice of segments or averaging windows to 

745 prevent spurious effects of instantaneous residuals, is common practice in adaptive filtering (75,125) 

746 but requires the selection of an additional parameter that specify the windows length. Here we set  𝑝

747 —the model order— as the segments’ length and compare residuals from two consecutive non-

748 overlapping segments in order to adjust  at each time . The rationale behind this strategy is to avoid 𝑐 𝑡

749 any additional parameter, considering the morel order (i.e., the amount of past information chosen to 

750 best predict the signals) as the optimal segment for extrapolating residuals. In addition, non-

751 overlapping segments are used to monitor changes in residuals from independent sets of data. In other 

752 words, eq. [21] allows  to increase as the residuals generated by the model in predicting new data 𝑐

753 increase with respect to an independent model from the immediate past: when the model is no longer 

754 capable of explaining incoming data, tracking speed increases and the memory of the system shortens. 

755

756 Partial Directed Coherence (PDC)
757 To compare STOK and KF using a time-frequency representation of directed connectivity, we 

758 computed the squared row-normalized Partial Directed Coherence (41,PDC; 126). PDC quantifies 

759 the direct influence from time-series j to time-series l, after discounting the effect of all the other 

760 time-series. In its squared and row-normalized definition, PDC from j to l is a function of , obtained 𝐴𝑙𝑗

761 as:

762 𝜋𝑙𝑗(𝑓,𝑡) =
|𝐴𝑙𝑗(𝑓,𝑡)|2

𝑑

∑
𝑚 = 1

|𝐴𝑙𝑚(𝑓,𝑡)|2

763 [22]

764 where  is the frequency representation of the  coefficients at time , after the Z-transform:𝐴(𝑓,𝑡) 𝐴 𝑡
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765 𝐴(𝑓,𝑡) = ∑𝑝

𝑘 = 1
𝐴𝑘,𝑡𝑧 ‒ 𝑘,  𝑧 = 𝑒 ‒ 𝑖2𝜋𝑓

766 [23]

767 with  as the imaginary unit. The square exponents in eq. [22] enhance the accuracy and stability of 𝑖

768 the estimates (126) while the denominator allows the normalization of outgoing connections by the 

769 inflows (56).

770 The parametric time-varying power spectral density of each time-series (PSD) can be 

771 estimated using the prediction error covariance matrix  and the complex matrix in eq. [23], as:Σ𝜀

772 𝑃𝑆𝐷 = 𝐵(𝑓,𝑡) Σ𝜀𝐵(𝑓,𝑡) ∗

773 [24]

774 where  is the transfer function equal to the inverse of , and  is the complex conjugate 𝐵(𝑓,𝑡) 𝐴(𝑓,𝑡) ∗

775 transpose. Since  is time invariant by definition,  was estimated in both the KF and the STOK as Σ𝜀 Σ𝜀

776 the median measurements’ innovation covariance (e.g.,  in KF) across the last half of samples, in 𝑅𝑡

777 order to remove the effect of the initial filters’ adaptation stage.

778

779 Simulation framework
780 To systematically compare the STOK and KF performance against known ground truth, we developed 

781 a new Monte Carlo simulation framework that approximates properties of realistic brain networks, 

782 extending beyond classical approaches with restricted number of nodes and fixed connectivity 

783 patterns (28). Signals were simulated according to a reduced AR(6) process in which coefficients of 

784 a AR(2) model were placed in the first two lags for diagonal elements, and at variable delays (up to 

785 5 samples) for off-diagonal elements (127). Surrogate networks were created assuming existing 

786 physical links among 60-80% of all possible connections (128) and directed functional interactions 

787 were placed in a subset of existing links (50%) with variable time-frequency dynamics. Dominant 

788 oscillatory components in the low frequency range (e.g., 1-25 Hz) were generated by imposing 

789 positives values in the diagonal AR(2) coefficients of the simulated tvMVAR matrix (129). 

790 Interactions at multiple frequencies were generated by randomly assigning both positive and negative 

791 values to the AR(2) coefficients outside the diagonal. The magnitude of AR coefficients was 

792 randomly determined (range: 0.1-0.5, in steps of 0.01) and off-diagonal coefficients were scaled by 

793 half magnitude. This range and scaling were chosen to match patterns observed in human EEG data.

794 To mimic dynamic changes in connectivity patterns, the structure and magnitude of off-

795 diagonal AR coefficients varied across time, visiting three different regimes of randomly determined 

796 onset and transition times and with the only constrain to remain constant for at least 150 ms, 
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797 approximating the duration of quasi-stationary and metastable functional brain states (6,130). For 

798 each simulated regimen, the stochastic generation of AR coefficients was reiterated until the system 

799 reached asymptotic stability, i.e., satisfying the condition of real eigenvalues lower than zero.

800 Time-series for multiple trials (Fs = 200 Hz; duration = 2 s) were obtained by feeding the 

801 same tvMVAR process with generative zero-mean white noise of variance 1, and imposing a small 

802 degree of correlation (r = 0.1 ± 0.07) in the generative noise across trials, reflecting the assumption 

803 that trials are realizations of the same process (38) and in line with the correlation among trials 

804 observed in the human EEG dataset. Except when specific parameters were varied, all simulations 

805 were done with 10 nodes, 200 trials and no additive noise. When additive noise was included in the 

806 simulation, the signal-to-noise ratio (SNR) was determined as the ratio between the squared amplitude 

807 of the signal and the squared amplitude of the additive noise. 

808 To compare STOK and KF performance, we used the Receiving Operating Characteristic 

809 method (ROC) (40). For each simulated network, we first obtained a target ground truth by calculating 

810 PDC values directly from the simulated tvMVAR matrices, for frequencies between 1 and 100 Hz. 

811 Separate PDC matrices were then computed from the AR coefficients estimated with the STOK and 

812 KF filters. The ground truth PDC values were binarized using a range of thresholds criteria (e.g., PDC 

813 > 0; or PDC > 0.5 quantile, see Fig. 2A), defining zeros as signal absent and ones as signal present. 

814 Similarly, the estimated PDC values were binarized using a range of criteria at which connections 

815 were considered present or absent. The range of criteria consisted of twenty equally-spaced quantiles 

816 (from the 1st to the 99th quantile) from the distribution of each estimated PDC. Sensitivity and 

817 specificity indexes were then computed for each criterion against the ground truth PDC and used to 

818 derive the ROC curve. Finally, overall performance was quantified by the area under the ROC curve 

819 (AUC, see Fig. 2A). This method has the advantage of being independent of the range of values in 

820 each estimated PDC and does not require any parametric or bootstrap procedure to determine 

821 statistically significant connections. 

822 For each condition tested (see Results), we ran 30 realizations with different combination of 

823 parameters and the resulting AUC values were used in Analysis of Variance (ANOVA) and t-test 

824 statistical analysis. 

825

826 Benchmark rat EEG
827 These EEG data were previously recorded from a grid of 16 stainless steel electrodes placed directly 

828 on the skull bone of 10 young Wistar rats (P21; half males) during unilateral whisker stimulations 

829 under light isoflurane anesthesia (Fig. 3A-B). All animal handling procedures were approved by the 
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830 Office Vétérinaire Cantonal (Geneva, Switzerland) in accordance with Swiss Federal Laws. Data 

831 were originally acquired at 2000 Hz and bandpass filtered online between 1 and 500 Hz. Additional 

832 details about the recording can be found elsewhere (56,57). Data are freely available from 

833 https://osf.io/fd5ru.

834 The STOK filter and KF were applied to the entire network of 16 channels and used to derive 

835 PDC estimates. PDC results from the left and right stimulation were then combined within animals 

836 and only contralateral electrodes were further analyzed (56).

837

838 Human EEG
839 These human EEG data were taken from an ongoing project aimed at investigating the connectivity 

840 patterns of functionally specialized areas during perceptual processing. Data were recorded at 2048 

841 Hz with a 128-channel Biosemi Active Two EEG system (Biosemi, Amsterdam, The Netherlands) 

842 while nineteen participants (3 males, mean age = 23 ± 3.5) performed a coherent motion detection 

843 task in a dimly lit and electrically shielded room. Each trial started with a blank interval of 500 ms 

844 followed by a central dot kinematogram lasting 300 ms (dot field size = 8°; mean dot luminance = 

845 50%). In half of the trials, 80% of the dots were moving toward either the left or right, with the 

846 remaining 20% moving randomly. In the other half of trials, all dots were moving randomly. 

847 Participants had to report the presence of coherent motion by pressing one of two buttons of a 

848 response box (Fig. 4A). After the participant’s response, there was a random interval (from 600 to 

849 900 ms) before the beginning of a new trial. There were four blocks of 150 trials each, for a total of 

850 600 trials, (300 with coherent motion). Trials with coherent and random motion were interleaved 

851 randomly. Stimuli were generated using Psychopy (131) and presented on a VIEWPixx/3D display 

852 system (1920 × 1080 pixels, refresh rate of 100 Hz). All participants provided written informed 

853 consent before the experiment and had normal or corrected-to-normal vision. The experiment was 

854 approved by the local ethical committee.

855 EEG data were downsampled to 250 Hz (anti-aliasing filter: cut-off frequency = 112.5 Hz; 

856 transition bandwidth = 50 Hz) and detrended to remove slow fluctuations (<1 Hz) and linear trends 

857 (132). The power line noise (50 Hz) was removed using the method of spectrum interpolation (133). 

858 EEG epochs were then extracted from the continuous dataset and time-locked from -1500 to 1000 ms 

859 relative to stimulus onset. Noisy channels were identified before pre-processing and removed from 

860 the dataset (average proportion of channels removed across participants: 0.14 ± 0.06). Individual 

861 epochs containing non-stereotyped artifacts, peristimulus eye blinks and eye movements (occurring 

862 within ±500 ms from stimulus onset) were also identified by visual inspection and removed from 

863 further analysis (mean proportion of epochs removed across participants: 0.03 ± 0.03). Data were 
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864 cleaned from remaining physiological artifacts (eye blinks, horizontal and vertical eye movements, 

865 muscle potentials) using a ICA decomposition (FastIca, eeglab; ,134). Bad ICA components were 

866 labelled by crossing the results of a machine-learning algorithm (MARA, Multiple Artifact Rejection 

867 Algorithm in eeglab) with the criterion of >90% of total variance explained. ICA selection and 

868 removal of the labelled components was performed manually (mean proportion of components 

869 removed: 0.07 ± 0.03). As a final pre-processing step, the excluded bad channels were interpolated 

870 using the nearest-neighbor spline method, data were re-referenced to the average reference and a 

871 global z-score transformation was applied to the entire dataset of each participant. 

872 The LAURA algorithm implemented in Cartool (135) was used to compute the source 

873 reconstruction from available individual magnetic resonance imaging (MRI) data, applying the local 

874 spherical model with anatomical constraints (LSMAC) that constrains the solution space to the gray 

875 matter (135). A parcellation of the cortex into 83 sub-regions was then obtained using the 

876 Connectome Mapper open-source pipeline (136) and the Desikan-Killiany anatomical atlas (137). 

877 Source activity was then extracted from 16 bilateral motion-related regions of interest (ROI) defined 

878 from the literature (138,139). The ROIs were the pericalcarine cortex (V1), superior frontal sulcus 

879 (FEF), inferior parietal sulcus (IPS), cuneus (V3a), lateral occipital cortex (LOC), inferior medial 

880 occipital lobe (IOL), fusiform gyrus (FUS) and middle-temporal gyrus (MT+). Representative time-

881 series for each ROI were obtained with the method of singular values decomposition (140). Time-

882 series were then orthogonalized to reduce spatial leakage effects using the innovation 

883 orthogonalization method (141) and estimating the mixing matrix from the residuals of a stationary 

884 MVAR model applied to a baseline pre-stimulus interval (from -200 to 0 ms). The optimal model 

885 order for each participant was also estimated from the stationary pre-stimulus MVAR model using 

886 the Akaike final prediction error criterion (142) (optimal p = 11.9 ± 1.2). The optimal c for KF was 

887 estimated using the Relative Error Variance criterion (69,118) (optimal c = 0.0127).

888 For the present work, we focused on EEG data in response to coherent motion only and we 

889 averaged the connectivity results from the left and right hemifield. 
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