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Summary: RsQTL is a tool for identification of splicing quantitative trait loci (sQTLs) from RNA-sequencing (RNA-seq) data 
by correlating the variant allele fraction at expressed SNV loci in the transcriptome (VAFRNA) with the proportion of molecules 
spanning local exon-exon junctions at loci with differential intron excision (percent spliced in, PSI). We exemplify the method 
on sets of RNA-seq data from human tissues obtained though the Genotype-Tissue Expression Project (GTEx). RsQTL does 
not require matched DNA and can identify a subset of expressed sQTL loci. Due to the dynamic nature of VAFRNA,  RsQTL is 
applicable for the assessment of conditional and dynamic variation-splicing relationships. 
Availability and implementation: https://github.com/HorvathLab/RsQTL. Contact: horvatha@gwu.edu or 
jsein@gwmail.gwu.edu  Supplementary Information: RsQTL_Supplementary_Data.zip 

1. Introduction 
Splice QTLs (sQTLs) are involved in phenotype formation and com-
plex disease risk, to a level comparable or higher to that of eQTLs 
(Li, Y. I. et al, 2016, Brandt M., and Lappalainen T, 2017). eQTLs 
and sQTLs are both traditionally assessed from matched DNA and 
RNA datasets, where DNA is used for genotype estimation and RNA 
for expression (eQTLs), or splicing (sQTLs) estimation. We have 
recently developed a method to assess eQTLs from RNA-seq data 
alone – ReQTL (Spurr, L. et al, 2019) - which replaces the genotypes 
with the variant allele fraction, VAFRNA, and identifies a subset of 
eQTLs. We present a related method, RsQTL (RNA-sQTL), which 
identifies splicing QTLs via correlation of VAFRNA with the propor-
tion of excised introns (percent spliced in, PSI) at loci with differen-
tial intron excision (Li, Y. I. et al, 2018).   

We demonstrate RsQTL using Matrix eQTL (Shabalin, 2012) 
on RNA-seq data obtained from the Genotype-Tissue Expression 

(GTEx) project (www.gtexportal.org, phs000424.v7), from three 
different tissue types: Nerve-Tibial (NT), Skin-Sun-Exposed (SkE), 
and Skin-Not-Sun-Exposed (SkN). The proposed pipeline (Figure 
1a, S_Table 1, and S_Methods) employs publicly available packages 
for processing of RNA-seq data and a toolkit for RsQTL-specific 
data transformation (https://github.com/HorvathLab/RsQTL). 
RsQTL analyses are optimized for SNV (Single Nucleotide Vari-
ants)-aware alignments, produced via a two-pass alignment strategy 
(STAR, v.2.7.2, Dobin, A., et al., 2013). Briefly, SNVs are called 
from the non-SNV-aware alignments, (GATK v.4.0.8.0, Van der 
Auwera, G.A. et al. 2013) and combined into a list of unique posi-
tions, which are then inputted into WASP (Van de Geijn,B, et al., 
2015) to correct for allele mapping bias during the second alignment. 
These SNV-aware alignments are then used to estimate: (1) VAFRNA 

using ReadCounts (Movassagh, M et al., 2017), and (2) PSI using 
LeafCutter (Li, Y. I. et al, 2018). VAFRNA was estimated from loci 
covered by a minimum of 10 RNA-seq reads, and PSI was estimated 

Figure 1. a. RsQTL analyses (differences from eQTL analysis are outlined in red). SNV-aware alignments are generated using STAR (two-pass strategy), 
where the SNVs called on the 1st-pass alignments are used (1) by WASP to remove ambiguously aligned reads, and, (2) by ReadCounts to estimate VAFRNA 
from the 2nd -pass (SNV-aware) alignments. Note that the latest versions of STAR have the WASP-option implemented, which streamlines the process 
significantly. The same SNV-aware alignments were used to estimate PSI. VAFRNA and PSI matrices, together with covariates, were then used as inputs to 
Matrix eQTL. b. RsQTL correlation patterns; both sQTL-like patterns (top) and patterns with VAFRNA values spread along the regression line (bottom) are 
seen. c. sQTL-exclusive correlations (left) and corresponding RsQTLs (right), NT. Genotypes were available for all the samples while VAFRNA was estimated 
(using the required minimum 10 reads) for only 31% of the positions. d. RsQTL-exclusive correlations (left) and their corresponding sQTLs (right). RsQTL 
correlation is stronger due to the distribution of VAFRNA along the regression line. The p-values shown on the graphs are not adjusted for multiple comparisons. 
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from intron clusters covered by a minimum of 30 RNA-seq reads. 
VAFRNA and PSI are then combined into matrices, and filtered to 
remove SNV- and intron-loci not informative or homozygous across 
more than 80% of the studied individuals. Principal components 
(PC) are computed to account for hidden confounders and used as 
covariates (together with known covariates). The VAFRNA, PSI and 
covariate matrices are then used as inputs for Matrix_eQTL; 
RsQTLs are assessed using a linear regression model and a false dis-
covery rate (FDR) of 0.05. A parallel sQTL analysis is performed to 
assess overlapping and exclusive outcomes. 

2. Results  
2.1. Overall  
For direct comparisons with sQTLs, we used the same input 

lists of SNV loci per tissue, which were generated based on accessi-
bility for RsQTL analysis (as described above) and availability of 
genotypes (104054, 92776, and 94321 SNVs for the NT, SkE and 
SkN, respectively). Similarly, we used the same intron inputs per 
tissue (1710, 1387 and 1310 introns for the NT, SkE and SkN, re-
spectively). To account for covariates, we corrected for the reported 
race, sex, the top three VAFRNA or genotype PCs, for RsQTL and 
sQTL, respectively, and the top 10 PCAs for the PSI. We retained 
for further analyses only cis-RsQTL (SNV and intron located within 
1e106 nt of each other). In addition to the distance-based cis-annota-
tion, we enable annotation based on residence in the same gene. 

The numbers of significant RsQTL and sQTL-findings are 
shown in S_Table 2. Quantile-quantile (QQ) plots are shown in 
S_Figure 1, and shared and tissue-specific RsQTLs are presented in 
S_Figure 2. Percent explained variation by the top 10 PCs for 
VAFRNA, genotypes and PSI is shown in S_Figure 3.  

Examples of significant RsQTL are shown in Figure 1b. We 
observed sQTL-like patterns (top), and patterns where the interme-
diate VAFRNA values are spread along the regression line (bottom). 
As expected, many SNVs correlated inversely (variant vs reference 
nucleotide) with alternative intron excision.  

2.2. RsQTL vs sQTL  
To evaluate the proportion of sQTLs identifiable through 

RsQTL analysis, we analyzed overlapping and exclusive RsQTL 
and sQTL outputs (S_Tables 2-4). The correlations called by both 
methods represented 87-90% of the significant RsQTLs, and 54-
57% of the sQTLs. Accordingly, in a side-by-side setting, up to a 
half of the sQTLs are not called through RsQTL analyses, while ap-
proximately 10% of the significant RsQTL correlations are not cap-
tured as sQTLs. sQTL exclusive correlations are exemplified in Fig-
ure 1c (left), together with a corresponding plot using the VAFRNA 
from the same sample (right). On the other hand, RsQTL-exclusive 
correlations were observed for relatively weak sQTLs where the 
spread of the bi-allelic VAFRNA along the regression line contributed 
to the detection of a stronger linear relationship (Figure 1d).  

3. Discussion 
        We have previously presented a systematic analysis of VAFRNA 
usage in QTL pipelines (Spurr, L. et al, 2019). Briefly, there are sev-
eral important considerations for RsQTL applications. First, RsQTL 
analyses are confined to expressed loci and are not designed to cap-
ture SNVs in transcriptionally silent sites. Second, among RsQTL-
accessible SNVs, RsQTL captures on average between 50 and 60% 
of the sQTL-identifiable correlations due to the lower availability of 

VAFRNA values (as compared to genotypes). The latter is expected 
to be significantly improved with increased sequencing depth. Third, 
RsQTL might capture co-allelic (in linkage disequilibrium, LD) 
SNVs as opposed to the actual regulatory variant, and therefore re-
quire validation analyses before causality can be inferred. However, 
in comparison to ReQTL, we expect that RsQTL will capture higher 
proportion of causative SNVs due to the known enrichment of 
sQTLs within gene bodies (Li, Y. I., et al, 2016) and the related in-
volvement of RNA-binding regulatory factors. On the other hand, 
due to the continuous nature of the VAFRNA measure, RsQTL anal-
yses identify about 10% more correlations than sQTL analyses. 

Several technical advantages are noted for the usage of 
VAFRNA (Spurr, L. et al., 2019). Briefly, these include (1) the above-
mentioned continuous nature of VAFRNA that allows for precise 
quantitation of the allele counts, (2) the potential for use in identify-
ing post-transcriptionally generated variants through processes such 
as RNA-editing, and (3) reduced technical noise due to estimation 
of both VAFRNA and PSI from the same RNA-seq dataset. An addi-
tional, RsQTL-specific, advantage is that VAFRNA and PSI values 
belong to the same interval {0,1} and therefore do not require scal-
ing and transformation. Finally, when interpreting RsQTL results, it 
is important to consider the dynamics and tissue-specificity of the 
both VAFRNA and PSI. 

In conclusion, we envision applications of RsQTL for data sets 
where matched DNA is not available, and particularly for assessing 
within-gene variants which alter motifs recognizable by RNA-
binding molecules. The RsQTL toolkit supports the entire pipeline 
from variant calls to final outputs and is accompanied by visualiza-
tion modules and user-friendly instructions. All the scripts are made 
flexible to accommodate a large range of user-defined settings.   
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