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Highlights 29 

 30 

• TIRL: new framework for prototyping bespoke image registration pipelines 31 

• Pipeline for automated registration of small-slide histology to whole-brain MRI 32 

• Slice-to-volume registration accounting for through-plane deformations 33 

• No need for serial histological sampling 34 

 35 

Abstract 36 

 37 

There is a need to understand the histopathological basis of MRI signal characteristics in 38 

complex biological matter. Microstructural imaging holds promise for sensitive and specific 39 

indicators of the early stages of human neurodegeneration but requires validation against 40 

traditional histological markers before it can be reliably applied in the clinical setting. 41 

Validation relies on a precise and preferably automatic method to align MRI and histological 42 

images of the same tissue, which poses unique challenges compared to more conventional 43 

MRI-to-MRI registration. 44 

 45 

A customisable open-source platform, Tensor Image Registration Library (TIRL) is presented. 46 

Based on TIRL, a fully automated pipeline was implemented to align small stained histological 47 

images with dissection photographs of corresponding tissue blocks and coronal brain slices, 48 

and further with high-resolution (0.5 mm) whole-brain post-mortem MRI data. The pipeline 49 

performed three separate deformable registrations to achieve accurate mapping between whole-50 

brain MRI and small-slide histology coordinates. The robustness and accuracy of the individual 51 

registration steps were evaluated using both simulated data and real-life images from 6 52 

different anatomical locations of one post-mortem human brain. 53 

 54 

The automated registration method demonstrated sub-millimetre accuracy in all steps, 55 

robustness against tissue damage, and good reproducibility between experiments. The method 56 

also outperformed manual landmark-based slice-to-volume registration, also correcting for 57 

curvatures in the slicing plane. Due to the customisability of TIRL, the pipeline can be 58 

conveniently adapted for other research needs and is therefore suitable for the large-scale 59 

comparison of routinely collected histology and MRI data. 60 

 61 
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List of abbreviations1  64 

 
1 ALS: amyotrophic lateral sclerosis, ANHIR: Automatic Non-rigid Histological Image Registration, BOBYQA: 
Bound Optimisation by Quadratic Approximation, bSSFP: balanced steady-state free precession sequence, CR: 
correlation ratio, CT: computed tomography, DOF: degrees of freedom, FSL: FMRIB Software Library, FWHM: 
full width at half maximum, H&E: haematoxylin and eosin (histological stain), LFB+PAS: Luxol fast blue 
combined with the periodic acid-Schiff procedure (histological stain), MIND: Modality-Independent 
Neighbourhood Descriptor, MND: motor neuron disease, MRI: magnetic resonance imaging, NEWUOA: New 
Unconstrained Optimisation Algorithm, NMI: normalised mutual information, OBB: Oxford Brain Bank,  
OFC: orbitofrontal cortex, PLP: proteolipid protein, pTDP-43: phosphorylated TAR-DNA binding protein 43 
kDa, SPM: Statistical Parametric Mapping (software), SSD: sum of squared differences, TIRL: Tensor Image 
Registration Library, TPS: thin-plate spline 
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1. Introduction 65 

 66 

1.1.  Motivation 67 

 68 

Histopathological studies have contributed an essential part to our understanding of human 69 

neurodegeneration. Looking at a chemically stained post-mortem tissue sample under a 70 

microscope, one can find molecular evidence for whether or not the observed region of the 71 

central nervous system has been affected by a disease process. Protein aggregates and neuronal 72 

death are among the defining histological features of neurodegeneration [1], usually predating 73 

clinical symptoms by several years [2]. Post-mortem studies of Parkinson’s disease [3], 74 

Alzheimer’s disease [4] and amyotrophic lateral sclerosis (ALS) [5] have indicated that the 75 

type of aggregates and their spatial distribution in the central nervous system are together 76 

representative of the type of neurodegeneration. Hence the concept of neurodegeneration as a 77 

prion-like spatiotemporal process has emerged [6, 7].  78 

 79 

Being restricted to post-mortem tissue, histology alone provides limited information about the 80 

temporal aspect of the disease and it is often used to study certain regions only instead of 81 

probing the whole human brain. Intra-individual characterisation of neurodegeneration as a 82 

spatiotemporal process therefore requires the combination of histology with a suitable in-vivo 83 

imaging technique that provides full brain coverage, is repeatable and desirably harmless for 84 

the patient. 85 

 86 

Advanced magnetic resonance imaging (MRI) techniques, in addition to capturing gross 3D 87 

anatomical and functional images of the whole brain, can also interrogate tissue properties at 88 

microscopic scales far smaller than the resolved voxel size. When applied to the human brain, 89 

these emerging microstructural MRI methods aim to estimate tissue properties such as neurite 90 

density, intracellular volume fraction [8], axon diameter [9], myelin content [10, 11], and 91 

cortical fibre orientation [12] usually by interpreting local changes of the MRI signal in the 92 

framework of sophisticated biophysical models [13] of tissue structure. Collectively these type 93 

of methods have been regarded as “in-vivo histology” [14, 15] and serve as a promising non-94 

invasive tool for tracking tissue-level spatiotemporal changes related to human 95 

neurodegeneration. However, it is a matter of active debate [16] how the measured quantities 96 

relate to actual histological parameters, especially in disease. 97 

 98 
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In order to characterise the relationship between MRI signal alterations and histopathological 99 

features in motor neuron disease (MND), our group previously acquired multi-modal MRI 100 

scans of whole, post-mortem human brains that were subsequently dissected into blocks for 101 

histopathological staining [17]. This dataset is the subject of an ongoing research project and 102 

will be released in full upon its completion. In the present paper, we address how the resultant 103 

2D histological images can be accurately registered to the 3D whole-brain post-mortem MRI 104 

data in an automated way, enabling systematic voxel-wise comparison between MRI and 105 

histological parameters. First, we provide an overview of existing approaches to MRI–106 

histology registration, then describe the development of a novel open-source image registration 107 

framework that we used to successfully register images from our dataset. 108 

 109 

1.2. Previous work in MRI-histology registration 110 

 111 

It is important to distinguish between two main approaches to MRI-histology registration based 112 

on how the histology data is collected, as it largely determines how the registration is 113 

performed. Over the next few paragraphs we shortly review previously proposed registration 114 

methods for (1) dense systematic histological sampling, and (2) stand-alone histological 115 

images. 116 

 117 

Methods of the first kind are well-developed with numerous examples [18-28] from as early as 118 

1994. A comprehensive review of the methods in this category can be found in Pichat et al 119 

[29]. For these methods, tissues must be frozen or embedded in a rigid medium and sectioned 120 

at regular intervals. Most commonly the tissue block face is photographed after each section to 121 

serve as a rigid reference. Distortions of the thin tissue sections are compensated by 2D 122 

deformable registration to the corresponding rigid reference, which are subsequently stacked 123 

to create a volume of photographic/histological data. This volume is later registered to the MRI 124 

data using standard 3D registration tools such as ABA [30] or ANTs [31]. As a novelty, Iglesias 125 

et al [32] recently demonstrated accurate (0.5 – 2 mm) 2D-to-2D histology-to-MRI registration 126 

without photographic intermediates. Assuming perfect slice correspondence, they mapped 127 

sequentially sampled whole-brain histology images to an MRI volume. Complementary to this 128 

work, Pichat et al [33] proposed a method for direct histology-to-MRI registration between 129 

small histological samples (as opposed to whole-hemisphere images) and corresponding MRI 130 

slices via automated affine-invariant shape matching, but only reported preliminary results that 131 

required manual MRI slice matching. 132 
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 133 

Perhaps the biggest advantage of the methods in this category is that the 3D geometrical 134 

correspondence of the sections is accurately preserved. With the use of a rigid reference, the 135 

“banana effect”, [34] in which an accumulation of small shifts between adjacent slices results 136 

in a shearing in the third dimension, may also be avoided. However, given the size of the human 137 

brain, the acquisition of systematically sampled histology data requires bespoke slicing and 138 

stain automation hardware, none of which is readily available at most neuropathology facilities. 139 

This approach is therefore better suited to study the brains of small animals or, with substantial 140 

time and workforce commitment, a single human brain [35, 36]. 141 

 142 

For stand-alone histological images (i.e. a single, small-format slide), a direct slice-to-volume 143 

registration must be employed. Despite the fact that almost the entire body of histology images 144 

that have ever been created in neuropathology facilities for expert interpretation exist in this 145 

format, suitable registration methods are disproportionately underrepresented in the literature. 146 

This might be due to the unique challenge associated with slice-to-volume registration: the 147 

parameters that are necessary to align a potentially distorted 2D image in 3D space have a vast 148 

search space, and a high propensity to converge to local optima, as a small 2D slice may 149 

constitute a relatively good fit at many locations in 3D space. Most reported pipelines are semi-150 

automatic, requiring accurate manual slice initialisation or annotating correspondent 151 

anatomical structures.  152 

 153 

Kim et al [37] reported the first relevant slice-to-volume registration approach between post-154 

mortem brain slice photographs and ante-mortem MRI, using 2nd- and 3rd-order polynomial 155 

parametrisation for in-plane and out-of-plane deformations. The method was later used by 156 

Singh et al [38] to register histological images of vascular lesions to in-vivo MRI data using 157 

photographic intermediates, reporting an overall registration accuracy of 3-8 mm. Meyer et al 158 

[39] reported a semi-automated registration method to align a histological section of murine 159 

glioma to in-vivo MRI using high-resolution ex-vivo MRI as an intermediate reference volume. 160 

As an improvement to using polynomials to parametrise deformations, they used thin-plate 161 

splines (TPS) to correct for both in-plane and out-of-plane deformations of the histological 162 

section. However, the accuracy of their method was not mentioned, and the code was not 163 

published. Osechinskiy et al [40] registered histological sections of whole hemispheres to 3D 164 

MRI data and conducted a comprehensive analysis of cost functions, optimisation and 165 

transformation methods. The best results were achieved by using TPS-based parametrisation 166 
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of a 3D deformation field, optimised by the NEWUOA algorithm [41] for Pearson’s correlation 167 

of the images. As a further refinement to the technique, they devised a novel similarity metric 168 

based on the correspondence of grey-white matter boundaries [42]. Unfortunately, the authors 169 

never made their implementation publicly available for reuse, prohibiting the test of novel 170 

texture-based cost functions, such as the Modality-Independent Neighbourhood Descriptor 171 

(MIND) [43]. The registration of small histological sections (as opposed to whole-hemisphere 172 

images) was studied by Ohnishi et al [44]. Using manual landmarks, they stitched together 173 

smaller histological images into a full hemisphere, and subsequently registered it to a 174 

photograph of the coronal section of the hemisphere, which was further registered to 3D MRI. 175 

Neither in-plane nor out-of-plane deformations were considered in the slice-to-volume step; 176 

the authors instead recommended using specialised hardware to avoid distortions. 177 

 178 

In both categories of problems described above, the pipelines mentioned so far were built for 179 

a specific purpose and have not been released in the form of open-source software. As a 180 

consequence, new experimenters are repeatedly required to invest time and effort into 181 

extensive hardware and/or software development [45], which negatively impacts large-scale 182 

validation studies. Recently, Majka et al [46] released Possum, an open-source framework for 183 

reconstructing volumetric histology data, which is a great step toward standardising this aspect 184 

of stack-based MRI-histology registration. A recent preprint by Alegro et al [36, 47] reported 185 

an automated pipeline for serial histological sections. To the best of our knowledge, a similar 186 

software tool for slice-to-volume registration of small stand-alone histological images to MRI 187 

data is still not available to date.  188 

 189 

In the present work, we aim to address this need by describing a new open-source image 190 

registration framework that aims to integrate previously published methods in a single package, 191 

providing a customisable workflow that is compatible with most common image formats for 192 

MRI, histology and photographs. Based on this framework, we propose a fully automated 193 

registration pipeline to align small histological sections with volumetric MRI data using 194 

photographic intermediates. As an additional novelty, we demonstrate by example that in the 195 

case of free-hand brain cutting, involuntary deflections from the slicing plane are large enough 196 

to disrupt the anatomical correspondence between histological sections and visually matched 197 

slices of the MRI volume, and explain how these distortions are compensated within the 198 

proposed pipeline.  199 

 200 
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The organisation of the paper is as follows. In ‘Materials and Methods’ we describe the 201 

acquisition (section 2.1) and pre-processing (section 2.2) of the imaging data, formulate the 202 

registration problem (section 2.4), introduce the Tensor Image Registration Library (TIRL) 203 

(section 2.5), and finally describe each stage of the proposed MRI-histology registration 204 

pipeline (sections 2.6-2.8) as well as the combination of all stages (section 2.9). In ‘Results’ 205 

we present summative or representative registration results and describe the accuracy of each 206 

stage (sections 3.1-3.3) as well as showing an example of end-to-end MRI-histology 207 

registration (section 3.4). Finally, in section 3.5 we introduce an optional stage that may be 208 

used to refine end-to-end registration results and show a further example of MRI-histology 209 

alignment. In the ‘Discussion’ section we highlight potential directions for further 210 

improvement and finally identify the role of the current developments in the broader context 211 

of neuroimaging research. 212 

 213 

2. Material and Methods 214 

 215 

2.1. Imaging data acquisition 216 

 217 

Figure 1 summarises the collection of the imaging data that served as a starting point for the 218 

present study. All data was collected and used according to the Oxford Brain Bank’s (OBB) 219 

generic Research Ethics Committee approval (15/SC/0639). Written informed consent was 220 

obtained by the OBB from all participants of this study. Thirteen formalin-fixed post-mortem 221 

brains with neuropathologically and clinically verified MND were obtained from the cases of 222 

the OBB between 2014 and 2017. The median age of the donors was 65.5 years at death (full 223 

range: 27-77 years), and ten of them were males, two of them females. An additional three 224 

brains with no neuropathological hallmarks or clinical records of neurodegeneration were 225 

obtained as controls (age at death: 61, 76, 89 years; 2 males, 1 female). The post-mortem 226 

interval of the brains varied between 1 and 7 days (median: 3 days). The brains (denuded of 227 

the dura mater) were immersed in 10% neutral buffered formalin for at least 1 month to allow 228 

even preservation of the tissues throughout the full volume of the brain. Before scanning, each 229 

specimen was placed into a brain-shape plastic container to prevent large deformations and the 230 

container was filled with Fluorinert to supress the background signal. Scans were performed 231 

on a clinical 7T Siemens MRI scanner at the Wellcome Centre for Integrative Neuroimaging 232 

(University of Oxford) using an optimised 48-hour acquisition protocol yielding quantitative 233 

T1 and T2 maps at 1 mm isotropic resolution, T2* and susceptibility maps at 0.5 mm isotropic 234 
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resolution, DWI at 0.85 mm isotropic resolution and a bSSFP anatomical reference scan at 0.25 235 

mm isotropic resolution (also referred to as 3D-TRUFI) [17, 48]. The MRI images were aligned 236 

and post-processed with an in-house pipeline (B.C. Tendler, in preparation). For the purposes 237 

of the present paper, only the anatomical reference scan (resampled to 0.5 mm isotropic 238 

resolution) was used, because it exhibited the highest contrast between grey and white matter. 239 

 240 

 241 
Figure 1. Overview of image data collection. Whole human brains were obtained from the Oxford Brain 242 
Bank from 3 consented healthy individuals and 13 patients with MND. Multi-modal quantitative MR images 243 
were acquired from each brain after at least 1 month of formalin fixation (4 months on average). The brains 244 
were dissected with a standard protocol for histopathological staging. Coronal brain slices were 245 
photographed on both sides before and after the excision of smaller tissue blocks of interest, which were 246 
also photographed. H&E, immunostains for ferritin, PLP, pTDP-43, and CD68 stains were created from the 247 
superficial layers of each tissue block. 248 
 249 

The formalin-fixed whole brains were subsequently dissected at the Neuropathology 250 

Department of the John Radcliffe Hospital (Oxford). Following an optimised whole-brain 251 

sampling protocol [17], the brain was manually sliced into approximately 1 cm thick coronal 252 

sections, starting from the plane of the mamillary bodies toward the anterior and posterior poles 253 

of the brain. The total number of slices (13-17) varied with the size of the brain. As part of the 254 

protocol, en bloc dissection of the hand knob from the primary motor (M1) and primary sensory 255 

(S1) cortices in advance of the coronal slicing resulted in bilateral damage in a few of the 256 

middle slices. (We will refer to the extracted block later as the “M1S1 block”.) From predefined 257 

anatomical locations in each slice, one or more smaller tissue blocks were extracted by knife 258 

section. The size and shape of the blocks varied across sampling sites, but most of them were 259 

not larger than a few centimetres. The whole process was carefully documented by routinely 260 

capturing photographs of (1) both the anterior and posterior surfaces of the coronal slices, (2) 261 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/849570doi: bioRxiv preprint 

https://doi.org/10.1101/849570
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

each coronal slice after the extraction of a new tissue block, and (3) both the anterior and 262 

posterior faces of all tissue blocks (Figure 1). The size of the raw photographs was 263 

5472 × 3648, and their resolution was later recorded from a size guide in the images as ~55	264 

µm/pixel. 265 

 266 

Finally, all tissue blocks were embedded in paraffin and sectioned on a microtome at 6-10 µm 267 

thickness. Tissue sections were stained by various histological methods, including standard 268 

haematoxylin and eosin (H&E) and immunochemistry for proteins of interest such as ferritin, 269 

myelin proteolipid protein (PLP), activated microglia and macrophages (CD68), 270 

phosphorylated TAR-DNA binding protein-43 (pTDP-43) and pan microglia (Iba-1). 271 

Specifically for the purpose of registration with MRI, additional LFB+PAS (Luxol fast blue 272 

combined with the periodic acid-Schiff procedure) staining was performed on two blocks of a 273 

single brain. Digital whole-slide images were created in SVS format using an Aperio 274 

ScanScope slide scanner at ×20 objective magnification, yielding a typical matrix size of 275 

approximately 60000 × 45000 at full resolution (~0.5 µm/pixel).  276 

 277 

2.2.  Image pre-processing 278 

 279 

Before entering the registration pipeline, all of the above-mentioned images underwent a 280 

number of pre-processing steps to (1) reduce some of the variability of the input and (2) aid 281 

registration by addressing structural discrepancies between corresponding images.  282 

 283 

Ad 1. To standardise the input of the registration pipeline, brain slices and tissue blocks were 284 

isolated from other objects in the photographs by cropping the central 50% and 30% of the 285 

original images along each axis, and segmented from the blue matte background using k-means 286 

classification (𝑘 = 2) of the RGB vectors in the cropped image. The images were smoothed 287 

with the mean shift algorithm (𝑟&'()*(+: 3 px, 𝑟,-.: 10) before the classification to prevent noisy 288 

segmentation within the tissue. Tissue debris and glare occasionally resulted in false positive 289 

segmentation that were successfully removed by searching for connected components in the 290 

segmented image and discarding anything under an area of 2000 pixels (resolution: 50 µm/px). 291 

As a result of the pre-processing, brain slice and tissue block photographs had an approximate 292 

size of 2500 × 2500 pixels and 800 × 800 pixels, respectively, 3 colour channels and zero-293 

filled background. The histological images were imported from the lowest resolution level 294 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/849570doi: bioRxiv preprint 

https://doi.org/10.1101/849570
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

(~5 µm/px) of the digitised whole-slide images, and further subsampled to match the resolution 295 

of the photographs. As suggested by Jenkinson and Smith [49, 50] Gaussian smoothing was 296 

applied to the images before downsampling (with FWHM in mm set to the downsampling 297 

factor) to ensure that new pixel values are representative of all pixels in the original image. 298 

Finally, all photographs and the histological images were flattened into 8-bit grayscale images 299 

by taking the Euclidean norm of the RGB vectors. 300 

 301 

Ad 2. Due to the post-mortem nature of the study, full anatomical correspondence may not be 302 

guaranteed between corresponding image pairs. For example, as long as the cerebellum is 303 

removed at the start of the dissection process, coronal sections of the MR volumes will be 304 

different from the corresponding autopsy photographs, and lead to severe registration error in 305 

occipital slices. Similarly, missing parts of the motor and sensory cortices has a similar 306 

consequence for the slices that are close to the centre. These structural discrepancies were also 307 

addressed by pre-processing. We used the cerebral segmentation tool in BrainSuite (ver. 18) 308 

[51] to perform brain extraction and remove the cerebellum from the high-resolution structural 309 

MRI scan before it was fed into the pipeline. Furthermore, hand-drawn binary 2D masks were 310 

used to facilitate slice-to-volume registration at the centre of the brain, where parts of the 311 

hemispheres were absent from the photographs as a result of removing the M1S1 blocks. 312 

 313 

2.3. Overview of the registration pipeline 314 

 315 

 316 
Figure 2. Overview of the three independent deformable registration steps of the pipeline. Stage 1: 317 
histology to tissue block photograph, stage 2: tissue block to brain slice photograph, stage 3: brain slice 318 
photograph to MRI volume. MRI-histology registration is realised by optimising each stage separately and 319 
eventually combining all three stages into a single, final transformation. As discussed later in section 3.5, an 320 
optional 4th stage may be employed to fine tune the alignment of the registered histological section within 321 
the MRI volume. 322 
 323 

As shown in Figure 2, the proposed automated registration pipeline imports the pre-processed 324 

images (histology, photograph, MRI), and performs three consecutive registrations (stages 1, 325 

2, and 3) to map the pixels of a histological image (𝑥 ∈ ℝ2) on the voxels of MRI data (𝑥3 ∈326 
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ℝ4). An optional extension to the pipeline (stage 4) will be described in section 3.5, following 327 

the discussion of registration results based on the three main stages. 328 

 329 

2.4. Formulation of image registration 330 

 331 

In the following paragraphs we describe the mathematical formulation for registering two-332 

dimensional scalar-valued (single-channel) images. We do this to keep notations as simple as 333 

possible, but the derivation can be readily extended for images with three spatial dimensions 334 

and/or multiple channels (i.e. vector-, matrix- or tensor-valued pixels or voxels), and the actual 335 

implementation follows the general case. 336 

 337 

We define a single-channel target (𝑇(𝒙) ∈ ℝ) and a single-channel source (𝐻(𝒙′) ∈ ℝ) image 338 

as continuous functions on finite Euclidean domains	Ω ⊂ ℝ>, and Ψ ⊂ ℝ> of dimension 𝑑 =339 

2. We further define a bijection 𝜙𝒑(⋅) with parameters 𝒑 that maps the coordinates of 340 

corresponding pixels between the source and the target domain: 𝜙𝒑:Ψ → Ω, 𝒙 = 𝜙𝒑(𝒙3), and 341 

its inverse such that 𝜙𝒑GH(𝒙) = 𝒙′. Using this notation, the registration problem between two 342 

images may be formalised as: 343 

 344 

argmin
𝐩
𝐷𝜽 R𝑇(𝒙), 𝐻 S𝜙𝒑GH(𝒙)TU + 𝑅X(𝒑) (1) 

 345 

where 𝐷Y(⋅) is a distance function (or cost) with parameters 𝜃, that quantifies the dissimilarity 346 

of corresponding pixels. 𝑅X is the regularisation term that imposes constraints on the 347 

transformation parameters (such as spatial smoothness or elasticity etc [52]) and smooths the 348 

objective function for efficient optimisation. The most common choice for 𝐷Y(⋅) is the sum of 349 

squared intensity differences (SSD): 350 

 351 

𝑆𝑆𝐷 = \ R𝑇(𝒙) − 𝐻 S𝜙'GH(𝒙)TU
2
𝑑𝒙

^
 (2) 

 352 

However, SSD becomes problematic when images of different modalities are concerned (such 353 

as MRI, CT, photographs, histology etc.), as in this case the images may exhibit different 354 

internal contrast and the assumption of a monotonic relationship between intensity difference 355 
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and anatomical dissimilarity no longer prevails. Alternative distance measures that can be used 356 

in the multi-modal context are correlation ratio (CR), and normalised mutual information 357 

(NMI) [49]. In the context of MRI-histology registration none of these statistical measures are 358 

ideal, because the region of interest that corresponds to a histological section may only 359 

constitute a small number of voxels in MRI space. In this work, we therefore use a more 360 

recently proposed pattern-based approach called the Modality-Independent Neighbourhood 361 

Descriptor (MIND) [43], which is a non-linear image operation that enables us to subsequently 362 

use SSD on multi-modal data. In essence, MIND captures the local self-similarity of the image 363 

by replacing each pixel value with a vector, the components of which describe the intensity 364 

relationship of the current pixel with that of its neighbours in a directionally dependent manner.  365 

 366 

 367 
Figure 3. The modality-independent neighbourhood descriptor (MIND). (A) schematic of MIND 368 
calculation for the pixel at the centre (at 𝒙_). A neighbourhood (red) is defined as a hollow square plate by 369 
the half side lengths of its inner (𝑅*) and outer (𝑅`) bounding squares. Each component of the MIND vector 370 
(𝑚*) represents the dissimilarity between the central (blue) patch and the peripheral (green) patch that is 371 
centred on the i-th element of the neighbourhood (at 𝒙*). Dissimilarity is calculated as the sum of squared 372 
differences between corresponding elements of the two patches. Resultant values are normalised by the local 373 
variance and taken as a negative exponent of an exponential function (cf. equations in section 2.4). Values 374 
of the raw MIND vector are finally scaled such that the largest MIND component at each pixel becomes 1. 375 
(B) Result of the 2D MIND operation (𝑅* = 0, 𝑅` = 1) on a small portion of an actual histological image. 376 
(The image was flattened to grayscale before the MIND operation.) Black-and-white images on the periphery 377 
correspond to individual components of the MIND vectors according to their position in the 8-378 
neighbourhood. Note the direction-sensitive enhancement of image edges in each tile. 379 
 380 
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To calculate the MIND-representation of a single-channel image, we first discretise our 381 

previous image definitions such that 𝒙 denotes target pixel coordinates (non-negative integers), 382 

and we define a small set of neighbourhood intensities around each pixel (Figure 3A, red tiles): 383 

 384 

𝒩(𝒙) = {𝐼(𝒙 + 𝒓*)	|	𝒓H, 𝒓2, … , 𝒓*, … , 𝒓h ∈ ℤ>} (3) 

 385 

The neighbourhood may be of arbitrary shape. Here we parametrise it as a hollow square plate 386 

that is defined by the half side lengths of its inner (𝑅* ≥ 0) and outer (𝑅` ≥ 1, and 𝑅` > 𝑅*) 387 

bounding squares (see Figure 3A). 388 

 389 

In a way that is similar to the definition of the pixel’s neighbourhood, we further define 390 

identical patches around both the central pixel (𝐼(𝒙) ∈ ℝ) (𝒫p) and each of the pixels in its 391 

neighbourhood (𝒫H..*..h) (Figure 3A, blue and green squares): 392 

 393 

𝒫p(𝒙) = r𝐼s𝒙 + 𝒑tu	|	𝒑H, −𝒑H, … , 𝒑t, −𝒑t … , 𝒑v, −𝒑v ∈ ℤ>w 

𝒫*(𝒙 + 𝒓*) = r𝐼s𝒙 + 𝒓* + 𝒑tu	|	𝒑H, −𝒑H, … , 𝒑t, −𝒑t … , 𝒑v, −𝒑v ∈ ℤ>w 
(4) 

 394 

With each of the |𝒩| components of the MIND vector the aim is to represent the similarity of 395 

the central patch to one of the neighbourhood patches, hence the i-th component of the MIND 396 

vector 𝒎(𝒙) at pixel 𝒙 is defined as: 397 

 398 

𝑚*(𝒙) = 	𝑘* ⋅ exp|−
𝒟(𝐼, 𝒙, 𝒙 + 𝒓*)

𝑉(𝐼, 𝒙) � (5) 

 399 

where 𝒟 is the patch-based image dissimilarity index of the image at 𝒙 ∈ ℝ> with respect to 400 

the i-th neighbourhood point at 𝒙 + 𝒓*. The dissimilarity index is essentially the squared 401 

difference between the intensities at 𝒙 and 𝒙 + 𝒓*, but instead it is calculated as a sum of all 402 

squared differences between the corresponding elements of the central and the neighbourhood 403 

patches (𝒫) to maintain robustness against image noise (Figure 3A, blue and green squares): 404 

 405 

𝒟(𝐼, 𝒙, 𝒙 + 𝒓*) = � s𝐼s𝒙 + 𝒑tu − 𝐼(𝒙 + 𝒓* + 𝒑t)u
2

|𝒫|GH

t�_

 (6) 

 406 
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and 𝑉 is the local intensity variance of the image at pixel 𝒙: 407 

 408 

𝑉(𝐼, 𝒙) =
1
|𝒩| � 𝒟(𝐼, 𝒙, 𝒙 + 𝒓*)

|𝒩|GH

*�_

 (7) 

 409 

𝑘* is a normalisation factor that ensures that the largest component of the MIND vector (of size 410 

|𝒩|) at every 𝒙 is 1. As a result of the MIND transformation, the similarity of multi-modal 411 

images can be defined as the squared Euclidean distance between the corresponding MIND 412 

vectors of the target (𝒎�(𝒙)) and the source (𝒎�(𝒙)): 413 

 414 

𝑆𝑆𝐷��h� = 	��𝒎�(𝒙) −𝒎� S𝜙𝒑GH(𝒙)T�
2

2

𝒙∈^

 (8) 

 415 

In the same fashion, for a multi-channel image, the original vector value of each pixel would 416 

be replaced by a matrix upon MIND transformation, and the dissimilarity of matrix-valued 417 

MIND representations would be expressed as the sum of squared elementwise differences. For 418 

a more detailed description on MIND see Heinrich et al [43]. 419 

 420 

2.5. Tensor Image Registration Library 421 

 422 

Our novel image registration platform, the Tensor Image Registration Library (TIRL) uses the 423 

formalism laid out in section 2.4 to aid fast prototyping of bespoke image registration pipelines 424 

for virtually any kind of images. All elements of the automated MRI-histology registration 425 

pipeline described in this paper were implemented in TIRL. The framework is based on 426 

Python 3.7, offering rich customisability via scripting. TIRL is a fully open-source project 427 

distributed as part of an upcoming release of the FMRIB Software Library (FSL) [53], with the 428 

intention to be used and further extended by community members. The main features of the 429 

library are summarised below. 430 

 431 

TIRL follows an object-oriented programming paradigm. The registration process is realised 432 

by the interaction of several objects (Figure 4): the source and the target images (TImage), their 433 

domains (Domain), the coordinate transformations (Transformation), the cost function (Cost), 434 

the regularisation term (Regulariser), and the optimisation algorithm (Optimiser). TIRL 435 
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defines custom file formats for saving any of the TImage (.timg), Domain (.dom), 436 

Transformation (.tx) and TransformationGroup (.txg) objects, which can later be loaded back 437 

into any compatible pipeline or used to extract quantitative transformation details after the 438 

registration is complete. 439 

 440 

Similarly to the NIfTI standard for MR images [54], TIRL’s TImage is defined in physical 441 

space. This means that the image data is stored in a regular voxel grid with arbitrary number 442 

of dimensions (N), but each point in this voxel grid has an associate location in physical space 443 

(sometimes referred to as ‘millimetre-coordinates’). This is equivalent to the statement that 444 

each TImage is defined on a Domain. While NIfTI limits the mapping between voxel space 445 

and physical space coordinates to a single rigid/affine transformation (via the q-form and s-446 

form matrices), the Domain object performs this mapping via a chain of Transformation 447 

objects, some of which may also be non-linear transformations. Hence, the position of a 448 

TImage in physical space can be manipulated by adding or removing Transformations from 449 

TImage’s Domain, without changing the image data. Alternatively, the resolution of the image 450 

can be changed by evaluating the TImage on a new Domain that has the same physical extent 451 

but different matrix size. 452 

  453 
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 454 
Figure 4. Schematic of the image registration logic within TIRL. Shapes with colour correspond to 455 
objects in the TIRL namespace. The source and target TImage objects comprise a memory-mapped container 456 
for raw (high-resolution) image data, a Domain object that defines the physical extent of the image by a 457 
chain of Transformations, and an array of Interpolators that map the high-resolution image data onto the 458 
current Domain. Both the target and the source images are passed through an image filter (to select a colour 459 
channel or calculate MIND etc.). The Cost object evaluates the filtered source image on the Domain of the 460 
filtered target image, and computes both the scalar cost and the cost gradient according to the object’s 461 
internal routine that is specific to the type of the Cost object (e.g. NMI, CR, SSD, etc.). These are fed into 462 
the Optimiser together with the regularisation term and regularisation gradients. The latter two are computed 463 
from the transformation parameters by the Regulariser object. The transformation parameters are pooled 464 
from the transformations of the target image chain that are selected by the OptimisationGroup object for 465 
simultaneous optimisation. (This object also allows transformations to be simultaneously optimised in both 466 
images.) Transformation parameters are updated in-place by the Optimiser object via the 467 
OptimisationGroup, until one of the convergence criteria is met (which is a parameter of the Optimiser).  468 
 469 

A major advantage of the transformation chain formalism is that for example an affine 470 

transformation can be parametrised as permutations of scaling, rotation, shear, and translation 471 

transformations, and any of those components can be optimised separately and repeatedly at 472 

any point of the pipeline using the same syntax. Furthermore, the interpretation of 473 

transformation chains follows geometric intuition as opposed to affine matrices, especially in 474 

three dimensions. 475 

 476 

A rich set of linear and non-linear transformations are currently implemented in TIRL. In 477 

particular, 3D rotations can be parametrised using Euler angles, rotation matrix, axis-angle, 478 

and quaternion formalism, with supported conversion between any two of these. The currently 479 

implemented options for non-linear transformations are polynomial coordinate 480 
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transformations, and densely or sparsely defined displacement fields. This repertoire may be 481 

further extended by subclassing any of the Transformation objects. 482 

 483 

The current version of TIRL implements the SSD, NMI, CR and 𝑆𝑆𝐷��h� cost functions, as 484 

well as regularisation terms based on L1 and L2 norms, and membrane energy. TIRL is 485 

compatible with all gradient-free and gradient-based optimisation algorithms available from 486 

the SciPy [55] and NLOpt [56] optimisation libraries. Custom implementations of cost 487 

functions, regularisation terms, and optimisation algorithms are also supported via the Cost, 488 

Regulariser, and Optimiser base classes.  489 

 490 

Image masks are often used in neuroimaging on diseased or artefacted images to downweight 491 

the cost for these regions, preventing erroneous registration. In TIRL, masks can be specified 492 

for each TImage, and these are adaptively combined during registration to weight the cost 493 

function for the intersection of the target and the source image. 494 

 495 

TIRL supports easy importing from various file formats and provides an all-compatible 496 

workflow for various kinds of images (e.g. scalar-, vector-, matrix-, tensor-valued images with 497 

arbitrary number of dimensions) via the TImage object. It is an N-dimensional image, in which 498 

every voxel value is an L-rank tensor. For large images that do not fit in memory, the data of 499 

the TImage is dynamically retrieved from a memory-mapped binary file that resides on the 500 

hard drive. Furthermore, all TImage operations (including interpolation) are automatically 501 

chunked and parallelised for faster computation. 502 

 503 

We implemented all three steps of the proposed MRI–histology registration pipeline in TIRL 504 

because it enables fast prototyping and rich customisation of bespoke image registration 505 

pipelines and has the flexibility to work with mixed sets of 2D and 3D images. 506 

 507 

2.6. Stage 1: Histology image to tissue block photograph 508 

 509 

The registration between a histological image and the corresponding tissue block photograph 510 

can be formalised in either direction. Morphing the domain of the histology image to the tissue 511 

block has the advantage of providing forward mapping towards the MRI end of the pipeline, 512 

hence, it is not necessary to invert any transformations to find a certain histological feature in 513 

MRI space. On the other hand, resampling the histology image and the MRI image on any of 514 
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the photographic intermediates requires less non-linear deformation from both ends, resulting 515 

in a more symmetric registration approach with potentially less inverse-consistency error [57]. 516 

We therefore adopted the latter formalism, and denoted the block as the target, and the 517 

histology image as the source. 518 

 519 

In line with Equation (1), we define the inverse transform (the one that maps the target domain 520 

onto the source domain) as a chain of Transformation objects acting on the Domain of the 521 

target TImage (tissue block photo). As shown by the top bar in Figure 5, the chain comprises 522 

2D scaling, 2D rotation, 2D affine, 2D translation, and 2D deformation. The chain is prepended 523 

with a Translation object that moves the pixel at the centre of the image to the origin, ensuring 524 

that the first chain operation is applied on centralised pixel coordinates. The order of 525 

Transformation objects within the chain follows the intuition behind aligning the images by 526 

hand. Rotations come after scaling to ensure that the image is stretched along the original pixel 527 

axes, and rotations precede translations to ensure that rotations are carried out about the centre 528 

of the image, not some arbitrary centre of rotation. In TIRL, it is possible to simultaneously 529 

optimise any subset of transformations in the chain. By optimising transformations in the order 530 

of increasing degrees of freedom (DOF), previously optimised coarser transformations provide 531 

a more suitable initialisation for finer transformations that are optimised later. This increases 532 

the chance of finding the global optimum by local optimisation methods, which are generally 533 

faster than global optimisation methods. When choosing transformations for simultaneous 534 

optimisation, it is important to avoid optimising redundant parameter pairs against each other, 535 

such as the components of a full affine matrix against rotation angles, as this would create 536 

infinitely many equal minima in the cost function and lead to undetermined behaviour of the 537 

optimiser. In this particular case, rotation angles would have to be optimised first to achieve a 538 

coarse initialisation, and held constant while the components of the affine transformation 539 

matrix are fine-tuned, accounting for both shears and finer rotations. Based on these 540 

considerations, stage 1 optimises the above transformation chain in four steps: (1) rotation 541 

search, (2) rigid registration with anisotropic scaling (“pseudo-rigid registration”), (3) affine 542 

registration, and (4) non-linear registration. Now we discuss these optimisation stages in 543 

greater detail. 544 

 545 

(1) Rotation search: a line search with constant 10° increments is conducted around the full 546 

circle to find the best initial rotation for the images. In our experiments we found that 10° was 547 

a good compromise between computational performance and the robustness of the 548 
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initialisation. The search maximises NMI using Powell’s method [58] at 0.5 mm isotropic 549 

resolution. (2) “Pseudo-rigid” registration: starting from the three best initial rotations, a 5-550 

DOF registration (2D rotation + 2D translation + 2D anisotropic scaling) is carried out using 551 

𝑆𝑆𝐷��h� as the cost function, and the BOBYQA optimiser [59] at 0.5 mm isotropic resolution. 552 

Similar tests carried out by Osechinskiy et al [40] had suggested the use of the NEWUOA 553 

optimiser, but we found the convergence properties of its bounded variant, BOBYQA more 554 

reliable for this purpose. We also found that MIND-based rigid registration was robust enough 555 

to identify some major defects in the structural correspondence of the images (e.g. when a piece 556 

of tissue is torn at the corner during histological processing). To find these regions, the 557 

binarized source image was subtracted from the binary target and the identified regions were 558 

sorted by area. Anything larger than 5% of the block surface was added to the target mask as a 559 

zero-filled region to exclude it from the computation of the cost. (An example mask is given 560 

in the supplementary material.) In TIRL, the masks from the source and target image are 561 

combined and used as a multiplier for the cost and – in case of gradient-based optimisation – 562 

the cost derivative, desensitising the optimisation algorithm to changes in an area where the 563 

mask value is close to zero. The best rigid initialisation was chosen from the three results on 564 

the basis of minimum final 	𝑆𝑆𝐷��h� cost, and fed into the affine registration step (3) at 565 

0.5 mm, 0.25 mm and 0.1 mm resolutions, optimised for 	𝑆𝑆𝐷��h� using the BOBYQA 566 

optimiser. 567 

 568 

 569 
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Figure 5. Overview of stage 1: histology-to-block registration. Top bar: transformation chain of the target 570 
image domain. The chain is optimised in four steps: rotation search (2D rotation), rigid registration with 571 
anisotropic scaling (2D scale, 2D rotation, 2D translation), affine registration (2D affine), and non-linear 572 
registration (2D deformation). Flowchart: non-linear registration of a histological image to a tissue block 573 
photograph. The target and source RGB images are flattened to grayscale during pre-processing, and MIND-574 
filtered, yielding images with n=8 channels. An 8-channel difference image is calculated by resampling the 575 
filtered source on the target domain and subtracting the filtered target. The non-linear transformation is 576 
parametrised as a dense array of displacement vectors (𝒖(𝒙)) over the target domain and is initialised to zero 577 
for all 𝒙. Since the displacement vectors are optimised independently, diffusion regularisation is applied to 578 
prevent the source image from folding over itself and leading to a non-diffeomorphic mapping. Local updates 579 
to the displacement vectors are computed at every iteration by the Gauss–Newton optimiser, based on the 8-580 
channel difference image (and its derivative) and the regularisation gradient that are supplied by the Cost 581 
and Regulariser objects. As a result of the optimisation, the resampled histology image (source) becomes 582 
maximally similar to the block photograph (target). 583 
 584 

The flowchart in Figure 5 summarises the concluding step of stage 1: optimising the non-linear 585 

transformation (4). This step employs diffusion registration that was introduced by Fischer 586 

and Modersitzki [52, 60, 61] and further adapted for the 𝑆𝑆𝐷��h� cost function by Heinrich et 587 

al [43]. Here we describe the optimisation process with a linear pre-alignment step, as it is 588 

implemented in TIRL. All equations below follow the denominator layout convention, and all 589 

vectors are column vectors unless otherwise stated. 590 

 591 

The non-linear transformation is preceded by a sequence of linear transformations, which can 592 

be combined into a single affine transformation (𝐀) that operates on homogeneous coordinates 593 

(𝒙). (In TIRL, consecutive linear transformations are automatically replaced by the equivalent 594 

affine transformation to optimise the computation of new image coordinates). The non-linear 595 

transformation is parametrised as a deformation field 𝒖(𝒙), that incurs additional displacement 596 

to the linear mapping of target coordinates (𝒙 ∈ Ω) to source coordinates (𝒙’ ∈ Ψ): 597 

 598 

𝒙3 = 𝜙𝒑GH(𝒙) = 𝐀𝒙 + 𝒖(𝒙) (9) 

 599 

Given 𝐀, the optimisation aims to find plausible values for 𝒖(𝒙) that together with 𝐀 minimise 600 

the overall difference between the MIND representation of the two images. Mathematically, 601 

this is equivalent to minimising the following cost functional: 602 

 603 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/849570doi: bioRxiv preprint 

https://doi.org/10.1101/849570
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

𝐶(𝒖) =
1
2 \�𝒎�(𝒙) −𝒎�s𝐀𝒙 + 𝒖(𝒙)u�2

2	𝑑𝒙
𝒙∈^

+ 𝛼 ⋅
1
2 \�‖∇𝑢*(𝒙)‖22

>

*�H

𝑑𝒙
𝒙∈^

 (10) 

 604 

where the first term is the cumulative Euclidean distance of MIND vectors representing image 605 

dissimilarity within the target domain, and the second term is the so-called diffusion 606 

regularisation penalty that is supposed to prevent unrealistic folds in the transformed source 607 

image by penalising sharp gradients in each component (𝑖 = 1,… , 𝑑) of the deformation field. 608 

The 𝛼 parameter is a weighting factor that controls the relative importance of the regularisation 609 

with respect to image dissimilarity. 610 

 611 

The optimisation proceeds by iteratively computing vector updates (𝒉(𝒙)) of the deformation 612 

field until the desired precision (𝜖 = 10% of the pixel size) or the maximum number of iterations 613 

(𝑘��� = 20) is reached: 614 

 615 

𝒖(��H)(𝒙) = 𝒖(�)(𝒙) + 𝒉(𝒙),       until      𝑀𝑒𝑑𝑖𝑎𝑛^(‖𝒉(𝒙)‖2) < 𝜖 ∈ ℝ (11) 

 616 

Using the discretisation in (11) we now aim to reformulate (10) such that it becomes linear 617 

with respect to the updates. We therefore rewrite the argument of the dissimilarity term in (10) 618 

using (11) and first-order Taylor expansion: 619 

 620 

𝒎�(𝒙) −𝒎� S𝐀𝒙 + 𝒖(�)(𝒙)T − ∇𝒎� S𝐀𝒙 + 𝒖(�)(𝒙)T
�
𝒉(𝒙) (12) 

 621 

As deformations grow larger, the linear approximation based on the originally computed 622 

MIND vectors of the source image (𝒎�) becomes less accurate. To avoid this, we recompute 623 

the respective MIND vectors at every iteration from the transformed source image, for which 624 

we introduce the 𝒎��(𝒙) notation: 625 

 626 

𝑺�(𝒉) ≡ 𝒎�(𝒙) −𝒎� �(𝒙) − ∇𝒎� �(𝒙)�𝒉(𝒙) (13) 

  627 

The regularisation term is already linear with respect to 𝒉(𝒙), because the differential operator 628 

∇	= S ¢
¢£¤

, ¢
¢£¥
T
�

 is linear. Substituting (11) into the regularisation term of (10) yields: 629 

 630 
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𝑺,,*(ℎ*) = ∇𝑢*
(�)(𝒙) + ∇ℎ*(𝒙) 

𝛼
2 \�‖∇𝑢*(𝒙)‖22

>

*�H

𝑑𝒙
𝒙∈^

=
𝛼	
2 \�𝑺,,*(ℎ𝒊)�𝑺,,*(ℎ*)

>

*�H

	𝑑𝒙
£∈^

 
(14) 

 631 

After substituting (13) and (14) into (10) we obtain the following linearised expression for the 632 

cost at the 𝑘-th iteration: 633 

 634 

𝐶(�)(𝒉) =
1
2 \ 𝑺�(𝒉)�𝑺�(𝒉)𝑑𝒙
𝒙∈^

+
𝛼
2 \�𝑺,,*(ℎ𝒊)�𝑺,,*(ℎ*)

>

*�H

	𝑑𝒙
£∈^

 (15) 

 635 

To minimise the cost of the 𝑘-th iteration (15), we formulate the corresponding system of 636 

Euler–Lagrange equations for each spatial component of the deformation field (𝑖 = 1,… , 𝑑): 637 

 638 

𝛿𝐶(�)(𝒉)
𝛿ℎ*

−�
𝜕
𝜕𝑥t

>

t�H

𝛿𝐶(�)(𝒉)
𝛿ℎ*,t

= 0 (16) 

 639 

Expressing the functional derivatives in (16) yields the following system of equations (𝑖 =640 

1,… , 𝑑) for each pixel in the target domain: 641 

 642 

−|
∂𝒎� �(𝒙)
∂𝑥*

�
�

«𝒎�(𝒙) −𝒎��(𝒙) − 2
∂𝒎� �(𝒙)
∂𝑥*

ℎ*(𝒙)¬	

−	𝛼 ⋅ Δ𝑢*
(�)(𝒙) − 𝛼 ⋅ Δℎ*(𝒙) = 0* 

(17) 

 643 

where Δ is the Laplace operator (discretised using a 4-point stencil on the 2D target grid). By 644 

rearranging (17), substituting 𝑺� from (13), and introducing the notation ∇𝑺� = S®¯°
®±¤

, ®¯°
®±¥
T for 645 

the Gateaux-derivative, we obtain the following formula, which is equivalent to minimising 646 

the cost functional in (15) by the Gauss–Newton method [62], where 𝒉(𝒙) constitutes the 647 

update step: 648 

 649 

s∇𝑺��∇𝑺� − 𝛼 ⋅ Δu𝒉(𝒙) = −s∇𝑺��𝑺� − 𝛼 ⋅ Δ𝒖(�)(𝒙)u (18) 

 650 
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Equation (18) is eventually solved simultaneously for all pixels in the target domain for 𝒉(𝒙) 651 

using the sparse solver of SciPy [63]. After every iteration, the deformation field is updated 652 

according to Equation (11). At the end of the optimisation the estimated deformation field is 653 

used to initialise a new optimisation at a higher grid resolution and so forth. In our experiments, 654 

sufficient convergence was reached in 20 iterations at each of the 1.5 mm, 1 mm, 0.5 mm and 655 

0.25 mm resolution levels. 656 

 657 

To test the accuracy of this stage, we registered H&E, ferritin- and PLP-stained histological 658 

images to 6 corresponding tissue blocks from various anatomical locations. We selected all 659 

available stains that exhibited visible grey-white matter contrast. The blocks were selected to 660 

represent the observed variability of the size, shape, and anatomical texture of the blocks in the 661 

full dataset. The pre-processed images were imported to TIRL, and the grayscale histological 662 

images were thresholded between 150 and 400 to remove shadows on the slide edge (inherent 663 

to slide scanning) and the white background. The histology image was further smoothed by a 664 

Gaussian kernel (𝜎 = 0.1 mm) partly because voxel-to-voxel variations due to staining cell 665 

nuclei are not represented in the block photo, and partly to prevent small holes arising from the 666 

thresholding creating a false texture that MIND is sensitive to. The resolution of the images 667 

was set to the resolution of the photograph, and image centres were moved to the origin. Before 668 

computing the MIND representation, the images were flattened to a single channel as described 669 

earlier.  670 

 671 

The registrations were evaluated in terms of maximum and average registration error of 672 

overlapping contours. Grey-white matter contours were defined separately for the histology 673 

images and the block photos by manually annotating approximately 200 points for each image 674 

in Fiji [64]. Pairwise alignment of the contours was assessed after registering the images. To 675 

establish pairwise point correspondence between the contours, point coordinates were 676 

parametrised, and all contours were upsampled by B-spline interpolation to comprise exactly 677 

2000 points. The contours from the block photographs (target) were transformed into the 678 

domain of the corresponding histology images (source) by the transformation chain of the 679 

target images. In the histology domain two parameters were computed for every pair of 680 

contours: (1) the Hausdorff distance, and (2) the median contour distance. The former 681 

measures the maximum distance between corresponding contour points with the same index, 682 

yielding an estimate of the largest registration error. The latter is calculated by measuring the 683 

distance of each contour point from the closest point of the other contour and taking the median 684 
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of these measurements. As this measure is independent from point correspondence errors that 685 

arise from the manual nature of the segmentations, it provides a more realistic quantitative 686 

estimate of the overall registration error, which can be qualitatively observed by eye. 687 

 688 

2.7. Stage 2: Tissue block to brain slice photograph 689 

 690 

The second step of the automated registration pipeline maps the coordinates of the tissue block 691 

photograph (Figure 6F) to the domain of the brain slice photograph (Figure 6A). Given that the 692 

tissue block is significantly smaller than the whole-brain coronal slice, it is computationally 693 

more efficient to choose the tissue block as target, and the brain slice as source, as the latter 694 

will be repeatedly interpolated at the target domain as the optimisation proceeds. The vastly 695 

different size of the objects however also poses a registration challenge, as extreme oversizing 696 

or shrinkage of the block image can be a trivial solution to minimise SSD cost based on pixel 697 

intensities. Furthermore, most brain slice photos exhibit high degrees of self-similarity: a block 698 

with a certain anatomical pattern may be a relatively good fit at multiple positions. Without 699 

prior initialisation, this would require extensive spatial search or a very time-consuming global 700 

optimisation method to succeed, especially when multiple blocks must be registered to the 701 

same slice.  702 

 703 

 704 
Figure 6. Overview of stage 2: block-to-slice registration. Registration of a coronal slice (A) to a tissue 705 
block (F). Auxiliary slice photographs (B-E) were taken every time that a new tissue block was sampled 706 
from the same coronal brain slice. The blue background was removed from the photographs using k-means 707 
classification of RBG vectors (k=2). The segmented coronal slice (G) served as a common reference domain 708 
for affine registering all segmented auxiliary slices (H-K). Affine registered auxiliary slices were pairwise 709 
non-linearly registered in reverse order, starting with the most damaged slice (red arrows). The original 710 
coronal slice and the aligned auxiliary slices were binarized, and the XOR operation was applied to each 711 
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consecutive pair of them to identify non-matching areas as insertion sites (M). Following rigid initialisation 712 
at the centroid of each insertion site, the background-segmented block photograph (L) was affine registered 713 
at each site. At the site where the affine registration yielded minimum 𝑆𝑆𝐷��h� cost, a non-linear 714 
deformation was also performed to achieve accurate alignment of the block with the intact brain slice photo 715 
(N). 716 
 717 

To keep stage 2 automated and relatively fast, prior information is obtained from a series of 718 

autopsy photographs (“cut-out images” or “auxiliary slices”, Figure 6B-E) capturing the 719 

original brain slice (Figure 6A) after the excision of a tissue block (or multiple spatially-distinct 720 

blocks). These photographs are labelled in chronological order of the dissection process. Each 721 

cut-out image is affine registered to the original coronal image first, then consecutive pairs of 722 

the cut-out images are registered by a chain of affine and non-linear transformations. The 723 

registered images are binarized and the binary difference (XOR) is taken to identify possible 724 

“insertion sites” for the blocks (Figure 6M).  725 

 726 

The registration of the consecutive slices follows the same scheme as in stage 1: with the former 727 

cut-out image as target, and the later image as source, the algorithm performs an initial rotation 728 

search, followed by pseudo-rigid, affine, and non-linear registrations. For the rotation search, 729 

we used NMI cost as it is computationally less demanding than MIND, and it proved to be 730 

robust enough for the purpose. For the rest of the process, we used 𝑆𝑆𝐷��h�, which is more 731 

sensitive to texture. Furthermore, the scale parameters of the “pseudo-rigid” step were confined 732 

to the range 0.9 – 1.1 and the BOBYQA bounded optimisation algorithm was used to prevent 733 

the oversizing/shrinking of blocks with less salient anatomical pattern. To identify insertion 734 

sites, each of the registered images were binarized by clipping intensity values at 1, and the 735 

images were multiplied to create a segmentation of non-aligned parts. The segmentation result 736 

was eroded by 5 mm, and the centroid of all connected components above an area of 1 cm2 737 

were denoted insertion sites. 738 

 739 

To register multiple blocks automatically to the same slice, the search for insertion sites was 740 

performed once, then each block was affine registered at each site. The affine registration that 741 

yielded minimum 𝑆𝑆𝐷��h� cost at the end of this stage was used to initialise a non-linear 742 

registration step for further refinement, concluding stage 2 for each block. 743 

 744 

2.8. Stage 3: Brain slice photograph to MRI volume 745 
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 746 

In the final step of the pipeline, the 2D coordinates of the brain slice photograph are mapped 747 

into 3D MRI space. The choice of the brain slice as target and the MR image as source is 748 

obligatory, as the interpolation of a 2D image on a 3D domain would not only be extremely 749 

inefficient to perform at each iteration of the optimisation process, but is also ill-defined. 750 

Stage 3 instead makes gradual improvements to the position, orientation, in-plane deformation 751 

and out-of-plane curvature of the brain slice photograph and compares it with the MRI values 752 

that are resampled from the intersection of this warped 2D domain with the MRI volume. The 753 

four steps of stage 3 and the respective transformation chain are illustrated in Figure 7. These 754 

transformations were optimised in various combinations with gradually converging boundary 755 

constraints, which are described below for each step. 756 

 757 

 758 
Figure 7. Overview of stage 3: slice-to-MRI registration. Panels from left to right: Consecutive steps of 759 
optimising different subsets of transformations in the transformation chain (bottom bar) of the brain slice 760 
photograph. Rigid search: a rectangular search volume is defined in MRI space by its centre, orientation and 761 
thickness (orange slab). The slice photograph is repeatedly initialised at various positions along the central 762 
axis of the slab, while the best 8-DOF (3D rigid + 2D scaling) alignment is sought. As the slices are coronal, 763 
their z-axis is initially aligned with the y-axis of the MRI. Affine alignment: 3D affine parameters are 764 
optimised to refine the linear registration. Orthogonal deformation: 50 control points (pink) are defined on 765 
the domain of the slice photograph. By dynamically changing the local protrusion/retraction of the slice at 766 
these points, the slice is slightly curved to compensate for off-plane distortions. Membrane energy is 767 
employed as a regularisation penalty to prevent sharp bending. Free-form deformation: the same 50 points 768 
are allowed to move freely in 3D space to compensate for in-plane deformations. (Arrows are shown only 769 
for a subset of the control points for better visibility.) In the last two steps, the displacements of the control 770 
points are constrained by membrane energy. 771 
  772 
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Step 1 aims to find the best rigid alignment of the brain slice image within a confined, 773 

approximately 2-cm thick rectangular search region in MRI space by iterating a 2D and a 3D 774 

bounded optimisation of 𝑆𝑆𝐷��h� cost (using BOBYQA), namely Step 1A (2D scaling, 2D 775 

rotation, 2D translation) and Step 1B (2D scaling, 3D rotation, 3D translation). Both step 1A 776 

and step 1B are carried out twice at each resolution level (4 mm, 2 mm, 1 mm, 0.5 mm): first 777 

with slight Gaussian smoothing (𝜎 = 1 px), next without smoothing: [1A+1B]2 The search 778 

region is most conveniently defined manually by its centre (3D coordinates), orientation (3D 779 

vector) and thickness (scalar), seven parameters altogether. In our case the standardised 780 

dissection strategy allows the definition of the slab automatically by slice number, given that 781 

all slices are coronal, separated by 1 cm along the anterior-posterior (A-P) axis of the brain, 782 

starting from the plane of the mamillary bodies toward the anterior and the posterior poles of 783 

the brain. The normal vector of the slab is collinear with the A-P axis, unless the brain is 784 

significantly tilted. Stage 1A and 1B are then performed with the same initial parameters at 5 785 

equally spaced points along the short axis of the search range, and the position with the least 786 

𝑆𝑆𝐷��h� cost at the end is accepted as the best initialisation position for the slice. At this 787 

location, stage 1A and 1B is repeated for a final time, but the optimiser is changed from 788 

BOBYQA to its closest unconstrained equivalent, NEWUOA. In our experience, the rotation 789 

and scale parameters have a stronger influence on the cost function, therefore translation 790 

parameters are effectively only optimised late in the process after these two. Unconstrained 791 

optimisation by NEWUOA with the nearly optimal rotation and scale parameters allows 792 

escaping the current slab position that might have been reached with these parameters being 793 

suboptimal in the previous iterations. The result of this unconstrained optimisation is accepted 794 

as the best pseudo-rigid alignment of the slice photograph, which is then fed into step 2. 795 

 796 

Step 2 aims to compensate for shears of the slice photograph and optimises the parameters of 797 

the 3D affine transformation. Given the pseudo-rigid alignment from step 1, the scale, rotation, 798 

and translation parameters are not expected to change substantially in this step, and strict 799 

bounds are set for these parameters in the BOBYQA optimiser. 800 

 801 

Step 3 introduces deformations that are orthogonal to the slice photograph to account for the 802 

slightly irregular, non-planar nature of free-hand cuts through the brain. The assumption behind 803 

step 3 is that variations in the anatomical pattern of neighbouring slices due to off-plane 804 

deformation is a larger contributor to the misalignment after affine registration than in-plane 805 
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deformations are, as long as the resolution is coarse (4 mm, 2 mm). In-plane deformations are 806 

therefore not introduced until step 4. The transformation of step 3 is parametrised by 807 

orthogonal (z-axis) displacements at 16 ≤ 𝑁p ≤ 128 control points (nodes) defined on the 808 

domain of the 2D brain slice photograph (Figure 7, panel 3). The number of points was 809 

determined empirically as a trade-off between registration accuracy and computation time. The 810 

displacements for the rest of the image domain are calculated from the known z-axis 811 

displacements using interpolation by a set of Gaussian radial basis functions (𝐺(𝑟, 𝜎)): 812 

 813 

𝑢¸(𝒙) =�𝑤*𝐺
hº

*�H

(‖𝒙 − 𝒙*‖, 𝜎) (19) 

 814 

The 𝜎 parameter defines the effective radius of each node, and is set to the average Euclidean 815 

distance between all pairs of control points. The weight for each node is calculated by fitting 816 

the above equation for the predefined z-axis displacements at the control points. The parameters 817 

(z-axis displacements) of the transformation are optimised for minimum 𝑆𝑆𝐷��h� cost using 818 

the NEWUOA algorithm. In addition to the 𝑆𝑆𝐷��h� cost, a membrane energy regularisation 819 

term was included in the cost function to prevent sharp bends of the domain. Membrane energy 820 

was defined at any point 𝒙 of the target domain as the L2-norm of the second derivatives of the 821 

local deformation field, and summed over the entire domain to obtain the full regularisation 822 

term: 823 

 824 

𝐸�¼�½¾�¿¼ = 𝛽 ⋅�Á���|
𝜕2𝑢*
𝜕𝑥t𝜕𝑥�

�
2>

��H

>

t�H

>

*�H𝒙∈^

 (20) 

 825 

where 𝛽 is a regularisation parameter that was set to 10GÂ. 826 

 827 

In step 4, we extend the transformation from the previous step such that deformations at each 828 

point of the target domain are simultaneously optimised along all three spatial dimensions. In 829 

addition to the in-plane deformations that naturally occur during handling the brain, through-830 

plane deformations of step 3 also incur in-plane deformations by projecting 3D MRI data onto 831 

a regular 2D grid. The tangential deformation components (𝑢£, 𝑢Ã) are initialised to zero and 832 

calculated for all pixels of the target domain from the respective deformation components at 833 
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the control points throughout the optimisation. Previously optimised orthogonal deformations 834 

(𝑢¸) are retained, but may also change in step 4, rendering this final transformation a free-form 835 

deformation with restricted degrees of freedom that is dictated by the number of control points. 836 

Membrane energy regularisation was also used at this stage. 837 

 838 

While the control points can be defined manually, to keep the pipeline automated, we generated 839 

quasi-random two-dimensional coordinates for the control points by drawing numbers from a 840 

sequence of rational fractions (Halton sequence [65]). The advantage of using Halton-sequence 841 

points versus a rectangular grid is that the points provide similar uniform coverage of the area, 842 

while the number of points can be set to any positive integer. This is important, because the 843 

complexity of the optimisation increases with the number of parameters, and for the same fine-844 

grain control over the deformations, one would need more points in a regular grid layout than 845 

with Halton points. When compared to pseudorandom point placement, Halton points have the 846 

advantage of being deterministic (reproducible) and having low discrepancy (no two points are 847 

extremely close to each other). To restrict deformations to the area of the coronal brain slice 848 

(excluding most of the background), a bounding box was defined for the brain slice by Otsu-849 

thresholding and it was expanded by 10% in each direction. The Halton points were finally 850 

scaled and shifted accordingly to fit inside the bounding box. 851 

 852 

2.9. Combining transformations 853 

 854 

Given all three previously described stages of the pipeline, there are two competing alternatives 855 

for combining them to achieve end-to-end MRI-histology registration. While these methods 856 

are equivalent in theory, they are slightly different in terms of their implementation in TIRL 857 

and their practical consequences. 858 

 859 

The first method is forward mapping by concatenating the optimised transformation chains of 860 

the target images from each step (histology, block, slice). The practical consequence of this 861 

method is that the histology data is never interpolated (unless subsampled to a lower resolution 862 

at the start), and that histological coordinates can be mapped to MRI coordinates without the 863 

necessity to invert any of the optimised transformations. However, the deformations between 864 

MRI and the histology image can be large and may not be estimated accurately in every case 865 

by the combination of multiple non-linear transformations. 866 

 867 
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In the second method, instead of concatenating non-linear transformations, the registration 868 

converges at the half-way point, on the tissue block photograph. The optimised transformation 869 

chains from the second and third stages are concatenated, and the MRI data is evaluated on the 870 

domain of the block photograph by interpolation. The difference from the first method is that 871 

the histology data must also be evaluated on this domain by interpolation using the optimised 872 

transformation chain from the first stage. The main advantage of this method is that the non-873 

linear transformations are not chained, consequently the registration error incurred by each of 874 

them is not amplified by the other, which means that the final alignment can be more accurate. 875 

The practical consequence of this method is that the original histological coordinates cannot 876 

be mapped to MRI space without inverting a non-linear transformation, the precision of which 877 

may be affected by the inverse consistency error [57].  878 

 879 

For the practical purpose of correlating MRI and histology parameters in a predefined region 880 

of interest, the limitation of the second method is not relevant as long as pixels from the images 881 

can be overlaid at any desired resolution. We therefore adopted the second method to achieve 882 

greater precision in estimating tissue deformations. 883 

 884 

3. Results 885 

 886 

3.1. Stage 1 results: Histology image to tissue block photograph 887 

 888 

The accuracy and robustness of stage 1 was tested on 6 tissue blocks from various anatomical 889 

regions of the same human brain: (1) the orbitofrontal cortex, (2) the anterior cingulate cortex, 890 

(3) the anterior limb of the internal capsule (also including parts from the caudate nucleus and 891 

the putamen), (4) the hippocampus, (5) the thalamus, and (6) the visual cortex at the banks of 892 

the calcarine fissure. Each of the blocks had corresponding histological sections stained with 893 

H&E, for ferritin and for PLP. (1) and (6) were further stained with LFB+PAS. The rest of the 894 

immunohistochemistry images were not considered for registration with the tissue block 895 

photograph, as they exhibited virtually no grey-white matter contrast. Registrations also were 896 

performed with various regularisation weights (0.2 – 2.0) to test the effect of regularisation on 897 

registration accuracy.  898 

 899 
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 900 
Figure 8. Results of stage 1 (histology-to-block registration). (A) Photograph of the posterior surface of a 901 
tissue block from the left orbitofrontal cortex (OFC) that was used as the target image for the registration of 902 
the corresponding histological image. (B-D) PLP-stained histology image of the same region shown with the 903 
transformed overlay (blue curve) of the manually defined grey-white matter contour of the block photograph 904 
after each registration step. The registration accuracy is gradually improved by each consecutive step of the 905 
optimisation (pseudo-rigid, affine, non-linear) as evidenced by better alignment between the overlay and the 906 
grey-white matter boundary of the histological image. (E) The Jacobian map of the non-linear transformation 907 
over the OFC indicates large (beyond 20%) local shrinkages and dilations for 𝛼	 = 	0.4. (F) The Jacobian 908 
map for 𝛼 = 1.0 over the OFC shows physically plausible shrinkage and dilation (both ~20%) of the tissue. 909 
(G) Typical in-plane deformations in millimetres as a function of regularisation weight for the registration 910 
shown in A-D. Increasing the regularisation weights restricts implausible large local deformations that is 911 
seen as a reduction of the upper tail. (H-J) Distortions shown on the PLP-stained histology image of the 912 
hippocampus as a function of the regularisation weight (𝛼). Too little regularisation (𝛼 = 0.4) yields jagged 913 
appearance of the anatomical contours after registration (yellow arrowheads), whereas regularisation 914 
weights above 0.8 yield physically plausible, almost identical results. 915 
 916 

Figure 8A-D shows a representative example how the rigid, affine and non-linear 917 

transformations gradually improved the registration accuracy between the histological image 918 

and the tissue block photo during stage-1 registration. To gauge the plausibility of the non-919 

linear transformations associated with different regularisation weights, the Jacobian 920 

determinant maps were plotted in Figure 8E-F for a small (𝛼 = 0.4) and a larger (𝛼 = 1.2) 921 

regularisation weight. At each pixel, the Jacobian determinant describes the local 922 

shrinkage/dilation of the image elements by the non-linear transformation. The range of the 923 

Jacobian values was 0.1 – 2.5 for 𝛼 = 0.4  and 0.8 – 1.2 for 𝛼 = 1.2. As none of these values 924 
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were below zero, the diffeomorphic nature of the transformation was preserved: no image 925 

elements were lost by abnormal self-folding of the image in either case. However, in the under-926 

regularised case, the sharp transitions between large local deformations are most likely driven 927 

by local intensity variations in the images, pointing at the non-physical nature of this 928 

transformation. On the contrary, in the more regularised case the deformations were smaller, 929 

more balanced and more homogeneous, reflecting actual tissue deformations. This effect is 930 

further evidenced by the violin plot in Figure 8G, which shows the distribution of deformations 931 

(in millimetres) versus regularisation weight. Irrespective of the regularisation weight, the 932 

deformations were roughly evenly distributed between 0 and 1 mm, which seems a physically 933 

plausible estimate for the magnitude of tissue deformations (the deformations of the 934 

background were excluded). Increasing the regularisation weight restricted large local 935 

deformations, which is seen as a reduction of the heavy tail in the plots of Figure 8G. 936 

 937 

Under-regularised stage-1 registration distorts anatomical contours (Figure 8H), which is hard 938 

to notice unless compared against the result of well-regularised registrations (Figure 8I-J). 939 

Minor inaccuracies like this are almost undetectable by eye or even by comparing grey-white 940 

matter contours. Nevertheless, the deformation field carries an additional rotation component 941 

(curl	𝒖(𝒙)) around the distorted regions. This may locally bias the histology-derived fibre 942 

orientations and insidiously reduce the correlation with MRI-derived fibre orientations even 943 

when the registration appears grossly accurate. For direction-sensitive applications it is 944 

therefore recommended to set 𝛼 as high as reasonably possible, even at the expense of a slightly 945 

higher overall registration error. In our experiments, we observed no obvious anatomical 946 

distortions for 𝛼 > 0.8. 947 

 948 
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 949 
Figure 9. Accuracy of stage 1 (histology-to-block registration). The boxplots show the Hausdorff-950 
distance (top) and the median contour distance (bottom) between the grey-white matter contours of the 951 
registered images. Both distances are reported in millimetres for each step of the registration (including 952 
multiple regularisation weights for the non-linear step) and for each histological stain (n=6, except for LFB 953 
n=2). Indicated on the bars are the median, the interquartile range and the extrema of these measures. The 954 
Hausdorff-distance is a biased estimator of the largest registration error (cf. text in section 3.1), whereas the 955 
median contour distance is a more accurate representation of the visually perceived accuracy of the 956 
registration. Based on the latter measure, the most consistent registration results could be obtained with the 957 
LFB stain, the most accurate results with the PLP stain, and the most inaccurate results with the H&E stain. 958 
 959 

Figure 9 shows the accuracy of stage-1 registration in terms of the two distance measures for 960 

each histological stain, for each optimisation step (rigid, affine, non-linear), and for multiple 961 

regularisation weights (0.2–2.0). Hausdorff-distances were generally larger (1.0–2.5 mm) than 962 
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the perceived registration error, which was more accurately captured by the median contour 963 

distance (0.2–0.7 mm). The reason is that the former strongly depends on accurate point 964 

correspondence between the contours, which cannot be guaranteed given the irregularities of 965 

hand-segmentation and the resultant difference in the length of the contours. 966 

 967 

As evidenced by median contour distances, the rigid, affine and non-linear steps of the 968 

registration gradually improved the alignment of the tissue block photo with the PLP, LFB and 969 

ferritin-stained histological images, and the accuracy of the registration was similar for all three 970 

stains (0.2–0.3 mm). However, the same improvement was not seen with the H&E sections, 971 

for which the best results were achieved with the rigid alignment (0.4–0.7 mm). This is most 972 

likely explained by the grey-white matter contrast that was high with the former three stains, 973 

and almost absent in H&E stained sections. Based on these results, successful stage-1 974 

registration requires at least one stained section for each region of interest that has comparable 975 

contrast properties to the MRI image. The rest of the histological sections can then be registered 976 

linearly to this section. 977 

 978 

Based on the median contour distances, the most consistent results could be achieved with 979 

LFB+PAS-stained sections. In the physically plausible regularisation range (𝛼 > 0.8) the 980 

accuracy was consistently 0.25–0.28 mm. Slightly more accurate registrations could be 981 

achieved with the PLP stained sections, where the best results (0.20–0.28 mm) were obtained 982 

with 𝛼 = 2.0 regularisation. The best results with the ferritin-stained sections (0.25–0.34 mm) 983 

were also obtained using 𝛼 = 2.0 regularisation. 984 

 985 

While running stage 1 registration, we encountered a few unexpected results. Most notably, the 986 

sample from the anterior cingulate was too large for a standard histological slide (25 x 75 mm), 987 

and the superior portion of the tissue had been removed with a straight cut, which created a 988 

structural discrepancy between the histological image and the tissue block photograph. We 989 

tried changing the resolution steps, as well as the amount of regularisation of the non-linear 990 

registration step, but ultimately the problem could only be reliably resolved by masking out the 991 

extra tissue from the target image using a hand-drawn mask. Using the mask, the registration 992 

produced excellent results with the default set of parameters and 0.8 regularisation weight. 993 

 994 
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We also noticed that the block with the anterior limb of the internal capsule had less salient 995 

anatomical features than other samples. While the orientation of other samples was correctly 996 

identified by a quick 4-direction rotation search, the registration of this sample did not succeed 997 

until a full search with 10° increments was conducted, therefore we strongly suggest adhering 998 

to this stricter routine for improved robustness. 999 

 1000 

3.2. Stage 2 results: Tissue block to brain slice photograph 1001 

 1002 

One particular observation that we made at this stage is that most blocks with sufficiently 1003 

salient anatomical features (5 out of the 6 tested) could be equally well registered using the 1004 

computationally less expensive SSD cost function and the unconstrained NEWUOA optimiser 1005 

instead of the standard 𝑆𝑆𝐷��h� and BOBYQA that we described in section 2.7. Therefore, in 1006 

Figure 10A we show the counterexample where the relative absence of anatomical features led 1007 

to overscaling with these settings, and the improved results using constraints are shown in 1008 

Figure 10B. As long as parameters are unconstrained, and the background area of the block 1009 

photograph is masked, downscaling the unmasked area is a trivial solution for the optimiser to 1010 

reduce the cost, giving rise to the risk of overscaling. In the rest of the cases this was not 1011 

observed, and we attribute this to the presence of anatomical features that when mismatched 1012 

between source and target, have a strong impact on the cost function, effectively constraining 1013 

parameters to their optimal range. This argument is supported by the fact that using 𝑆𝑆𝐷��h� 1014 

as the image similarity metric and setting the optimisation bounds on the scale parameters to 1015 

the range 0.9 – 1.1 (as described in section 2.7) led to uniform high-quality registration to the 1016 

corresponding brain slice photograph in the case of all 6 blocks. (Figure 10B-E). 1017 

 1018 

Using these parameters, the accuracy of stage 2 was evaluated by visual comparison of the 1019 

registered blocks and the underlying brain slice photographs using animations that showed both 1020 

images in quick iteration. (The animations can be viewed in the Supplementary material.) We 1021 

observed virtually no shift or distortion in the anatomical pattern of the blocks in the 1022 

animations, indicating a degree of registration accuracy that likely surpasses the accuracy of 1023 

placing landmarks to quantify the registration error. Based on our observations, the registration 1024 

error incurred in this stage is negligible relative to that of the other two stages. 1025 

 1026 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/849570doi: bioRxiv preprint 

https://doi.org/10.1101/849570
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

 1027 
Figure 10. Results of stage 2 (block-to-slice registration). (A) Example of overscaling: as long as the 1028 
background is masked, reducing the unmasked area is a trivial solution to reducing the cost on a tissue block 1029 
that does not have enough salient features to constrain the registration (anterior limb of the internal capsule). 1030 
The misregistration occurred with SSD cost and unbounded optimisation of the linear parameters. (B) 1031 
Correct registration of the same block after setting the optimisation bounds on the scale parameters to (0.9–1032 
1.1) and using MIND as the cost function. (C-E) Correct registration of various other blocks: orbitofrontal 1033 
cortex, Broca’s homologue area (right hemisphere), visual cortex at the banks of the calcarine fissure. 1034 
 1035 

Possible modes of failure at stage 2 are that either (1) insertion sites are incorrectly identified 1036 

on the basis of registering cut-out images, or (2) a specific tissue block is assigned to a different 1037 

insertion site. Both of these would lead to catastrophic misregistration. In our experiments we 1038 

never encountered a problem with the identification of the insertion sites. Even if this would 1039 

happen in the future, as a last resort the pipeline allows insertion sites to be defined manually 1040 

by voxel coordinates. We occasionally encountered the second problem when we used NMI as 1041 

the cost, and more often when the background of the tissue block image was not masked out, 1042 

or when the insertion site testing (affine registration) was performed at a coarser resolution, 1043 

and the associated final cost was calculated and compared with that of other sites at full 1044 

resolution. However, strict adherence to the protocol described in section 2.7 produced high-1045 

quality stage-2 registrations for all tested brain slices (n=6). In a separate experiment we also 1046 

confirmed that the stage-2 algorithm could successfully insert even as many as 6 different 1047 

blocks into the same coronal slice without misregistration (images not shown). 1048 

 1049 
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3.3. Stage 3 results: Brain slice photograph to MRI volume 1050 

 1051 

The accuracy of registering brain slice photographs to whole-brain MRI was tested using both 1052 

simulated and real-life images. 1053 

 1054 

3.3.1. Experiment with simulated brain slice images 1055 

 1056 

The accuracy of slice-to-volume registration was first tested on simulated data. Using TIRL, 1057 

we defined a two-dimensional sampling domain in MRI space. The sampling frame was 1058 

translated along the anterior-posterior axis of the MRI volume to create three sets of synthetic 1059 

brain slice images at five equidistant points along the anterior-posterior axis: (1) straight 1060 

coronal slices (no additional transformation), (2) oblique coronal slices (additional 3D rotation 1061 

by Euler angles in the range -10°–10°), (3) warped coronal slices (additional z-axis 1062 

deformations up to 6 mm according to the 2nd-order polynomial 𝑃(𝑥 − 𝑥_, 𝑦 − 𝑦_), where 1063 

(𝑥_, 𝑦_) is the intersection of the slice with the anterior-posterior brain axis). Each synthetic 1064 

brain slice image was subsequently registered back to the volumetric MRI data using stage 3 1065 

of the pipeline. A binary brain segmentation mask was created for each slice to define a region 1066 

of interest, in which the mean registration error was evaluated by comparing the original and 1067 

the registered locations of each point. Given that we register MRI to MRI in this task, the 1068 

optimisation does not have to account for contrast differences between the source and target 1069 

images as it would normally do. We nevertheless see this as a reasonable compromise to obtain 1070 

ground truth data that the stage-3 approach can be tested against, and the results may be 1071 

interpreted as ideal limits that the registration approaches with photographs or histology 1072 

sections that mimic the MRI contrast. 1073 

 1074 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 26, 2019. ; https://doi.org/10.1101/849570doi: bioRxiv preprint 

https://doi.org/10.1101/849570
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

 1075 
Figure 11. Accuracy of stage 3 (slice-to-volume registration) based on simulated brain slices. Three sets 1076 
of simulated slices were created by resampling the MRI data along straight (green) and oblique (blue) 1077 
coronal planes at 5 different locations along the sagittal axis, as well as slightly curved (red) coronal sections 1078 
using 2nd-order polynomial transformation of the sampling domain. Consecutive optimisation steps of stage 1079 
3 gradually improved the alignment in all cases, leading to sub-millimetre final registration errors in all but 1080 
one case. The one case that could not be registered by stage 3 had initial deformations larger than 6 mm, 1081 
corresponding to a very poorly executed brain cut. 1082 
 1083 

Figure 11 shows the mean registration error after each optimisation step of stage 3. We found 1084 

that the rigid and affine steps alone could register straight and oblique slices with a 0.6 mm 1085 

mean registration error, which is equivalent to 1.2 voxels in MRI space. As expected for 1086 

straight slices, orthogonal deformations did not make any improvement, but free-form 1087 

deformation was able to take the mean registration error (0.06 mm) well below the voxel size. 1088 

For warped slices, we observed a difference in the registration accuracy based on how accurate 1089 

the rigid and affine stages were. In four out of five cases, the first two stages (rigid + affine) 1090 

were able to achieve affine alignment with a mean registration error of 2-3 mm, which 1091 

corresponds to the average deformation in these slices, suggesting that the best possible affine 1092 

alignment was reached. The orthogonal and free-form registration steps both made gradual 1093 

improvements, yielding a final mean registration error of 0.495 mm. In one out of the five 1094 

polynomial cases, the best affine alignment could not be achieved by the linear registration 1095 

steps, and the mean registration error at this stage was more than 6 mm, which would 1096 

correspond to a very poorly executed brain cut. While this case shows the limits of what is 1097 

achievable with stage 3 slice-to-volume registration, it is a very generous limit: if cut surfaces 1098 
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have elevations less than or equal to 3 mm on average, slice-to-volume registration with the 1099 

presented method should be accurate to the size of a single voxel. 1100 

 1101 

3.3.2. Experiment with real brain slice images 1102 

 1103 

To test whether our method can achieve similar registration performance on real-life images as 1104 

well, we registered 5 coronal brain slice photographs, and visualised the accuracy of the 1105 

registration in two complementary ways. First, we wanted to know whether in-plane 1106 

deformations can be accurately compensated. Figure 12 shows a representative result with the 1107 

manually segmented grey-white matter boundary of the brain slice photograph overlaid on the 1108 

registered and resampled MR images after each step of the stage-3 slice-to-volume registration. 1109 

The registration in this particular case was further complicated by damage to the coronal slice 1110 

(Figure 12A, asterisk), as it was photographed after parts of the primary motor and sensory 1111 

cortices had already been removed. We found that the contours were generally well-matched 1112 

by the linear steps, with the largest offsets seen in the regions corresponding to the left and the 1113 

right lateral sulci and temporal lobes. The orthogonal deformation step introduced a curvature 1114 

of the brain slice along the left-right axis (Figure 12F), effectively shifting the cross section of 1115 

an adjacent gyrus out from what is seen as subcortical white matter of the right hemisphere 1116 

(right-hand side) in the photo (Figure 12B-C, yellow arrow in the top row), as well as fixing 1117 

the alignment of the left hippocampus (Figure 12B-C, yellow arrow in the inset). While small, 1118 

these changes are the most important from the perspective of a quantitative analysis: a 1119 

registration method that had not corrected for out-of-plane deformations would have led to 1120 

accidentally comparing quantitative data between grey and white matter in these regions. As 1121 

an unwanted consequence of introducing slice curvature, the right hippocampal region was 1122 

slightly shifted off the cutting plane by 1 voxel. (Later in section 3.5 we will introduce a post-1123 

hoc adjustment stage to compensate for local offsets like this.) After the free-form deformation 1124 

step we observed almost perfect alignment of the contours, with the largest misalignment being 1125 

0.3 mm (Figure 12D, purple arrow). The quantitative deformation maps in Figure 12E-G show 1126 

that after all registration steps, the magnitude of in-plane deformations was on the order of 1127 

2 mm, whereas out-of-plane deformations were on the order of 2-4 mm for the majority of the 1128 

slice area. The largest out-of-plane deformations (4-6 mm) were seen around the damage to the 1129 

slice, but our method was able to effectively compensate for these as well. According to the 1130 

Jacobian map, transformations were diffeomorphic with a maximum of 8% dilation/shrinkage 1131 

of the pixels. 1132 
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 1133 

 1134 
Figure 12. Result of stage 3 (slice-to-volume registration) on an actual brain slice image (not 1135 
simulations). (A) Reference image used as a target of slice-to-volume registration (posterior view). The 1136 
asterisk highlights an area where the slice was damaged due to advance resection of the primary motor and 1137 
sensory cortices. The yellow arrow points at the cross section of the left hippocampus that will be misaligned 1138 
after affine registration. (B) Correspondence between grey-white matter contours of the brain slice 1139 
photograph (red curve) and the resampled MR image after affine alignment. While most of the contours 1140 
match, as expected for a planar cut, large misalignments are seen in the region of the temporal lobes (white 1141 
dashed ellipse). The green arrowheads point at the artificial boundaries as a result of removing the 1142 
cerebellum by BrainSuite 18. The yellow arrows highlight regions that are misaligned after affine 1143 
registration due to off-plane distortions of the slice relative to the cut surface: the left hippocampus, and a 1144 
cross section of a gyrus in the subcortical white matter in the right temporal lobe. (C) Successful correction 1145 
of the gyral and left hippocampal cross sections after the orthogonal deformation step (yellow arrows). In-1146 
plane deformations of the temporal regions are not yet compensated (inset). (D) Successful compensation of 1147 
in-plane deformation after the final free-from registration step. The purple arrow shows the largest 1148 
misalignment, measured as 0.3 mm. (E) Final in-plane deformations of the slice, showing a typical range of 1149 
0-2 mm. (F) Final out-of-plane distortions, which are seen to be as high as 4-6 mm, especially where the 1150 
brain slice is damaged. The curvature of the slice is very prominent along the transverse (left-right) direction. 1151 
(G) Jacobian map showing diffeomorphic transformations after final step with ±8% shrinkage/dilation of 1152 
pixels. 1153 
 1154 
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Beyond comparing the alignment of grey-white matter contours in the registration plane, we 1155 

wanted to characterise how accurately our method was compensating out-of-plane distortions 1156 

of the brain slice, as this has not been addressed by previous literature. For one of the slices, 1157 

we manually annotated 20 anatomical features in MRI space that visually corresponded to the 1158 

anatomical features in the respective brain slice photograph and measured the distance of these 1159 

points from the registered slice in MRI space. The measured distances followed a chi-1160 

distribution with a median of 0.93 mm and an interquartile range of 0.37 – 1.31 mm. This result 1161 

should be interpreted with care, as the reliability of the annotation cannot be guaranteed in 1162 

certain regions of the brain, where the anatomy is fairly consistent across several consecutive 1163 

slices. Precise annotation in these regions requires experience and also carefully choosing the 1164 

slicing orientation of the MRI volume. In our experience, even a rotation as small as 10° about 1165 

one of the axes was enough to render the observable anatomy visibly very different from what 1166 

was depicted in the slice photo, making the annotation process consequently very difficult. In 1167 

this particular experiment, most error readings had sub-millimetre magnitude, except for 8 of 1168 

the 20 that were larger than 1 mm. 1169 

 1170 

To better understand the source of the registration error around these manual landmarks, we 1171 

carefully inspected the registration result in these regions. The coordinates of the manual 1172 

landmarks were fed into the stage-3 interpolator (as if they were the control points) to 1173 

reconstruct a curvilinear slice from the MR volume (“manually registered slice”). 1174 

Corresponding regions of the manually and the automatically registered MR slices were 1175 

visually compared with the original slice photograph where the apparent registration error was 1176 

large (Figure 13). Surprisingly, at nearly all of these locations (6 out of 8) the automated 1177 

registration method was more accurate than manual annotation. This finding is important, 1178 

because it shows that manual MRI slice matching by visual comparison with a 2D image is not 1179 

accurate, yet it is seen as common practice where suitable software/hardware solutions for 1180 

accurate MRI-histology registration are not readily available. Counterexamples (shown in the 1181 

supplementary material), where the accuracy of the automated method was inferior to that of 1182 

the manual landmarks were exclusively found in two cases on the edge of the brain. One of 1183 

them was in the proximity of the damaged area, and the other was in a region where the pial 1184 

surface was visible beneath the cutting plane (“side surface” of the brain slice) and locally 1185 

biased the registration towards larger out-of-plane distortions. The accuracy of slice-to-volume 1186 

registration in these regions could therefore benefit further from segmenting and masking side 1187 

surfaces in brain slice photographs. 1188 
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 1189 

 1190 
Figure 13. Comparison of stage-3 registration result with registration by manual landmarks. Left: 1191 
Manually annotated MRI landmarks projected to the brain slice photograph. The size of the markers is 1192 
proportional to the distance of the landmarks from the cut surface estimated from slice-to-volume registration 1193 
by stage 3 of the pipeline. Landmarks shown as yellow dots are within 1 mm proximity of the surface, 1194 
landmarks shown as red crosses are further away. Distance values for the latter are shown in millimetres. 1195 
Right: Visual comparison between 2D MRI reconstructions around the manual landmarks, the reference 1196 
image, and the result of stage-3 registration at three different positions (a, b, c) within a single slice. Careful 1197 
inspection of the reconstructed MRI images reveal that the automated result is more accurate (yellow 1198 
arrowheads), therefore the measured large distances are more indicative of annotation error than registration 1199 
error, due to ambiguities in slice depth localisation. 1200 
 1201 
3.3.3. Slice-to-volume registration of damaged brain slices 1202 

 1203 

After testing stage 3 on 5 slices, we successfully ran it on a total of 143 slices from 15 brains 1204 

with identical high-quality results. The few occasions when the automatic slice-to-volume 1205 

registration failed was due to some form of extreme structural discrepancy between the slice 1206 

photograph and the MRI, which include: (1) significant amounts of missing tissue (cerebellum, 1207 

M1S1 tissue block) or extra tissue (e.g. dislocated choroid plexus), (2) visible cortical or 1208 

ventricular surfaces in the slice photograph beneath the cutting plane (“side surfaces” of the 1209 

coronal brain slice), and (3) large local displacements such as the closing or the opening of the 1210 

interhemispheric fissure as a result of one hemisphere moving toward or away from the other 1211 

one. 1212 

 1213 
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 1214 
Figure 14. Result of slice-to-volume registration of a severely damaged coronal brain slice. (A) Coronal 1215 
brain slice photograph with bilateral hiatus in the sensorimotor regions. (B) A hand-drawn binary mask for 1216 
cost-function weighting. (C) Registration result without using the target mask. The red curve is an overlay 1217 
of the manually segmented grey-white matter contour of the brain slice photograph. (D) Registration result 1218 
with the hand-drawn target mask. The accuracy of the corrected registration is qualitatively similar to that 1219 
on non-damaged slices, but misalignments are slightly larger in the proximity of the masked regions due to 1220 
the relative absence of driving features. 1221 
 1222 

In all cases, the problem of missing tissue was successfully addressed by creating hand-drawn 1223 

masks (Figure 14B) for the target image (slice photo), which recovered the registration 1224 

accuracy for most of the unmasked regions, but lead to larger deviations closer to the masked 1225 

region due to lack of supporting features (Figure 14). We found that the problem of side 1226 

surfaces could be most effectively addressed by taking photographs of both sides of the brain 1227 

slices and registering the one with less side surfaces visible. Alternatively, masks can be 1228 

generated automatically for side surfaces by affine registering the images of adjacent slices that 1229 

display the same cut surface, segmenting non-matching regions and adding them to the target 1230 

mask. The problem of hemisphere separation only affected a few slices in our case, and we 1231 

resorted to registering hemispheres separately in these cases. 1232 

 1233 

3.4. Combining stages 1-3: histology-to-MRI registration 1234 
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 1235 

To achieve end-to-end histology-to-MRI registration, we combined the histology-to-block, 1236 

block-to-slice and slice-to-volume registration stages according to the halfway method as 1237 

described section 2.9. Figure 15 shows a representative final result of the registration between 1238 

MRI and histology for five of the six blocks stained for ferritin. Qualitatively identical 1239 

registrations were obtained with the PLP stains of the same five blocks. A three-dimensional 1240 

rendering of the registered histological sections can be seen in Figure 16. 1241 

 1242 

 1243 
Figure 15. End-to-end histology-to-MRI registration by combining stages 1-3. Left: Histological section 1244 
of the anterior limb of the right internal capsule stained for ferritin. The image was resampled at the 1245 
resolution of the tissue block photograph (50 µm/pixel). Right: The corresponding 2D section of MRI 1246 
resampled at the resolution of the tissue block photograph. The red gridlines are provided as a common 1247 
spatial reference for comparing the images. 1248 
 1249 
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 1250 
Figure 16. Three-dimensional model of the post-mortem brain showing a subset of the registered 1251 
histological sections. The registered sections are represented by their curvilinear image domains, which are 1252 
larger than the actual sections. The left-hand side of the brain was removed for better visualisation, and two 1253 
registered sections are not visible on this median sagittal surface view. Note that geodesic lines are accented 1254 
because the surfaces were reconstructed from voxel-wise labels in MRI space (voxel size: 0.5 mm). 1255 
 1256 

In the case of a single tissue block, which was sampled symmetrically to the mid-sagittal plane 1257 

to contain the cross section of the corpus callosum and the anterior portion of the cingulate gyri 1258 

from both hemispheres, we noticed that both the ferritin and the PLP stains registered 1259 

imperfectly with the MR volume. The error was confined to a region within the image where 1260 

one of the gyri had a significantly larger separation from the corpus callosum in the MRI image, 1261 

that was not compensated by the free-form deformations of stage 3 (slice-to-volume 1262 

registration). Large local deformations of this kind are typically challenging because they are 1263 

heavily penalised by membrane energy regularisation, and only a condensed set of local control 1264 

points could accurately represent them without affecting the alignment in more distant regions 1265 

of the image. While the current implementation achieves sufficient accuracy in the largest 1266 

portion of this image, we anticipate that the observed type of registration error may be better 1267 

addressed in future versions of TIRL by suitable changes to stage-3 registration, as explained 1268 

in the Discussion section. 1269 
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 1270 

3.5. Stage 4 (optional): refinement by direct histology-to-MRI registration 1271 

 1272 

In the two cases where an LFB+PAS stain was also performed subsequent to all other stains, 1273 

we noticed that the anatomical consistency between the histological images and tissue block 1274 

photo was not perfect due to the slicing depth problem (Figure 17A). As tissue blocks are 1275 

embedded in paraffin, which will generally have a slightly larger volume than the block itself, 1276 

it cannot be guaranteed that the surface of the paraffin block is parallel to the surface of the 1277 

tissue block. For sectioning in a microtome, the blocks are trimmed to remove any excess 1278 

paraffin from the surface of the block to fully expose the tissue. During this process some 1279 

sections come off the block as partial sections and are therefore discarded. Depending on the 1280 

angle of sectioning, the first full slice of tissue may come from as deep as 0.5–1 mm 1281 

(corresponding to an angle of 2° for a 30 mm long block). In the case of multiple stains, or 1282 

when stains need to be repeated for quality reasons, this problem is further exaggerated: the 1283 

deeper the block is sampled, the less consistent the stained histological sections will be with 1284 

the surface anatomy of the blocks as seen in the photographs. This means that the inaccuracies 1285 

at stage 1 (histology-to-block registration) should be dealt with less aggressively, as they may 1286 

reflect true differences between the stained section and the photograph. Instead a higher 1287 

regularisation weighting is preferred in these cases, to preserve the structural self-consistency 1288 

of the histological section while compensating for some of the distortions. 1289 

 1290 

 1291 
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Figure 17. The slicing depth problem and the optional 4th stage of the pipeline (direct histology-to-1292 
MRI registration). (A) The slicing depth problem. If the block is slightly tilted relative to the surface of 1293 
the paraffin embedding, a portion of the surface is abraded by the microtome before the first full section of 1294 
tissue is obtained. Subsequent slices are sampled at a relative depth from the surface, which may cause 1295 
substantial anatomical discrepancy between the surface of the block (as seen on the photograph) and the 1296 
surface of the slide. Consequently, the final end-to-end histology-to-MRI mapping will be inaccurate. (B) 1297 
Stage-4 registration. Top row: Alignment of the LFB+PAS-stained section (top left) of the left OFC with 1298 
the MRI before (top right) stage-4 correction. The green curve is the overlay of the hand-drawn grey-white 1299 
matter boundary of the transformed histological image. Bottom row: Result of stage-4 slicing depth 1300 
correction shows as much as 0.4 mm elevation difference across the surface of the section, corresponding to 1301 
a 1° tilt. (The numbers in the colour bar represent distance along the z-axis in millimetres after stage-4 1302 
registration starting from the best 3D affine alignment that was inferred from the combination of the previous 1303 
three stages.) Bottom right: Improved alignment (yellow arrowheads) of the same section with MRI after 1304 
stage-4 correction. 1305 
 1306 

To compensate for the depth problem, in these two cases an additional fourth stage of the 1307 

pipeline was introduced. Stage 4 aims to fine tune the alignment between the histological 1308 

section and the MRI image by performing a direct registration between the MRI data and the 1309 

histological section after the latter is initialised to MRI space by the three main stages. First, 1310 

the histological section was resampled on the intermediate domain (tissue block photograph) 1311 

using the transformation chain from stage 1. The optimised transformation chains from the 1312 

second and third stages were then concatenated and attached to the domain of the resampled 1313 

histological image, mapping it into MRI space. The free-form deformation object from stage 3 1314 

was redefined within the combined transformation chain such that its new control points were 1315 

concentrated on the area of the histological image instead of being scattered across the whole 1316 

coronal brain slice. The parameters for this new transformation were fitted to preserve the 1317 

previously optimised in-plane and out-of-plane deformations within the area of the resampled 1318 

histology image. The updated chain of transformations was applied to obtain the physical 1319 

(MRI-space) coordinates of the resampled histological image. The centre of the inserted 1320 

histological section was determined by averaging the physical coordinates, and the normal 1321 

vector of the histological image was calculated as the 3rd principal component of the physical 1322 

coordinate array. The sample was gradually shifted in MRI space along the normal vector in 1323 

the range -2.5–2.5 mm, while the 3D rotation parameters were optimised within 12° in both 1324 

directions from the initial values for minimum 𝑆𝑆𝐷��h� cost using the BOBYQA optimiser. 1325 

Finally, starting from the best position and rotation of the histological image, orthogonal and 1326 
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later free-form deformations were optimised with membrane energy regularisation within 1327 

1 mm of their initial values to obtain the final registration between histology and MRI. Figure 1328 

17B shows the alignment of the more offending LFB+PAS stained section before and after the 1329 

stage-4 correction. The correction included shifting the histological image from its original 1330 

position by approximately 2 mm and introducing 0.4 mm through-plane deformation. 1331 

 1332 

4. Discussion 1333 

 1334 

In the past three decades a handful of studies have addressed different aspects of registering 1335 

histology and MR images by semi-automatic methods. However, most of these algorithms were 1336 

tailored to a specific application and/or they were implemented as in-house scripts, which are 1337 

no longer accessible to the larger community. In comparison, 3D-to-3D image registration is a 1338 

fundamental operation in the field of neuroimaging that most higher-level analysis methods 1339 

depend on. Consequently, 3D image registration tools are well-established and lie at the core 1340 

of popular analysis toolboxes, such as FSL, SPM, FreeSurfer, BrainSuite, etc. On the contrary, 1341 

similar registration tools are less well developed and mostly non-existent for hybrid 1342 

MRI/histology datasets, which has precluded the evolution of equally powerful analysis 1343 

toolboxes for this kind of data. Due to time and labour constraints, neuropathology facilities 1344 

are collecting the overwhelming majority of their histology data in the format of stand-alone 1345 

histological sections, not 3D stacks. The alignment of these images with volumetric MRI data 1346 

is a tedious and imperfect manual process, which obviates bias-free quantitative analysis, and 1347 

limits the number of samples and subjects that can be studied at once. With limited sample 1348 

sizes and imperfect matching, studies that aim to analyse MRI signal changes in diseased tissue 1349 

may not capture the significant interindividual variations in the spatial and temporal extent of 1350 

a disease (which are recognised as different phenotypes in neurodegenerative conditions). 1351 

Consequently, slice-to-volume histology-to-MRI registration is a fundamental operation that 1352 

must be automated before higher-level analyses can be performed on large volumes of this type 1353 

of data, and stable conclusions can be made about the pathological interpretation of 1354 

characteristic MRI signal changes. 1355 

 1356 

In this paper, we presented an automated registration pipeline for sparsely sampled histology 1357 

data and post-mortem MRI. Our method does not require specialised cutting or stain 1358 

automation hardware for tissue processing and reduces the imperfections of alignment that 1359 

arise from freehand brain cutting, which altogether make it suitable for integration into routine 1360 
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neuropathological practice. The first three stages of the pipeline support full automation of the 1361 

registration, provided that suitable dissection photographs are available. Otherwise, the 1362 

optional stage 4 may be used on its own as a semi-automatic tool to register histological 1363 

sections to volumetric MRI after manual initialisation, although this feature should be tested 1364 

more thoroughly. Most importantly, all stages of the pipeline are embedded in the more general 1365 

open-source (Python 3.7) framework, TIRL, that allows them to be modified for a wider range 1366 

of applications, potentially including small-animal and non-human primate neuroimaging, as 1367 

well imaging other organs and tumours. Finally, we have decided to include TIRL and the 1368 

pipeline in FSL to facilitate continuous improvement to the framework and the registration 1369 

techniques therein, as well as to encourage the development of further analysis tools for hybrid 1370 

MRI/histology datasets. 1371 

 1372 

As with all methods, our pipeline also has certain limitations. First, while we committed 1373 

significant efforts to ensure that the pipeline can perform all stages automatically, this is subject 1374 

to a set of assumptions about the input data. Based on the conditions under which the pipeline 1375 

was tested, we recommend observing the following precautions: 1376 

 1377 

(1) Histological sections should be sampled close (<2.5 mm) to the surface of the tissue 1378 

blocks. Care should be taken to avoid staining artefacts and tears during the sectioning 1379 

process. Stains with grey-white matter contrast must be used for registration. 1380 

(2) The approximate location and rough orientation of coronal sections must be known in 1381 

advance. 1382 

(3) Photographs should be taken at high resolution, under diffuse lighting conditions, on a 1383 

clean, matte surface that has a distinct colour from the brain tissue. Brain slices should 1384 

be photographed on both sides avoiding glares. The approximate mm/pixel resolution 1385 

of the photographs should be recorded. 1386 

(4) MRI should be acquired at high resolution (0.5-1 mm) with sufficient grey-white matter 1387 

contrast. For post-mortem imaging, formalin-fixed brains should be immersed in an 1388 

inert fluorocarbon medium (e.g. Fluorinert) to minimise the background signal, and 1389 

scanned in a suitably shaped plastic container to prevent large deflections of the 1390 

hemispheres, the brainstem and the cerebellum. 1391 

  1392 

While the above prescriptions may seem very restrictive, they directly reflect our own 1393 

experimental approach that was used to test both TIRL and the pipeline. We strongly believe 1394 
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that the capability of the software tools that were developed for this project extend beyond the 1395 

scope of the current application, and the flexibility of TIRL allows many of the above 1396 

restrictions to be loosened. 1397 

 1398 

Registering histological stains with little or no grey-white matter contrast is beyond the scope 1399 

of the current work, and is therefore not readily supported by the current pipeline. However, 1400 

the results of a recent grand challenge competition (ANHIR) [66] might be used in the future 1401 

to register histological sections with different stains in advance, and the ones with appropriate 1402 

grey-white matter contrast to the MRI. Alternatively, these images could be registered linearly 1403 

by matching outer contours or non-linearly by manually defined landmarks. Either of these 1404 

approaches would be a straightforward extension to the current cost and transformation 1405 

libraries of TIRL. 1406 

 1407 

Generality and optimal computational performance are often competing demands in software 1408 

engineering. Several features have been implemented in TIRL to make computations more 1409 

effective, such as parallel processing, chunked interpolation, function caching, optimising sub-1410 

chains of linear transformations by affine replacement, and avoiding interpolation of 1411 

displacement fields where the field is defined over the same domain as the image. That said, 1412 

greater emphasis was put on preserving the generality of the framework. Therefore, some of 1413 

the computations may benefit from further optimisation, which lie beyond the scope of the 1414 

current work. One particular improvement would consider adaptive control point placement in 1415 

stages 3 and 4. Instead of initialising a fixed set of control points and optimising the 1416 

corresponding deformation parameters all-at-once, one could start with a smaller set of control 1417 

points and gradually increase their count. Whenever sufficient convergence is reached with the 1418 

current set, a new control point would be added where image dissimilarity is the greatest. This 1419 

strategy would provide better control over large local displacements by permitting local 1420 

clusters of control points, altogether leading to fewer registration errors. 1421 

 1422 

Our experiments were carried out on a MacBook Pro computer with a dual-core 2.7GHz CPU 1423 

and 8 GB of RAM. The typical runtimes were ~2 minutes for stage 1, ~30 minutes for stage 2 1424 

(with 6 insertion sites), 1-2 hours for stage 3 (using 50 control points), and ~15 minutes for 1425 

stage 4 (where needed). For relatively undistorted slices, it is possible to reduce the runtime of 1426 

stage 3 by using fewer (e.g. 16 or even less) control points instead of 50. Running the stages in 1427 

parallel can also save significant amounts of time. With the adaptive control point placement 1428 
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described above, stage 3 and 4 could benefit from faster convergence, as only a subset of 1429 

parameters would need to be optimised in the first iterations, and the runtime of these stages 1430 

could be consequently greatly reduced. 1431 

 1432 

Despite the current limitations, our method allows automated registration of histology to MRI 1433 

without labour-intensive sequential sampling and volumetric reconstruction of histology as 1434 

opposed to the majority of existing methods. Contrary to the methods of Kim et al and Singh 1435 

et al for slice-to-volume registration, our method does not require manual intervention for the 1436 

majority of the cases and uses more precise local deformations by radial basis functions instead 1437 

of polynomial transformations. Extending the framework-building approach of Osechinskiy et 1438 

al, using TIRL we successfully applied the MIND cost function [43] to register not only 1439 

hemispheres, but whole brain slice photographs as well as small histological samples that could 1440 

otherwise not be directly registered to MRI. Most importantly, our results demonstrate that 1441 

histological sections are not immune to out-of-plane deformations due to free-hand cuts 1442 

through the brain. Nevertheless, using TIRL, it is possible to align these images with MRI data 1443 

with sub-millimetre precision, which has important implications for biomarker research. 1444 

 1445 

Establishing novel imaging-derived biomarkers that can sensitively and specifically indicate 1446 

the presence of a disease is one of the chief goals in modern medical imaging. Classic 1447 

radiological signs such as signal hypo- and hyperintensities in weighted MRI scans have 1448 

suboptimal disease specificity due to the complex dependency of the MRI signal on both the 1449 

acquisition parameters and a spectrum of elementary disease-related changes in tissue 1450 

microstructure. By modelling the signal behaviour in the healthy and the diseased state of 1451 

tissue, advanced microstructural MRI methods can be more specific to these elementary 1452 

changes, and thus the underlying pathological process. The clinical translation of these methods 1453 

requires thorough validation against histopathology, which will hopefully be facilitated by the 1454 

availability of MRI-histology registration tools. A more exciting implication is that as soon as 1455 

suitably large MRI/histology datasets become available, these could be used by learning 1456 

algorithms to detect subtle changes of the MRI signal related to tissue pathology, which would 1457 

otherwise be unnoticeable during routine radiological assessment. A new generation of such 1458 

histology-inspired imaging biomarkers could be more sensitive predictors of disease. In 1459 

neurodegenerative conditions, increased sensitivity to the early sub-clinical stages of the 1460 

disease is critical, as the anticipated benefit from any therapeutic approach is proportional to 1461 

the remaining functional capacity of the central nervous system. 1462 
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 1463 

5. Conclusion 1464 

 1465 

The capabilities of a novel image registration framework, TIRL, were presented in the context 1466 

of creating an image registration pipeline for post-mortem MRI and sparsely sampled histology 1467 

data. Small stand-alone histological sections were successfully registered to post-mortem 1468 

whole-brain MRI without manual intervention in most cases, achieving a final accuracy of 1469 

0.5 – 1 mm. In-plane and out-of-plane deformations of the sampling surface were also taken 1470 

into account in the process. The method does not require additional specialist hardware for 1471 

tissue pre-processing, therefore it can be integrated into routine neuropathological practice. 1472 

Both TIRL and the registration pipeline is released as part of FSL, facilitating MRI-histology 1473 

validation studies to be carried out in much larger cohorts than previously possible. The 1474 

customisability of the presented software tools allows them to be reused in other research 1475 

contexts, and hopefully provide the necessary grounds for future explorative research into a 1476 

new generation of histology-inspired microstructural imaging biomarkers, that can be more 1477 

sensitive predictors of neurodegeneration. 1478 

 1479 
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