
1 

 

eMAGMA: An eQTL-informed method to identify risk genes using 
genome-wide association study summary statistics 

 

Zachary F Gerring1 Ph.D., Angela Mina-Vargas Ph.D1, Eske M Derks1 Ph.D.  

 

1 Translational Neurogenomics Laboratory; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 
Australia 

2 Genetic Epidemiology; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correspondence: 

Eske Derks, Ph.D 
Translational Neurogenomics Laboratory 
300 Herston Road 
Brisbane City QLD 4006 
eske.derks@qirmberghofer.edu.au 
 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2019. ; https://doi.org/10.1101/854315doi: bioRxiv preprint 

https://doi.org/10.1101/854315
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract 

Identifying genes underlying genetic associations of complex disease is challenging because 

most common risk variants reside in non-protein coding regions of the genome and likely 

alter the expression of target genes by disrupting tissue and cell-type specific regulatory 

elements. To address this challenge, we developed a methodological framework, eQTL-

MAGMA (eMAGMA), that converts SNP-level summary statistics into gene-level association 

statistics by assigning non-coding SNPs to their putative genes based on tissue-specific eQTL 

information. We compared eMAGMA to three eQTL informed gene-based approaches—S-

PrediXcan, FUSION, and SMR—using simulated phenotype data. Phenotypes were 

simulated based on eQTL reference data using GCTA for all genes with at least one eQTL at 

chromosome 1 (651 genes). We performed 10 simulations per gene. The eQTL-h2 (i.e., the 

proportion of variation explained by the eQTLs was set at 1%, 2%, and 5%. We found 

eMAGMA outperforms other gene-based approaches across a range of simulated parameters 

(e.g. the number of identified causal genes). When applied to genome-wide association 

summary statistics for major depression, eMAGMA identified substantially more putative 

candidate causal genes compared to other eQTL-based approaches. By integrating tissue-

specific eQTL information, these results show eMAGMA will help to identify novel 

candidate causal genes from genome-wide association summary statistics and thereby 

improve the understanding of the biological basis of complex disorders. 
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Introduction 

Genome-wide association studies (GWAS) have identified thousands of single nucleotide 

polymorphism (SNP) loci associated with disease risk [1]. However, the functional relevance 

of most SNP loci remains unknown, due in part to their position in non-protein coding 

regions of the genome [2]. Mapping trait-associated SNPs to their nearest gene often fails to 

identify the functional gene due to long-range regulatory effects on the expression of genes, 

known as expression quantitative trait loci (eQTLs). Furthermore, gene-based mapping 

methods that rely on arbitrary genomic windows to assign SNPs to genes, such as MAGMA 

[3], do not allow inferences on causal genes.  

In recent years, several methods have been developed to integrate GWAS and gene 

expression information to improve our understanding of the functional mechanisms that 

underlie statistical genetic associations [4–6], known as a transcriptome-wide association 

study (TWAS). These methods are now widely used as secondary analyses using software 

packages such as FUSION [7], S-PrediXcan [6], and summary data-based Mendelian 

Randomisation Analysis (SMR) [5], and have identified novel genes and mechanisms 

underlying a range of diseases [2,8]. Both TWAS and S-PrediXcan rely on a two-stage 

regression procedure. In the first stage, they train multi-variant prediction models in a sample 

with both genotype and gene expression data. In the second stage, these weights are then 

combined with summary-level data from GWAS to perform association analysis of estimated 

gene expression with a phenotype. SMR and its extension, the HEIDI test, aims to test for 

pleiotropic association between the expression level of a gene and a complex trait of interest 

using summary-level data from GWAS and expression quantitative trait loci (eQTL) studies 

within a Mendelian Randomization framework.  

TWAS methods test the association between genetically determined component of 

gene expression and disease risk, ideally removing unwanted influences of environmental and 

technical factors on gene expression. However, this means only those genes whose 

expression can be reliably imputed from genotype data (i.e. moderately-highly heritable 

genes) can be tested for an association with a trait. Indeed, only 6,759 genes in GTEx (v7) 

whole blood—a relatively highly powered tissue—can be tested using S-PrediXcan, and 

2,058 genes using FUSION. This drastically reduces the search space for prioritising 

candidate causal genes. We therefore created an alternative method, called eMAGMA, which 

modifies the MAGMA pipeline by mapping variants to genes based on tissue-specific eQTL 

information. We have used eQTL information from 48 tissues of the GTEx reference panel 
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version 7 [9], although the method can be easily extended to other eQTL reference datasets.  

This approach was developed to identify functional gene associations that may be missed 

using proximity-based SNP assignment in MAGMA and may therefore identify alternative 

causal pathways from SNPs to trait. 

Although a recent study performed a head-to-head comparison of two TWAS 

approaches, S-PrediXcan and FUSION [10], it was primarily based on observed GWAS data, 

and no systematic comparison was done to assess the performance of each method under 

different statistical parameters. We introduce the eMAGMA gene-based annotation approach 

and perform a systematic comparison of four different methods using data simulations and a 

real-life example using summary statistics from a GWAS of major depressive disorder. Our 

aims are to: (1) compare the statistical power of eMAGMA and other gene-based methods to 

detect a true association; (2) compare type-I error rates; (3) test the influence of the number 

of eQTLs on statistical power (i.e.weak instrument bias); and (4) compare gene-level effect 

sizes across methods. We plan to extend our simulations by modelling the performance of 

each method across different estimates of trait heritability and prevalence, and the proportion 

of overlap between causal GWAS variants and eQTL variants. A tutorial and input files are 

made available in a github repository: https://github.com/eskederks/eMAGMA-tutorial.  

 

Methods 

Gene-based methods 

We compared four gene-based methods: S-PrediXcan [6], FUSION [7], SMR (version 1.0) 

[5], and our newly developed eMAGMA [11]. S-PrediXcan and FUSION are prediction-

based approaches that impute the genetically regulated component of gene expression from 

SNP genotype data and regress the imputed expression on a given phenotype. SMR uses a 

Mendelian randomisation approach to estimate the effect of gene expression on a phenotype 

due to a single genetic marker (i.e. SNP), and tests whether a SNPs association with gene 

expression is due to linkage or pleiotropy (HEterogeneity In Depedent Instruments [HEIDI] 

test). MAGMA simply links SNPs to genes based on physical proximity, before combining 

the SNP-level P values while adjusting for linkage disequilibrium, gene size, and gene 

density. Our eMAGMA approach leverages significant (FDR<0.05) tissue-specific cis-eQTL 

information from GTEx (v7) to assign SNPs to putative genes.  

SNP genotype data for simulation analyses 
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The original genotype file from the QIMR Adult Twin Study [12,13] included 3,738,240 

SNPs from 28,110 individuals. We excluded non-founders (N=20,825), SNPs with > 1% 

missingness (N=1,023,785), and SNPs with minor allele frequency (MAF) < 0.05 

(N=2,653,824). We subsequently excluded individuals with > 1% missing data (N=147). SNP 

identifiers were transformed to chr_chrposition to enable matching with GTEx eQTL 

reference data. This resulted in 43 duplicate SNPs, which were excluded from further 

analysis. Finally, we selected only SNPs from chromosome 1. The cleaned dataset included 

7,138 subjects and 60,585 SNPs. eQTL information was obtained from whole blood samples 

of the GTEx eQTL database. (Whole_Blood.v7.signif_variant_gene_pairs.txt.gz). Significant 

eQTLs (FDR<0.05) were included in subsequent analyses. This eQTL refererence database 

included 655,939 eQTL-gene combinations for 8,235 unique genes.  

Phenotype simulation  

Phenotypes were simulated using GCTA [15] using genotype and eQTL reference data from 

chromosome 1 (N=811 genes). For each gene, a phenotype was simulated using all 

significant (FDR<0.05) cis-eQTLs as predictors, based on the eQTL regression coefficients 

from the GTEx reference dataset. We performed 10 simulations per gene. Only those genes 

with at least one significant eQTL are included in the analysis (N=651). The eQTL-h2 (i.e., 

the proportion of variation explained by the eQTLs was set at 1%, 2%, or 5%.  

GWAS analysis 

GWAS analyses of the 6,510 generated phenotypes were performed using the linear 

regression option in Plink [16]. SNP identifiers were replaced with rs identifiers using a 

lookup table to enable alignment with the annotation files in subsequent statistical analyses. 

We used the same significance level (P=6.25 × 10-5) for all analyses and corrected for the 

total number of genes in the GTEx whole blood reference dataset located at chromosome 1 

(i.e. 0.05/811=1.2e-3).  

eMAGMA gene-level analysis 

Since we are primarily interested in identifying functional variants associated with complex 

disorders, we leveraged eQTL data from 48 tissues in GTEx (version 7). Using the tissue-

specific GTEx datasets, we generated SNP-gene pairs (FDR<0.05) that reflect functional 

relationships between SNPs and genes (cis-eQTLs), which serves as an input annotation file 

for the MAGMA software. We use the statistical framework from MAGMA to calculate 

gene-based P values using the updated (eQTL) annotation files. Gene-level analysis was done 
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using default parameters and snp-wise=mean gene analysis model. We share comprehensive 

instructions on how to run eMAGMA in a github repository: 

https://github.com/AngelaMinaVargas/eMAGMA-tutorial 

Real-life example 

We compared each method using observed GWAS summary statistics for major depressive 

disorder [14]. We assessed the correlation between the test statistics of each method using 

Pearson’s correlation coefficient. 

Comparative gene-level analyses 

For the comparative analysis with S-PrediXcan, FUSION, and SMR, we applied prediction 

models trained in whole blood (GTEx v7) to analyse the generated simulated phenotype files, 

using the gene expression weight files provided by each package. We used software-specific 

default options for our analyses and used 1000 Genomes [17] data as the reference panel. We 

specified an annotation window 5kb upstream and 1.5kb downstream of each gene. For the 

eMAGMA annotation, we assigned SNPs to genes using significant (FDR<0.05) eQTL data 

from GTEx (v7). Gene-level analyses for eMAGMA was done using default parameters and 

snp-wise=mean gene analysis model. 

 

Results 

We first counted the number of genes included in each post-GWAS method (Table 1). 

Interestingly, FUSION included the smallest number of genes, which is most likely due to the 

training algorithm excluding a large number of genes of which gene expression could not be 

imputed with sufficient accuracy. FUSION is therefore limited by the number of genes for 

which genetically-regulated gene expression can be reliably imputed.   

A total of 6,510 (651 genes with 10 simulations each) causal genes were used as input for 

phenotypic simulations. We first assessed the false positive rate (type-I error) of each method 

(i.e. under simulated conditions with no significant eQTLs/non-eQTLs) (Figure S1), and 

found all methods showed good control of the type-I error rate. We subsequently evaluated 

statistical power to detect association at a gene-based level, for varying levels of eQTL-h2. 

We assessed the proportion of significant associations relative to both the total number of 

causal genes (Figure 1) and when accounting for the total number of causal genes included in 

each method (Figure 2). eMAGMA outperformed all methods across different proportions of 
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variance explained by the phenotype. After correcting for the number of genes included in 

each gene-based method, eMAGMA still outperformed other methods (Figure 2). 

All of the gene-based methods, with the exception of SMR, combine statistical evidence 

across multiple SNPs to derive a gene-based association. We therefore estimated statistical 

power as a function of the number of eQTLs per gene (Figure 3), with 1% of phenotypic 

variance explained by eQTLs. Power significantly increased with the number of eQTLs per 

gene (Figure 3; Supplementary Table S1). There was a significant association between the 

number of eQTLs per gene and statistical power for all methods, however eMAGMA was 

less sensitive to the number of eQTLs than the other methods. 

We assessed the overlap in genes between eQTL-based methods at 1% of phenotypic 

variance explained (Figure 4). The number of genes unique to each method far outweighed 

the overlap between any two methods, however there was good overlap across all four 

methods (n=851 from a total of 6,511 tests). We calculated the pairwise correlation of the Z-

scores between gene-based methods (Table 2). Effect sizes of transcriptome-imputation 

methods were strongly correlated, particularly S-PrediXcan and FUSION (r=0.97, P < 2.2 × 

10-16, df=168), but only low-moderate correlation was observed with eMAGMA (e.g. S-

PrediXcan vs. eMAGMA; r=0.50, p<2.22 × 10-16, df=429) (Table 2). 

We compared the number of putative risk genes detected by each gene-based approach using 

GWAS summary statistics for Major Depression (Table 3).  

Discussion 

We developed a gene-based method called eMAGMA which uses functional tissue-specific 

eQTL information from GTEx to assign SNPs to genes with the aim of improved annotation 

and interpretation of GWAS association signals. Our approach uses the statistical framework 

from MAGMA, but rather than assigning SNPs to genes based on physical proximity during 

gene annotation (i.e. mapping SNPs to genes using a pre-defined and arbitrary genomic 

window), we use significant (FDR<0.05) SNP-gene expression associations (eQTL) in 

GTEx. Our extension therefore provides more biologically meaningful and interpretable 

results compared to conventional MAGMA. We compared eMAGMA to three other eQTL-

informed gene-based approaches (S-PrediXcan, FUSION, and SMR) using both simulated 

and observed GWAS data. We show that eMAGMA maintains appropriate control of the 

type-I error rate while outperforming other methods in detecting causal associations.  
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We used the methodological framework of MAGMA because it is one of the most 

widely used secondary analyses for the interpretation of GWAS results. Furthermore, the 

framework can be modified to include any type of annotation that maps SNPs to genes. For 

example, recent work to integrate chromatin interaction data from relevant tissues using the 

MAGMA framework increased power to identify putative risk genes and biological pathways 

for a range of neuropsychiatric traits [18]. With the availability of tissue-specific multi-omic 

(transcriptome, chromatin, Hi-C, DNA methylation) datasets through projects such as GTEx 

[19] and psychENCODE [20], it will be possible to link SNPs to target genes using the most 

functionally relevant data and improve the biological interpretation of GWAS results.  

Recent gene-based methods integrate genetic and transcriptomic information to 

estimate the effect of genetically determined gene expression on phenotypic variation. No 

systematic comparison of the three most commonly-used methods—S-PrediXcan, FUSION, 

and SMR—has been done. However, a head-to-head comparison of S-PrediXcan and 

FUSION found the former approach captured known effects of genotype on expression more 

frequently than FUSION, although both methods tended to produce highly correlated results 

when applied to the same dataset [10]. We would like to note, however, that these results are 

limited to genes for which expression weights are available in both methods. We found 

FUSION tests far fewer genes than S-PrediXcan, suggesting S-PrediXcan is more appropriate 

for gene discovery. 

We found all of the tested methods maintained control of the false positive under 

simulated conditions, where no single variant contributes to phenotypic variation. Under 

simulated conditions where 0.5%, 1%, or 2% of the phenotypic variation was explained by 

eQTLs (or non-eQTLs), S-PrediXcan captured more causal genes compared to SMR and 

FUSION which performed poorly. The performance of each method improved when 

measured against the actual total number of causal genes tested, correcting for the fact that 

some methods test fewer genes than others. eMAGMA was least influenced by the number of 

eQTLs of a gene, while all other methods tended to show a monotonic relationship with the 

number of eQTLs.  

Our framework provides a more functionally valid gene-based test of association for 

GWAS compared to conventional MAGMA. However, it is prone to many of the same 

limitations of existing eQTL gene-based approaches. Notably, eMAGMA is not immune 

from the effects of linkage—where two or more variants in linkage disequilibrium 
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independently affect gene expression and phenotypic variation—and pleiotropic SNP 

effects—where a single casual variant affects both gene expression and phenotypic variation. 

Our method (and other comparable eQTL methods) may therefore yield non-causal SNP-

gene associations at nearby genes in the disease-associated region. The power of eMAGMA 

is limited by the sample size of the annotation eQTL dataset. This is especially problematic 

with brain tissue eQTL datasets, which tend to be underpowered given the inaccessibility of 

brain tissue. The meta-analysis of multiple independent brain eQTL datasets, performed by 

the psychENCODE consortium [20], will improve the power and interpretation of 

eMAGMA. Our simulations might favour eMAGMA over the other TWAS approaches 

because the eQTLs used in the annotation files were derived from the same reference eQTL 

dataset (GTEx) used to simulate gene expression. Future simulations using independent 

reference eQTL datasets will be required to confirm the better performance of eMAGMA. 

Finally, gene expression is highly cell-type specific [21]. The use of bulk tissue eQTL 

datasets may therefore reduce power to identify cell-type specific disease signals. The use of 

existing [21] and impending [20] single cell expression datasets may therefore improve the 

resolution of eQTL-based gene-mapping. 

Future work will refine both the methodological framework of eMAGMA and the 

simulated data comparisons. First, our simulations were developed to compare statistical 

power of transcriptome imputation methods with MAGMA and eMAGMA. The simulations 

might be improved upon by modelling the impact of the proportion of causal eQTLs that 

contribute to phenotypic variation; that is, how do the methods perform under scenarios 

where only a subset of cis-eQTLs contribute of gene expression variation. Furthermore, we 

will assess the performance of each method across different estimates of trait heritability and 

prevalence. These additional analyses will provide a biologically valid and comprehensive 

assessment of model performance. Second, the tissue-specificity of eMAGMA may provide 

novel insights into biological mechanisms of disease, but at the cost of limited sample size—

and statistical power—of tissue-specific eQTL datasets. Future work will annotate genes with 

eQTL from larger datasets blood-based eQTL datasets to improve gene discovery, before 

prioritising genes using tissue-specific results.  

In conclusion, we present a modified MAGMA framework, eMAGMA that 

aggregates eQTL summary statistics into gene level association statistics for gene-level 

analyses. Using simulated data, we showed eMAGMA has greater power to detect causal 

associations compared to other popular gene-based approaches, while maintaining 
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appropriate control of the type I error rate. Therefore, eMAGMA can provide a functionally 

relevant alternative to existing methods to identify genes and pathways from GWAS. A 

tutorial and input files can be found in the github repository: 

https://github.com/eskederks/eMAGMA-tutorial   
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Tables 

 

Table 1: Number of genes and causal genes in each gene-based method 

Method Number of genes in model 
Causal genes 

(from simulations 
Proportion of causal genes 

eMAGMA  565 530 0.81 

MetaXcan  628 490 0.75 

SMR  401 387 0.59 

FUSION 228 186 0.29 

 

Table 2: Correlation of Z-scores across 4 gene-based association methods 
 MetaXcan eMAGMA SMR FUSION 

MetaXcan 1 
eMAGMA 0.50 1 
SMR 0.78 0.31 1 
FUSION 0.97 0.60 0.83 1 
Notes: Correlation of Z-scores. Since eMAGMA Z-statistics do not reflect direction of effect, 
the absolute value of the Z-scores were used when correlating with eMAGMA results 
 
 
Table 3: A real-life example comparing methods regarding the total number of significant 
associations with Major Depression 
Method Number of significant 

Associations 
eMAGMA 85 
MetaXcan 28 
SMR 2 
FUSION 14 
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Figures 
 

Figure 1: Proportion of significant associations (relative to the total number of causal genes) 

 

 
Figure 2: Proportion of significant associations (relative to the total number of causal genes 
per method) 
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Figure 3: Statistical power as a function of the number of eQTLs per gene 

 
 
 
 
Figure 4: Overlap in genes between eQTL-based methods at 1% of phenotypic variance 
explained 
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