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Abstract

Microfluidic-based assays have become effective high-throughput approaches to
examining replicative aging of budding yeast cells. Deep learning may offer an efficient
way to analyze a large number of images collected from microfluidic experiments. Here,
we compare three deep learning architectures to classify microfluidic time-lapsed images
of dividing yeast cells into categories that represent different stages in the yeast
replicative aging process. We found that convolutional neural networks outperformed
capsule networks in terms of accuracy, precision, and recall. The capsule networks had
the most robust performance at detecting one specific category of cell images. An
ensemble of three best-fitted single-architecture models achieves the highest overall
accuracy, precision, and recall due to complementary performances. In addition,
extending classification classes and augmentation of the training dataset can improve
the predictions of the biological categories in our study. This work lays a useful
framework for sophisticated deep-learning processing of microfluidics-based assays of
yeast replicative aging.

Introduction 1

The budding yeast Saccharomyces cerevisiae is an effective model for studying cellular 2

aging [1,2]. The replicative lifespan of a yeast mother cell is defined as the total number 3

of cell divisions accomplished, or the number of daughter cells produced throughout its 4

lifetime. Microfluidics is a fast-growing tool for high-throughput applications in 5

chemical, biological, optics, and information technology, including single-cell imaging 6

analysis [3]. Typically, microfluidic images are taken in time intervals with relatively low 7

resolution compared to confocal microscopic images that are often of high resolution, 8

rendering unique challenges for microfluidic imaging [4]. Capturing the full progression 9

of cellular replicative lifespans requires identifying both mother cells and daughter cells 10

in full cell cycles. However, the full automation of this process is often hindered by low 11

image resolution, demanding time-consuming, manual classifications of yeast replicative 12

lifespans [5]. 13
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Deep learning as a sub-field of machine learning has been applied in a wide range of 14

applications, and its developments are mostly driven by both computational capacity 15

and the accessibility of datasets. The development of deep learning is driven by its 16

ability to understand and infer information from data such as speech, text, and 17

images [6]. Medical and healthcare application areas, especially the medical images that 18

play key roles in health diagnosis, may also benefit from machine learning detection and 19

classification [7]. In recent years, deep learning has increased in efficacy for image 20

classification and is now a popular method for parsing image information [8]. Many 21

innovations have been driven by creating models that perform well on benchmark 22

datasets such as MNIST (60,000 handwritten digits for training in a 28x28-dimensional 23

vector space), CIFAR10 (60,000 commonly used images in a 32x32-dimensional vector 24

space), CIFAR100 (500 training images grouped into 20 classes), and ImageNet 25

(100,000+ phrases and around 1,000 images for each phrase) [9]. The basic idea of deep 26

learning is to create or “learn” a function that can map a high-dimensional input space 27

into an output vector. 28

In classification, the size of the output vector depends on the number of classes, 29

while regression typically has a scalar output. In image classification problems, the 30

convolutional neural network (CNN) is the primary type of deep learning model 31

employed. A variety of CNN approaches have been proven useful for image 32

classification, because they are designed for 2-dimensional (or higher) input tensors [10]. 33

In addition, the proximity of pixels in the input images is taken into consideration, 34

which helps CNNs learn how pixels are oriented relative to each other. One of the major 35

drawbacks of CNNs is that they require a large amount of training samples, which is 36

rooted in the architectural designs of CNNs [11]. 37

A fundamentally different type of deep learning architecture, named CapsNet, was 38

proposed to learn from fewer training samples than its traditional CNN counterparts. 39

The recently proposed CapsNet architecture [12] is known as capsule networks with 40

dynamic routing. The model is promising in image classification applications in datasets 41

with limited data [13]. The success of the model lies in its ability to preserve additional 42

information from input images by utilizing convolutional strides and dynamic routing 43

instead of a max pooling layer. A recent study showed that CapsNet could classify 44

fluorescent microscopic images [31]. 45

Our work here focuses on comparing deep-learning classification methods of 46

microfluidics images of dividing yeast cells. We compare three deep-learning neural 47

network approaches, including CapsNet, to classify microfluidic trap images into four 48

biological categories. The main purpose of this work is to develop a method to 49

accurately classify microfluidic images from a small and noisy dataset. Due to data 50

limitations, we trained each model with consideration of the effect of data augmentation. 51

Finally, we showed that an ensemble of the top three models performs better than using 52

each individual model alone, leading to a good “collaboration” among these models. In 53

addition, data augmentation and splitting a class into two classes could be an effective 54

approach for some models based on the type of dataset and model architecture. 55

Materials and methods 56

Hardware and hyperparameters 57

The models were trained and tested on NVIDIA Tesla P100 GPU. We performed a 58

basic grid search on six hyper-parameters: (1) the number of routing iterations, (2) 59

learning rate, (3) batch size, (4) whether to add noise to training images, (5) the 60

number of epochs in training, and (6) whether augmentation was applied or not. The 61

options of the hyper-parameter grid search are listed in S1 Table of the supporting 62
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information (SI). In general, a total of 108 combinations were initially tested. 63

Dataset 64

The dataset is collected from a recent version of high-throughput yeast aging analysis 65

(HYAA) chips experimental work [14]. Each time-lapsed image has a resolution of 66

1280x960 and contains approximately 114 traps as shown in Fig 1 (a). In general, traps 67

are designed to hold a single dividing mother cell. The inlet width, outlet width, and 68

height of each trap are 6, 3, and 5 micrometers, respectively. The outlet is wide enough 69

to allow smaller daughter cells to slip through the trap outlet but narrow enough to 70

withhold the bigger mother cell. Due to cell migrations (see S1 Fig (a)), low resolution, 71

image intensity variations (see S1 Fig (b)), and difficulties in alignment, each 72

time-lapsed image is partitioned into sub-images of 60x60 pixels, for an individual trap 73

with respect to the boundary of its neighbor-traps as shown in Fig 1 (b). After 74

partitioning, any individual trap typically contains 391 time-lapsed images with 75

10-minute intervals, which is illustrated in Fig 1 (c). 76

Fig 1. The Architecture of a Microfluidic Device. (a) Single-channel
microfluidic device with medium flow direction. Cells are inserted from cell source and
joint medium before reaching microfluidic traps. (b) Partitioning 114 traps of each
microfluidic time-lapsed images. (c) Time-lapsed cropped images of a single trap in
dimension of 60x60 pixels.

We initially categorized images based on the number of cells available at each trap 77

and cell position. All class categories are labeled as follows: a trap with no cell (nC), a 78

trap with a single mother cell (mC), a trap with mother and upward-oriented daughter 79

cells (mduC), a trap with mother and downward-oriented daughter cells (mddC), and a 80

trap with more than two cells (exC). We called all of these categories “the 5 computed 81

classes,” as illustrated in Fig 2 (a). The exC class is necessary because it is difficult to 82

determine the appearance of extra cells without knowledge from its immediate neighbor 83

images; as a consequence, a trap with more than two cells will be ignored in the 84

classification process. However, for easier understanding from a biological point of view, 85

mddC and mduC classes are merged and labeled mdC after the testing process. In other 86

words, all training and testing datasets are based on 5 classes and results are displayed 87

as only 4 classes. Since mddC and mduC classes are merged together, we called these 88

new categories “the 4 biological classes,” which include nC, mC, mdC, and exC as 89

shown in Fig 2 (b). Examples of mddC and mduC classes with indication of cell 90

position are shown in Fig 2 (c). 91

Fig 2. Class categories with indication of results labeling for each class. (a)
5 computed categories including nC, mC, mddC, mduC, and exC classes. (b) 4
biological categories including nC, mC, mdC, and exC classes. (c) An example of mddC
and mduC for daughter cell orientation around a trap-center mother cell.

A 2-layered architecture, CNN-2 92

The two-layered architecture CNN that has two convolution layers represents one of the 93

most simplified CNN models, and it is also termed as the baseline CNN architecture. 94

We chose this model for its simplicity, and we refer to it as the CNN-2 in the present 95

work. The kernel size is 3x3 and batch normalization is applied to the both layers. The 96

stride for the second layer is 2, and the activation function is ReLU for this model. 97

Moreover, the input image size is 60x60 pixels and no image enhancement method is 98
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applied. A 2x2 kernel size used for max-pooling and 25% dropout applied for the second 99

layer as the model architecture is shown in Fig 3 (a). We trained the model for 5, 10, 100

and 20 epochs, respectively; after 20 epochs there was no more improvement in accuracy 101

and loss. 102

A 13-layered architecture, CNN-13 103

We are aware of popular examples such as AlexNet [19], VGGNet [20], and 104

GoogleNet [21]. Each of these networks have tens to hundreds of millions of parameters 105

(neural network weights) to learn and require large training datasets. We chose a deep 106

learning architecture, termed the SimpleNet model, as described by HasanPour et 107

al. [22]. HasanPour et al. [22] chose to think of the SimpleNet architecture in groups of 108

layers, where each group of layers is homogeneous and thus can control overall network 109

size and perform specific tasks well, such as classification and object detection. For 110

clarity, we refer to this SimpleNet as CNN-13 in our work. The CNN-13 architecture 111

(see Fig 3 (b)) is a convolutional neural network architecture with 13 layers. CNN-13 has 112

2–25 times fewer parameters than the popular models. We chose 2x2 and 3x3 kernels for 113

pooling and convolutional layers respectively. We also trained the CNN-13 model for 5, 114

10, and 20 epochs, and after 20 epochs there was no more improvement in accuracy and 115

loss. In addition, batch normalization and 25% dropout applied to all layers. 116

Capsule networks architecture 117

Capsule networks (CapsNet) is a novel architecture for deep learning. Basic versions of 118

CapsNet have been shown to outperform extremely sophisticated CNN 119

architectures [12]. A previous study showed that CapsNet could classify fluorescent 120

microscopic images [31]. CapsNet replaces the typical pooling layer of CNNs with a 121

more sophisticated weight-routing mechanism. Instead of generating scalar output as 122

used in CNNs, a capsule layer in CapsNet generates a vector as output from 123

convolutional kernel inputs, where the length of the vector represents how likely it is 124

that a feature from the previous layer is present, and the values of the vector are an 125

encoding of all the affine transformation of the kernel inputs. With a more data-efficient 126

architecture (i.e., less information loss), fewer samples are required to train CapsNet 127

models. We used the baseline CapsNet model as in previous works [12,31] for our 128

comparison studies. Fig 3 (c) shows the architecture of the baseline CapsNet, which 129

contains a convolution layer, primary capsule convolution and primary capsule reshape, 130

DigitCaps (Squash function), and decoder. The kernel size is 9x9 and the stride is 2 for 131

primary capsule convolution. The dimension for primary capsule reshape is 22x22x32 132

with 8 capsules. A grid search of the hyper-parameters (see S1 Table) led to 108 trained 133

CapsNet models, from which we picked 10 top-performing models. We then examined 134

these 10 models and picked the best-performing CapsNet model for further studies. 135

Fig 3. Architectures of three models. (a) CNN-2: A total of 2 convolutional
layers and 2 densely connected layers. (b) CNN-13: A total of 13 convolutional layers
plus a densely connected layer. (c) Capsule Network: A convolutional layer plus a
high-level capsule layer and a densely connected layer. In general, CapsNet contains two
parts: the encoder that takes an input image and learns to encode it into 16D
instantiating vector parameters, and the decoder that takes a correct DigitCap from a
16D vector and learns to decode it into an original-like image.
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Data augmentation 136

Due to the tedious process of manual annotation, we have a relatively small number of 137

training images. We tried several affine transformations to augment training 138

images [24–26]. Affine transformations on the original images are a popular and simple 139

augmentation method [26]. The augmentation table for this work is available in S1 140

Table. We added noise to images and changed brightness, contrast, width, and height of 141

the training images. The total number of trap images in our datasets is 1,000 for each of 142

the five categories. We used 4,104 trap images for training and 896 for testing. We 143

augmented the training images, which resulted in 99,380 training images. The codes and 144

dataset of this work are available from https://github.com/QinLab/GhafariClark2019. 145

Performance metrics 146

Three key metrics have been used in the model analysis [27]. The first is accuracy, e.g., 147

the number of true positive and true negative exC predictions versus all of the exC 148

examples. The second metric is precision, e.g., the true positives prediction of the mC 149

class versus all true positives and false positives of mC. Lastly, we are concerned with a 150

metric called recall [28]. One example of recall is the true positives prediction of the 151

mdC class versus all true positives and false negatives of mdC. Each of these three 152

metrics has its own purpose, and they are oftentimes used together to determine the 153

overall performance of a model [29], written as: 154

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

where TP, TN, FP, and FN refer to true positives, true negatives, false positives, 155

and false negatives respectively. 156

Results and discussion 157

Extension of classes improved the accuracy of predicted 158

biological categories 159

At the initial stage, we trained and tested all models with four classes: nC, mC, mdC, 160

and exC. Here, mdC refers to any traps with two cells without merging any classes. 161

However, early in the process of model selection and tuning, we discovered that many 162

training images were misclassified when two cells were observed inside the same trap. 163

Hence, some of the best models struggled to reach 60% test accuracy. One approach is 164

to use transfer learning [30] to reduce the misclassifications. Transfer learning is a 165

neural network that starts with pre-trained weights from which models can learn 166

weights in a shorter time. The concept of splitting classes is similar to transfer learning 167

as both methods attempt to make it easy for the models to learn weights; however, 168

these approaches come from different angles. We notice that there are similarities 169

between the exC class and the mdC cell class in cases when the daughter cell is above 170
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the mother cell. Based on this observation, we split all images with two cells into two 171

separate classes; in the first class, the daughter cells are on top of mother cells 172

(upward-oriented, mduC class), and in the second class the daughter cells are below the 173

mother cells (downward-oriented, mddC class), as illustrated in Fig 2 (c). At the 174

highest level, creating mddC and mduC classes helped the situation where the neural 175

networks were able to more easily learn the differences of the mduC class and the exC 176

class without having to learn that the mddC and mduC class are the same. It is 177

important to notice that all training and testing activities are based on the computed 5 178

classes dataset. However, the results for mddC and mduC classes are averaged and 179

labeled as mdC for easier biological understanding as shown in Fig 2 (b). 180

CNN-2 performance was improved by training data 181

augumentation 182

CNN-2 exhibited instability and did not perform well when it was trained with 183

non-augmented training datasets, as seen in blue bars in Fig 4 (a). For example, CNN-2 184

models trained without augmentation performed poorly on mC, with precision at 71% 185

and recall at 66%. The comparison results in Fig 4 (b) indicate that augmentation 186

mainly improved the accuracy of prediction over the mdC class in this model. As a 187

result of the training data augmentation, the overall accuracy of CNN-2 was improved 188

to 92%. Moreover, the misclassification results show that two common types of 189

misclassifications occurred in CNN-2 while there were only two cells observed inside the 190

trap. For S3 Table CNN-2 (a), the model wrongly predicted two cells instead of three 191

cells due to blurred boundaries. Cases in S3 Table CNN-2 (b, c) were a little more 192

problematic because the CNN-2 model did not recognize the daughter cells above or 193

below the mother cells. Interestingly, for S3 Table CNN-2 (d), the mother cell is almost 194

entirely transparent and ends up not being a problem after recombining the mddC and 195

mduC classes. 196

CNN-13 performance and impact of training dataset 197

augmentation 198

CNN-13 showed substantial improvement in average accuracy in comparison to CNN-2, 199

and this improvement occurred for CNN-13 models trained with and without 200

augmentation of training datasets, as shown in Fig 4. Augmentation of training data 201

also led to more stable CNN-13 models as seen when changes of the cost functions 202

during training became more smooth with augmented datasets. Surprisingly, 203

augmentation had a marginal effect on the accuracy, precision, and recall of CNN-13. 204

Before augmentation, the model predicted 100% on nC class (precision and recall) and 205

exC class (precision). Most of the misclassification appears to be in the mC and mdC 206

classes. After augmentation, prediction for nC did not change (100%) and mC recall 207

improved from 93% to 96% (precision had the opposite reaction). Furthermore, S2 208

Table shows that augmentation had a slight improvement in the mC and exC classes but 209

a negative effect on the mdC class. The overall accuracy for this model was 97% (before 210

augmentation) and 98% (after augmentation) respectively as shown in orange bars. 211

Considering misclassification for CNN-13, S3 Table CNN-13 (a) shows several cells 212

clustered together. After further inspection, this image was classified with near 100 % 213

certainty. Although this instance is uncommon, it still poses problems in cell type 214

identification. The mistake on S3 Table CNN-13 (b) is more understandable because 215

there is a mother cell with seemingly two daughter cells on top. The algorithm did not 216

classify this example in the exC class and instead predicted it as mduC. Since one of 217

these cells could actually be a true daughter cell, this image may not be as problematic. 218
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Image S3 Table CNN-13 (c) is similar to the previous image, but the boundary between 219

the two cells on top of the mother cell are so thin that it is reasonable to think that it is 220

a deformed single daughter cell to the untrained eye. Finally, S3 Table CNN-13 (d) 221

illustrates a mistake that was common in the CNN-2 model where mduC or mddC were 222

predicted as mC due to blurred boundaries. 223

CapsNet performance and impact of training datset 224

augmentation 225

We found that the performance of CapsNet was more sensitive to hyper-parameters 226

than were the CNN-2 and CNN-13 models, based grid searches on the hyper-parameters 227

detailed in S1 Table. We picked the best-performing CapsNet model for this study. The 228

training dataset augmentation mainly improved CapsNet’s accuracy of the mC category 229

but not in other categories, as shown in Fig 4. The overall accuracy of CapsNet reached 230

90% after augmentation. In Zhang et al. [31], a close range of accuracy was reported for 231

fluorescent images. 232

In case of misclassification, S3 Table CapsNet (a) shows that there is a small cell on 233

the top right portion of the mother cell that seemed to be overlooked by the CapsNet 234

model. One potential cause for this misclassification is that the two cells on top of the 235

mother cell are quite different in size. S3 Table CapsNet (b) is one of the problematic 236

misclassifications that CNN-13 was good at detecting. S3 Table CapsNet (c) shows a 237

transparent cell that could be dead or senescent. This type of image is unlikely to 238

happen often enough for the model to learn effectively. S3 Table CapsNet (d) shows 239

another interesting example. It looks as though a mother cell was too big for the trap 240

and is reproducing daughters that flow over the outside edge of the trap. 241

Fig 4. Comparison results for classification models.
(a) Combining the mddC and mduC classes increased the performance of the models
further. The precision for the mdC class was relatively low, which means that models
predicted the mdC class often; however, the prediction was not correct in many of those
instances. (b) There are a few elements to note about the model comparison. Every
single well-performing model had an augmented dataset. The augmentation mainly
improved CNN-2 and CapsNet models.

Deeper layers bring moderate improvement and challenging 242

performance of the CapsNet 243

Surprisingly, CNN-2 can predict the nC category with 100% accuracy, even though it 244

has a skeleton architecture (see the confusion matrix S3 Fig). We found that 245

performance of CNN-2 can be greatly improved by augmentation and adding layers. As 246

expected by the increased number of layers, CNN-13 had greater overall accuracy than 247

CNN-2, as shown by its confusion matrix (see S3 Fig). With the additional 11 more 248

layers and much more training time, CNN-13 improved the overall accuracy to 98%, a 249

moderate 6% increase from CNN-2. We also found that performance of CNN-13 is not 250

substantially changed by applying augmentation. Fig 5 shows that augmentation 251

improved the total prediction by 0.22%, which is around 16 times lower than CNN-2 252

and decreased the total mis-prediction by 8.3%, which is considerably lower than 253

CNN-2. On the other hand, CapsNet was the weakest model in terms of average 254

accuracy. According to the confusion matrix (see S3 Fig), the model had only great 255

prediction for nC (180/180). Surprisingly, the model had the best prediction (354/360) 256

for the mdC class before any augmentation where both CNN-2 and CNN-13 struggled 257

with prediction (with or without augmentation). However, the model had poor 258
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prediction for the mC and exC classes. Fig 5 illustrates that the augmentation was an 259

effective approach that improved the total prediction by 7%, which is almost double 260

CNN-2 model and decreased the total mis-prediction by 30.8%, better than the other 261

two models. In other words, CapsNet is much more sensitive to data augmentation than 262

the other two CNN models are, and it can preform well on a specific class. 263

Each deep learning model has its own profiles of 264

misclassifications 265

We also investigated misclassification behavior of individual models for the mC, mdC, 266

and exC classes (see Fig 5). In terms of correct-prediction balance between mddC and 267

mduC, Fig 4 demonstrates that all the models had close balance of prediction for mddC 268

and mduC (before and after augmentation). In terms of mis-prediction, the CNN-2 269

model had opposite behavior of the CNN-13 and CapsNet models. For CNN-2, the 270

mduC class had a higher percentage of misclassification for the mC class, and the exC 271

class had higher misclassification for the mddC class. For CNN-13 and CapsNet, the 272

mddC class had a higher percentage of misclassification for the mC class, and the exC 273

class had a higher misclassification for mduC. These comparisons indicate why we 274

consider an ensemble model as an alternative. For Ensemble No. 4, each of the 275

misclassifications of the ensemble are obviously misclassifications of at least one of the 276

three models. 277

Fig 5. Each of the three deep learning models has idiosyncratic error
profiles

Table presenting the example of predicted mdC class that included correct predictions
(mdC) and mis-predictions (mC and exC). Based on the mdC columns in the confusion
matrix (S3 Fig), predicted mdC are broken down to mddC and mduC extended classes.
Orange areas indicate predicted mduC, and blue areas indicate predicted mddC. In
the bar graphs, total tested images are in green. Correct predictions of all 4 biological
classes after augmentation are in yellow. Correct predictions of all 4 biological classes
before augmentation are in gray. Mis-predicted classes after augmentation are in blue.
Mis-predicted classes before augmentation are in red. These results motivated us to
generate ensemble models.

Ensemble models performance 278

Because each single deep learning model had uneven performance in the 4 biological 279

categories, we thought combining them may lead to better performance. There are four 280

different ways to combine the three single deep learning models (see S2 Fig). We chose 281

a straightforward ensemble method to weight the predictions of each model based on 282

their overall accuracy [32] and misclassifications. Specifically, CNN-13 has the highest 283

prediction weight, followed by CNN-2 and then CapsNet. We found the three-member 284

ensemble, No. 4, outperformed all of the two-member ensembles. The overall accuracy 285

of ensemble No. 4 is 98.5% as shown in Fig 4 (b), in yellow. 286

Future work 287

While correctly classifying images into one of the four discussed categories was the focus 288

of this work, there are still improvements to be made such as the image pre-processing 289

differently from data augmentation. In addition, we could improve the overall ensemble 290
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by adding more diversity to the set of models. For example, the sequential nature of the 291

problem could lend itself nicely to a Last Short-Term Memory (LSTM) architecture [33]. 292

Conclusion 293

We compared three deep learning models for classification of microfluidic images of 294

dividing yeast cells. Microfluidiic images are typically low resolution, which poses 295

challenges for computational analysis. We found that augmentation of training data can 296

improve performance of both convolutional and capsule networks. We found that 297

extended computed classes could improve performance of deep learning methods for 298

classifying biological classes. We found that a baseline architecture of convolutional 299

network with two layers could give 92% overall accuracy. We found that deep layered 300

convolutional networks could improve the overall accuracy at the expense of 301

substantially more computing cost. We found that a baseline architecture of capsule 302

neural networks did not outperform the deep-layered convolutional networks in terms of 303

overall accuracy, though the baseline capsule networks could detect a specific type of 304

data with better performance. Consequently, an ensemble model reached 98.5% overall 305

accuracy by combining the strengths of different models. Overall, we found that 306

convolutional and capsule neural networks have complementary performance for 307

classification of microfluidic images of dividing yeast cells. 308
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Supporting information

S1 Fig. Microfluidics Images. (a) Time-lapsed images from time-point 001 to
time-point 391. Black circles with connected dash-lines indicate that some of traps
become overcrowded over time. (b) Each imaged partitioned to 60ox60 pixels sub-image
and individual trap image is highly variable. While traps and cells have a limited
number of orientations, the contrast, brightness and image quality all add great
complexity to the dataset. There are often shadows, depending on the lighting
conditions of the experiment.

S2 Fig. Ensemble Models Combination. Results of CNN-2, CNN-13 and
CapsNet models indicated that there are numerous ways to ensemble (i.e. combine)
models together in order to create a single aggregate model. We explored the results
from all possible ensembles with different combinations based on practical and key
performance metrics.

S3 Fig. Models confusion matrix. Three models confusion matrix with indication
of augmentation effectiveness.

S1 Table. Grid search and augmentation options. A total of 108 combinations
were trained without and with augmented datasets.

S2 Table. Models comparison for performance Metrics. The results of
precision, recall and accuracy for all models.
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S3 Table. Sample image of most common misclassifications.
CNN-2 (a) label exC: prediction mduC, CNN-2 (b) label mduC: prediction mC,

CNN-2 (c) label mddC: prediction mC, CNN-2 (d) label mduC: predicted mddC.
CNN-13 (a) label exC: prediction mduC, CNN-13 (b) label exC: prediction mduC,

CNN-13 (c) label exC: prediction mduC, CNN-13 (d) label mddC: prediction mC.
CapsNet (a) label exC: prediction mduC, CapsNet (b) label mddC: prediction mC,

CapsNet (c) label mC: prediction mduC, CapsNet (d) label mduC: prediction exC.
Ensemble No.4 (a) label mdC: prediction mC, Ensemble No.4 (b) label exC:

prediction mdC, Ensemble No.4 (c) label exC: prediction mdC, Ensemble No.4 (d) label
mdC: prediction exC.
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