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Abstract 

The diagnosis of Mendelian disorders requires labor-intensive literature research. Trained 

clinicians can spend hours looking for the right publication/s supporting a single gene that best 

explains a patient’s disease. AMELIE (Automatic Mendelian Literature Evaluation) greatly 

accelerates this process. AMELIE parses all 29 million PubMed abstracts, downloads and further 

parses hundreds of thousands of full text articles in search of information supporting the 

causality and associated phenotypes of any published genetic variant. AMELIE then prioritizes 

patient candidate variants for their likelihood of explaining any patient’s given set of phenotypes. 

Diagnosis of singleton patients (without relatives’ exomes) is the most time-consuming scenario. 

AMELIE ranked the causative gene at the very top in 2/3 of 215 diagnosed singleton Mendelian 

patients. Evaluating only the top 11 AMELIE scored genes of 127 (median) candidate genes per 

patient results in rapid diagnosis for 90+% of cases. AMELIE-based evaluation of all cases is 3-

19x more efficient than hand-curated database-based approaches. We replicate these results on a 

cohort of clinical cases from Stanford Children’s Health and the Manton Center for Orphan 

Disease Research. An analysis web portal with our most recent update, programmatic interface 

and code will be available at AMELIE.stanford.edu. A pilot run of the web portal has already 

served many thousands of job submissions from dozens of countries. 
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Introduction 

Millions of babies are born worldwide each year affected by severe genetic and often 

Mendelian disorders (1). Patients with Mendelian diseases have one or two genetic variants in a 

single gene primarily responsible for their disease phenotypes (2). Roughly 5,000 Mendelian 

diseases, each with a characteristic set of phenotypes, have been mapped to about 3,500 genes to 

date (3). To identify candidate causative genes, exome sequencing is often performed, with a 

relatively high (currently 30%) diagnostic yield (4). A genetic diagnosis provides a sense of 

closure to the patient family, aids in patient trajectory prediction and management, allows for 

better family counseling, and in the age of gene editing even provides first hope for a cure. 

However, identifying the causative mutation/s in a patient’s exome to arrive at a diagnosis can be 

very time-consuming, with a typical exome requiring hours of expert analysis (5).  

Definitive diagnosis of a known Mendelian disorder is accomplished by matching the 

patient’s genotype and phenotype to previously described cases from the literature. Manually 

curated databases (6–10) are utilized to more efficiently access extracts of the unstructured 

knowledge in the primary literature. Automatic gene ranking tools (11–18) use these databases to 

prioritize candidate genes in patients’ genomes for their ability to explain patient phenotypes. An 

important feature of many gene ranking tools is the use of phenotype match functions on patient 

phenotypes and gene/disease-associated phenotypes. Phenotype match functions exploit the 

structure of a phenotype ontology (9) and known gene-disease-phenotype associations to 

quantify the inexact match between two sets of phenotypes (11, 12), with recent approaches 

developed to computationally extract phenotype data from electronic medical notes (19, 20). The 

goal of all gene ranking tools is to aid a busy clinician in arriving at a definitive diagnosis of any 

case presented to them in the shortest amount of time, by reading up on genes in the order the 

algorithm has ranked them. 

Given the rapidly growing number of rare diseases with a known molecular basis (21) and the 

difficulty of manually finding a diagnosis for some rare diseases with variable phenotypes, many 

patients experience long diagnostic odysseys (22). Expert clinician time is expensive and scarce, 

but machine time is cheap and plentiful. We aim to accelerate the diagnosis of patients with 

Mendelian diseases by using information from primary literature to construct gene rankings, thus 
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allowing clinicians to discover the causative gene along with supporting literature in a minimum 

amount of time. 

Here, we introduce AMELIE (Automatic Mendelian Literature Evaluation). AMELIE uses 

natural language processing (NLP) to automatically construct a homogeneous knowledgebase 

about Mendelian diseases directly from primary literature. To perform this operation, AMELIE 

is trained on data from manually curated databases such as OMIM (6), HGMD (8) and ClinVar 

(10). AMELIE then uses a machine learning classifier that integrates knowledge about a patient’s 

phenotype and genotype with its knowledgebase to rank candidate genes in the patient’s genome 

for their likelihood of being causative, and simultaneously supports its ranking results with 

annotated citations to the primary literature. We show that this end-to-end machine learning 

approach outperforms gene ranking methods that rely on manually curated databases using a 

total of 271 singleton patients from 3 different sources (including 2 clinical centers and a 

research cohort). 

Methods 

Overview of AMELIE 

Given a patient’s genome sequencing data and a phenotypic description of the patient, 

AMELIE aims to both identify the gene causing the patient’s disease (when possible) and supply 

the clinician with literature supporting the gene’s causal role. To this end, AMELIE creates a 

ranking of candidate causative genes in the patient’s genome with the aim of ranking the true 

causative gene at the top. AMELIE constructs its candidate causative gene ranking by comparing 

information from the primary literature to information about the patient’s genotype and 

phenotype. 

In order to process information from the full text of primary literature, AMELIE constructs a 

knowledgebase (the “AMELIE knowledgebase”) directly from the primary literature up-front 

using natural language processing techniques trained on manually curated databases. After 

knowledgebase construction, AMELIE ranks any patient’s candidate causative genes using a 

classifier (the “AMELIE classifier”), which compares knowledge from the AMELIE 

knowledgebase with phenotypic and genotypic information about the patient. AMELIE explains 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/839878doi: bioRxiv preprint 

https://doi.org/10.1101/839878


5 

 

each gene’s ranking to the clinician by citing articles about this gene in the AMELIE 

knowledgebase. 

AMELIE parses all of PubMed to construct an integrated knowledgebase about Mendelian 

diseases 

Identification and download of relevant articles based on all of PubMed 

The first step towards building the AMELIE knowledgebase is discovering relevant primary 

literature. Of 29 million peer-reviewed articles deposited in PubMed, only a fraction is relevant 

for Mendelian disease diagnosis. We constructed a machine learning classifier that, given titles 

and abstracts of articles from PubMed, identifies potentially relevant articles for the AMELIE 

knowledgebase. 

Machine learning classifiers take as input a numerical vector describing the input, called the 

“feature vector”. Here, we used a so-called TF-IDF transformation to convert input text into a 

feature vector (Supplementary Methods). The title/abstract document classifier is implemented 

as a Logistic Regression classifier, using the Python 3.7.0 machine learning library scikit-learn 

0.20.0. Logistic regression transforms its output using the logistic sigmoid function to return a 

probability value which is then mapped into binary (positive/negative) decision making (23). 

Machine learning classifiers learn to classify an input as positive (relevant) or negative 

(irrelevant) by being exposed to a large number of labeled positive and negative examples (called 

the training set). OMIM (6) is an online database of Mendelian diseases, genes and associated 

phenotypes. HGMD (8) is a database of disease-causing mutations in the human genome. The 

training set for the title/abstract relevance classifier consisted of titles and abstracts of 56,479 

Mendelian-disease-related articles cited in OMIM and HGMD as positive training examples, and 

67,774 random titles and abstracts of PubMed articles (which are largely unrelated to Mendelian 

disease) as negative training examples. 

Precision and recall are two standard measures of evaluating classifier performance. Precision 

measures the fraction of all inputs classified positive that are truly positive (here: relevant). 

Recall measures the fraction of truly positive inputs that are classified positive. Five-fold cross-

validation (splitting all available labeled training data to include 80% in a training set and 
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evaluating on the remaining 20%, 5 times in round-robin fashion) returned an average precision 

of 98% and an average recall of 96%.  

All 28,925,544 titles and abstracts available in PubMed on September 30, 2018, were 

downloaded and processed by the document classifier. The classifier identified 578,944 articles 

as possibly relevant based on their PubMed title and abstract, of which we downloaded 515,659 

(89%) full text articles directly from dozens of different publishers using the software 

PubMunch3 version 1.0.3 (24) (Supplementary Methods).  

Building a structured database of information about Mendelian diseases from full text 

From the full text of an article, multiple types of information are extracted. Gene mentions in 

full text were identified using lists of gene and protein names and synonyms from the HUGO 

Gene Nomenclature Committee (HGNC) (25), UniProt (26) and the automatically curated 

PubTator (27) (an NCBI service combining gene mentions discovered by multiple previously 

published automatic gene recognition methods). AMELIE recognizes approximately 93% of 

disease-causing gene names (Supplementary Methods). However, through a combination of 

unfortunate gene synonyms (such as “FOR”, “TYPE”, “ANOVA”, or “CO2”), as well as genes 

mentioned only in titles of cited references, or interaction partners of causative genes, a median 

of 12 distinct gene candidates are discovered in each article (see Supplementary Table S1). 

To discover the correct gene(s) around which the paper revolves, each distinct gene candidate 

extracted from an article receives a “relevant gene score” between 0 and 1 that gives a likelihood 

of the gene being important in the context of the article. Training data for the relevant gene 

classifier was obtained from OMIM and HGMD (Supplementary Methods). A total of 304,471 

downloaded full-text articles contained at least one gene with a relevance score of 0.1 or higher. 

These articles, along with their above threshold scoring genes, form the AMELIE 

knowledgebase. Articles in the AMELIE knowledgebase contained a median of 1 gene with a 

relevant gene score between 0.1 and 1 (see Supplementary Table S1). 

Further, genetic variants (e.g., “p.Met88Ile” or “c.251A>G”) were identified in the full text of 

each article and converted to genomic coordinates (chromosome, position, reference and 

alternative allele) using the AVADA variant extraction method (28). A median of 3 distinct 

genetic variants were extracted from 123,073 full-text articles in the AMELIE knowledgebase. 
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Phenotype mentions were recognized in articles’ full text using a list of phenotype names 

compiled from Human Phenotype Ontology (HPO) (9). By linking all genes with a relevant gene 

score of at least 0.5 in an article with all phenotypes mentioned in the same article, we arrived at 

a total of 872,080 gene-phenotype relationships covering 11,537 genes (Supplementary Figure 

S1).  

Five scores between 0 and 1 were assigned to the full text of each article. Training data for all 

of these classifiers were obtained from OMIM and HGMD. A “full-text document relevance” 

score assesses the likely relevance of the article for the diagnosis of Mendelian diseases. A 

“protein-truncating” and a “non-truncating” score each give an assessment of whether the article 

is about a disease caused by protein-truncating (splice-site, frameshift, stopgain) or non-

truncating (other) variants. A “dominant” and a “recessive” score each give an assessment of the 

discussed inheritance mode(s) in the article.  

Precision and recall of full-text article information (relevant genes, extracted phenotypes, full-

text article scores) varied between 74% and 96% (Supplementary Methods). All the data 

described in this section are entered into the AMELIE knowledgebase, keyed on the article they 

were extracted from (Figure 1a). The top journals from which the most gene-phenotype 

relationships were extracted are shown in Figure 1b and Supplementary Table S2. 

AMELIE classifier assigns patient genes a likelihood of being causative 

Given a patient with a suspected Mendelian disease, AMELIE aims to speed up discovery of 

the causative gene by ranking patient genes for their ability to describe a patient set of 

phenotypes. 

Definition of candidate causative variants and genes 

AMELIE performs standard filtering of the patient variant list (21, 29) to keep only 

“candidate causative variants” that are rare in the unaffected population and are predicted to 

change a protein-coding region (missense, frameshift, nonframeshift indel, core splice-site, 

stoploss, and stopgain variants). The core splice site is defined to consist of the 2 basepairs at 

either end of each intron. Genes containing candidate causative variants are candidate causative 

genes (or “candidate genes” for short). AMELIE can rank approximately 97% of known disease-
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causing mutations, excluding only those in deeper intronic and non-protein-coding intergenic 

regions (Supplementary Methods). 

Per patient AMELIE gene-article scores 

We define an article in the AMELIE knowledgebase to be about a candidate causative gene if 

the candidate causative gene has a relevant gene score of at least 0.1 in the article. We 

constructed a machine learning classifier called the “AMELIE classifier” that assigns a score 

between 0 and 100 to triples (P, G, A) consisting of a set of patient phenotypes P, a candidate 

causative gene G, and an article A about the candidate gene. Intuitively, given a patient with 

phenotypes P and a candidate gene G, the AMELIE score indicates whether the article A is likely 

helpful for diagnosing the patient because it links mutations in G to the patient’s phenotypes P. 

Higher AMELIE scores indicate more likely diagnostic articles. The AMELIE classifier is 

implemented as a scikit-learn version 0.20.0 (30) LogisticRegression classifier and returns a 

score between 0 and 100 called the “AMELIE score”. The AMELIE score is used to both rank 

patient candidate genes and explain rankings by citing primary literature, as described below. 

Integration of information in the AMELIE knowledgebase with patient information to construct a 

feature set for the AMELIE classifier 

The AMELIE classifier uses a set of 27 real-valued features, falling into 6 feature groups 

(Figure 1c). The 6 feature groups comprise: (1) 5 features containing information about disease 

inheritance mode extracted from the article and patient variant zygosity. (2) 5 features containing 

information about AVADA-extracted variants from the article and overlap of these variants with 

patient variants. (3) 2 features containing information about patient phenotypes based on the 

Phrank (11) phenotypic match score of phenotypes in the article A with the patient phenotypes P. 

(4) 5 features containing information about disease-causing variant types in the article and 

patient variant types. (5) 3 features containing information about article relevance and relevance 

of the candidate gene in the article, and (6) 7 features containing a-priori information about the 

patient’s candidate causative variants in G such as in-silico pathogenicity scores (31) and gene-

level mutation intolerance scores (32, 33) (Supplementary Methods). 
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Training the AMELIE classifier to prioritize patient candidate causative genes 

To train the AMELIE classifier, we constructed a set of 681 simulated patients using data 

from OMIM (6), ClinVar (10) and the 1000 Genomes Project (34). Each simulated patient s was 

assigned a disease from OMIM, with phenotypes noisily sampled from the phenotypes 

associated with the disease (Supplementary Methods). The genome of each simulated patient 

was based on genome sequencing data from the 1000 Genomes Project. An appropriate disease-

causing variant from ClinVar was added to each simulated patient’s genome. Each simulated 

patient was assigned a diagnostic article As describing the genetic cause of the patient’s disease 

(Supplementary Methods). In total, the simulated patients cover a total of 681 OMIM diseases (1 

per patient) and a total of 1,090 distinct phenotypic abnormalities (Supplementary Table S3). 

The sampled phenotypes for each disease cover an average 21% of the phenotypes that were 

manually associated with the disease by HPO. 

The AMELIE classifier was trained to recognize the diagnostic article As out of all articles 

about genes with candidate causative variants in a patient s. Of a total of 681 training patients 

that were constructed using data in OMIM and ClinVar, the single positively labeled article was 

recognized and downloaded during AMELIE knowledgebase construction in 664 cases (98%), 

thus creating 664 positive training examples. The negative training set for the AMELIE classifier 

consisted of triples (Ps, G, A) for each simulated patient s where G was a non-causative candidate 

gene in patient s, and A was an article about G. For training efficiency, we used only 664,000 

random negative training examples out of all available negative training examples. 

Ranking candidate causative genes using the AMELIE classifier 

The AMELIE classifier assigns each candidate gene G the score of its highest-scoring triple 

(P, G, A) (Figure 1c): 

𝑠𝑐𝑜𝑟𝑒(𝐺) = 𝑚𝑎𝑥𝐴∈{𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑎𝑏𝑜𝑢𝑡 𝐺}  AMELIE_classifier(𝑃, 𝐺, 𝐴) 

Candidate causative genes are ranked in descending order of their associated score. 
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Results 

Evaluating AMELIE on a real patient test set 

We evaluated AMELIE on a set of 215 real singleton patients with an established diagnosis 

from the Deciphering Developmental Disorders (DDD) project (35). The DDD dataset includes 

HPO phenotypes (a median of 7 per patient), exome data in variant call format (VCF), and the 

causative gene for each patient (1 per patient). AMELIE’s goal was to rank the established 

causative gene at or near the top of its ranked list of candidate genes for each patient. Filtering 

for candidate causative variants resulted in a median of 163 variants in 127 candidate genes per 

patient (Supplementary Methods and Figure 1c).  

AMELIE outperforms previous methods at ranking candidate causative genes 

The set of 215 patients obtained from the DDD study was used to evaluate AMELIE against 

Exomiser (14), Phenolyzer (15), Phen-Gen (16), eXtasy (17), and PubCaseFinder (18). The 

output of all methods, consisting of a list of ranked genes, was subset to the (median) 127 

candidate genes that AMELIE used for each patient based on the filtering criteria previously 

described (Figure 2a). This ensured the fair evaluation of all gene ranking methods against the 

same set of genes. 

AMELIE analyzed a median of 4,173 articles per patient. AMELIE ranked the causative gene 

at the very top in 142 (66%) out of 215 cases, and in the top 10 in 193 cases (89.7%). Other 

methods ranked the causative gene at the top between 38% of cases (Exomiser) and 8% of cases 

(Phen-Gen) (Figure 2b). AMELIE performed significantly better than all compared methods (all 

p-values ≤ 1.68*10-9; one-sided Wilcoxon signed rank test; see Supplementary Table S4 for all 

rankings). 

Evaluating AMELIE’s top ranked 11 of 127 candidate genes already yields 90+% of diagnoses 

Due to the large number of patients expected to be sequenced for Mendelian diagnosis (36), 

one may want to set guidelines for rapid vs. in depth exome/genome analysis. Based on our 215 

patients test set, AMELIE offers a diagnosis for 90% of diagnosable cases if one is willing to 

evaluate (in rapid mode) only up to the top 11 AMELIE ranked genes per case (9% of a median 

of 127 candidate causative genes). If using any of the other methods, the clinician would have to 
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investigate between a median of 30 genes (Exomiser) and 108 genes per patient to arrive at the 

diagnosis in 90% of diagnosable cases (Figure 2c). 

AMELIE needs 3-19x fewer patient-gene evaluations to diagnose all 215 cases 

If the clinician uses AMELIE (in in-depth mode) to determine the order in which they 

evaluate their entire candidate gene list, one gene after the other, on the DDD set of 215 patients, 

they would evaluate a total of 735 gene-patient matches (summed across all patients) to arrive at 

the causative gene for all 215 patients. If the clinician went through the list of candidate genes in 

random order, they would evaluate an expected total of 14,383 gene-patient matches to arrive at 

the causative gene for all patients. By this metric, AMELIE improves diagnosis time by a factor 

of 19.6x over a random baseline. The next best tool, Exomiser, would require the clinician to 

read on 2,085 genes until arriving at the causative gene for all patients, an improvement of 6.9x 

over a random baseline. The performance of other methods ranges from a speedup of 3.13x to 

1.04x (Figure 2d). 

Replication of AMELIE performance on 56 clinical cases from two sites 

To test for result replication across data sources, we evaluated AMELIE using 56 singleton 

clinical cases seen by the Medical Genetics Service at Stanford Children’s Health and the 

Manton Center for Orphan Disease Research at Boston Children’s Hospital. Informed consent 

was obtained from all participants. Patient genotype and phenotype data were obtained from 

Stanford and the Manton Center Gene Discovery Core (Supplementary Methods).  

AMELIE again outperforms all other methods at causative gene ranking 

We performed a comparison of gene ranking performance using AMELIE against other 

methods as above for the DDD patients. AMELIE ranked the causative gene at the very top in 33 

(59%) out of 56 cases, and in the top 10 in 50 cases (89%). Again, AMELIE significantly 

outperformed all other methods (all p-values ≤ 6.65*10-3; one-sided Wilcoxon signed rank test; 

see Supplementary Figure S2a and Supplementary Table S5 for all-method comparison). 
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AMELIE’s top ranked 9% candidate genes again contain 90% of diagnoses 

AMELIE offered a diagnosis for 90% of patients in the test set of 56 Stanford and Manton 

patients if evaluating the top 15 candidate genes per patient (9% of a median of 172.5), thereby 

replicating its performance on the DDD set (Supplementary Figure S2b).  

AMELIE needs 2-20x fewer patient-gene evaluations to diagnose clinical cases 

Again, we calculated speedup of causative gene evaluation using AMELIE and other gene 

ranking methods compared to a baseline in which the clinician uses no automatic gene ranking 

methods. To arrive at the causative gene for each patient in the clinical test set from Stanford and 

Manton when using AMELIE, the clinician would evaluate 300 genes, compared to a baseline of 

6,106 genes when evaluating genes in random order. Similar to the DDD patient test set, this 

results in a speedup of 20x, 2-20x fewer compared to other methods (Supplementary Figure 

S2c). 

Cross-validation of AMELIE causative gene ranking performance on simulated patients set 

We tested AMELIE causative gene ranking performance on the 681 simulated patients. To do 

this, we split the set of simulated patients into 5 evenly sized chunks. In five round-robin 

iterations, we re-trained the AMELIE classifier using 4 of the 5 chunks of simulated patients, and 

evaluated the re-trained classifier’s causative gene ranking performance on the remaining fifth 

chunk of simulated patients (5-fold cross-validation). Combining the causative gene ranking 

results of all 5 cross-validation evaluations thus resulted in AMELIE causative gene ranks for 

100% of the 681 simulated patients. AMELIE ranked the causative gene at the top in 621 cases 

(91%) and in the top 10 in 672 cases (99%), replicating previous results indicating far higher 

gene ranking performance on simulated patient data compared to real-world data (12, 13, 15, 16, 

37, 38). Compared to a random baseline, AMELIE speeds up causative gene discovery by 34.8x 

on simulated patients. The next best method, Exomiser, speeds up causative gene discovery by 

17.9x and other methods perform worse (Supplementary Figure S3, Supplementary Table S6).  
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AMELIE classifier utilizes its broad feature set to arrive at gene rankings 

We ran multiple tests with modified AMELIE knowledgebases and AMELIE classifiers to 

dissect the relative contribution of different AMELIE components to its causative gene ranking 

performance. 

Phenotypic match is the most important feature for most patients with high causative gene ranks 

For all 175 real test patients with the causative gene ranked at the top, we investigated which 

features of the AMELIE contributed most to the high score of the causative gene. 

Overwhelmingly, for 149 (85%) of 175 real test patients, the feature contributing most to the 

high score was a high phenotypic match between the patient and the article. However, 14 out of a 

total 27 AMELIE classifier features (52%) occurred at least once within the 3 features 

contributing most to the top rank of a patient’s causative gene (Figure 3a and Supplementary 

Table S7). 

Removing features from the AMELIE classifier decreases performance 

To measure how much AMELIE relied on certain feature groups, we re-trained the AMELIE 

classifier 6 times, each time dropping one of its 6 feature groups. With dropped-out features, the 

number of causative genes ranked at the top across the test set of 271 real patients shrank 

between 4% and 39% (Figure 3b and Supplementary Table S8). 

Augmenting phenotype recognition in articles does not lead to increased performance 

HPO cross-links some of its phenotype entries to other databases containing phenotype 

names. We utilized 19,949 cross-links available in HPO by augmenting HPO phenotype phrases 

with synonyms from UMLS (39), MeSH (40), and SNOMED-CT (41), three databases 

containing phenotype names (Supplementary Methods). This augmentation of recognizable 

phenotype names increased the number of distinct recognized phenotypic abnormalities per 

article in the AMELIE knowledgebase from 9 to 22. However, on the main task of causative 

gene ranking, the augmented AMELIE knowledgebase did not perform better (169 instead of 

175 patients had the causative gene ranked at the top). 
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AMELIE knowledgebase constructed from full text is up to 43% superior to title/abstract-only  

knowledgebase on clinical patients 

To quantify the information gained from full text for the purpose of causative gene ranking 

compared to title/abstract-only data, we re-trained all AMELIE knowledgebase classifiers only 

on title/abstract data from PubMed. Subsequently, we constructed the AMELIE knowledgebase 

using title/abstract data from PubMed only and re-trained the AMELIE classifier using the 

title/abstract-only knowledgebase (Supplementary Methods). Title/abstract-based gene ranking 

performs significantly worse than ranking based on full text information across all 271 real test 

patients (p=1.87*10-3; one-sided Wilcoxon signed rank test). On the set of clinical patients from 

Stanford and Manton, 43% more patients had their causative genes ranked at the top using full-

text based ranking compared to title/abstract-based ranking. Overall, title/abstract-based ranking 

put the causative genes of 133 of 271 real patients at the top, compared with 175 (+32%) of 271 

real patients for full-text based AMELIE. 

AMELIE performance is not correlated with number of articles about causative gene 

We investigated whether the number of articles about the causative gene in the AMELIE 

knowledgebase correlates with the causative gene rank by performing linear regression between 

the causative gene rank and number of articles analyzed for the causative gene. This revealed no 

significant correlation (p=0.85 that the slope of regression equals 0 according to a Wald Test 

with t-distribution of the test statistic; Figure 3c). On the 22 patients (8% of a total of 271 real 

test patients) with less than 10 papers analyzed for the causative gene, AMELIE had 10 causative 

genes ranked at the top (45%) compared to Exomiser, which ranked the causative gene at the top 

in 6 (27%) of these cases.  

AMELIE knowledgebase and AMELIE classifier work together to arrive at high causative 

gene ranks 

We investigated the relative contribution of the AMELIE classifier and the AMELIE 

knowledgebase to AMELIE’s overall gene ranking performance. 
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AMELIE knowledgebase outperforms most up-to-date automatically curated knowledgebase 

Multiple previous methods for text mining gene, disease, variant, and phenotype information 

from literature have been developed (42–51), most of which curate limited information or 

information from comparatively small sets of articles. Of 3 additional efforts (52–54) attempting 

to curate gene-phenotype information from a broad set of articles in automatic or semi-automatic 

fashion, we focused on DisGeNET (the most recently updated such database), containing gene-

phenotype relationships, disease-causing variants, and links to primary literature from PubMed. 

DisGeNET contains both automatically curated data and hand-curated data (54). 

We re-trained the AMELIE classifier using DisGeNET data (Supplementary Methods). Three 

different versions of DisGeNET information were used: (1) containing only data curated by 

DisGeNET’s BeFree automatic curation software, (2) containing only manually curated data in 

DisGeNET, (3) containing all suitable data in DisGeNET, both manually and automatically 

curated. All 3 versions of DisGeNET performed worse than AMELIE (all p-values ≤ 4.76*10-23, 

one-sided Wilcoxon signed rank test). Best-performing was the DisGeNET database with 

automatically curated data (68 causative genes ranked at the top, compared to 175 for original 

AMELIE; see Supplementary Table S9).  

AMELIE classifier outperforms simple phenotype-based ranking 

We replaced the AMELIE classifier (Figure 1c) with the Phrank (11) phenotypic match score 

to estimate the impact of the AMELIE classifier on overall AMELIE performance. For each of 

the 271 real test patients, we re-ranked articles about the candidate causative genes by computing 

the Phrank match score between patient phenotypes and phenotypes mentioned in the article. 

Candidate causative genes were then ranked by the Phrank score of the highest-ranked article 

about the gene. This resulted in ranking 94 (35%) of 271 real patients’ causative genes at the top, 

significantly worse compared to ranking based on the AMELIE classifier, which ranked 175 

causative genes at the top (p=1.33*10-11, one-sided Wilcoxon signed rank test).  

We conclude that the AMELIE knowledgebase and the AMELIE classifier work together to 

achieve AMELIE’s high causative gene ranking performance. 
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Interactive and programmatic access to AMELIE-based literature analysis 

AMELIE can be used through its web portal at https://AMELIE.stanford.edu to utilize 

AMELIE for patient analysis. The portal offers both an interactive interface (Supplementary 

Figure S4) and an application programming interface (API) that enables integrating AMELIE 

into any computer-assisted clinical workflow. The AMELIE knowledgebase will be updated 

every year. A pilot (55) of AMELIE has been running at this web address since August 2017, as 

a service to the community, using an AMELIE knowledgebase automatically curated from 

articles published until June 2016, and has since served many thousands of queries from 40+ 

countries. 

Discussion  

We present AMELIE, a method for ranking candidate causative genes and supporting articles 

from the primary literature in patients with suspected Mendelian disorders. We show that 

AMELIE ranks the causative gene first (among a median of 127 genes) in 2/3 of patients, and 

within the top 11 genes in over 90% of 215 real patient cases. These results were closely 

replicated on a cohort of 56 clinical patients from Stanford Children’s Health and the Manton 

Center for Orphan Disease Research.  

Mendelian disease diagnosis is a complex problem and clinicians or researchers can spend 

many hours evaluating a single case. With 5,000 diagnosable Mendelian diseases, caused by 

roughly 3,500 different genes, and manifesting in different subsets of over 13,000 documented 

phenotypes, manual patient diagnosis from the primary literature is highly labor intensive. 

Manually curated databases like OMIM, OrphaNet and HGMD take a step towards alleviating 

clinician burden by attempting to summarize the current literature. However, manual curation is 

growing ever more challenging as the literature about Mendelian diseases is increasing at an 

accelerating rate. Based on AMELIE analysis, the number of gene-phenotype relationships in 

Mendelian literature has been increasing by an average of 10.5% every two years since the year 

2000 (Supplementary Figure S5). Because AMELIE is an automatic curation approach, requiring 

only an initial critical mass of human curated data to train on, it is not constrained by the 

bottleneck of on-going human curation. For example, of 117 top-ranked articles supporting the 

DDD patients where AMELIE ranked the test set causative gene at number 1, only 36 (31%) 
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were cited in OMIM (as determined by a systematic Google search of omim.org; Supplementary 

Table S10). OMIM, a manually curated database, does not, of course, promise to capture all 

papers pertaining to any given disease gene, but an automated effort like AMELIE can.  

Compared to existing gene ranking approaches, AMELIE replaces the notion of a fixed 

disease description (e.g., as a single set of phenotypes) with the notion of an article and the 

phenotypes described in it. This approach has multiple advantages. First, it is often fastest to 

convince a clinician about a diagnosis given an article directly describing the disease, which 

often includes disease information such as patient images and related literature. Additionally, 

with considerable phenotypic variability in Mendelian diseases (56), matching patients to 

specific reports in the literature is conceptually more helpful for definitive diagnosis than 

matching to a disease, which is effectively a compendium of previously described patient 

phenotypes. Biomedical literature is not guaranteed to contain the full set of phenotypes known 

to be associated with a disease, and AMELIE makes no claim about capturing this full set. 

Rather, AMELIE focuses on causal gene ranking, using its knowledgebase, and as we show, it 

already does it to great practical utility. Certain articles about Mendelian diseases may mention a 

very small number of phenotypes (or none at all) and just mention disease and causative genes. 

While this situation does not appear to be very common in practice (as seen by the good 

performance of AMELIE), the problem could be alleviated by automatically parsing disease 

names from such articles and associating diseases with manually curated phenotype information 

using resources such as HPO. Natural language processing approaches can also be used to read 

additional texts as well, even sources like electronic medical notes (19, 20).  

Understanding the impact of hundreds of thousands of variants in thousands of different genes 

against a body of knowledge of millions of peer reviewed papers that is ever expanding is a 

challenging task. Because a diagnosis shapes the future management of a patient, there must 

always be a human expert approving every diagnosis. But the sheer number of patients that can 

benefit from a molecular diagnosis and our intention to sequence millions of them in the next 

few years absolutely necessitate automating as much as possible of the diagnostic process, to 

potentiate rapid, affordable, reproducible and accessible clinical genome-wide diagnosis. As 

such, along with complementary medical record parsing tools (19, 20), AMELIE provides an 

important step on the road to integrating personal genomics into standard clinical practice. 
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Figure 1. AMELIE knowledgebase creation and subsequent patient causal gene ranking 

classifier.  

(a) AMELIE knowledgebase creation. AMELIE applies multiple machine learning classifiers to 

all 29 million PubMed abstracts to parse, predict relevance, download full text, and finally 

extract Mendelian gene-phenotype relationships and related attributes automatically. (b) Number 

of gene-phenotype relationships extracted from top 10 journals. (c) The AMELIE classifier 

combines 27 features to rank all articles in the AMELIE knowledgebase for their ability to 

explain any input patient. 
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Figure 2. AMELIE patient causative gene ranking outperforms methods based on manually 

curated databases.  

(a) Evaluation scheme: The output gene ranking of all algorithms is subset to the same list of 

candidate genes AMELIE uses for its gene ranking to ensure a fair comparison. (b) Fraction of 

215 DDD cases ranked as 1, 1-2 or 1-3 by six different tools. AMELIE ranks 66% of causative 

genes at number 1, nearly twice as many as the next best tool. (c) Rapid mode: By evaluating 

only up to AMELIE’s 11th top ranked gene, one attains 90+% yield over DDD cases. The next 

best tool can guarantee this only by evaluating up to the 30th gene. (d) In-depth mode: When 

evaluating each case, gene by gene, until a diagnosis is reached, AMELIE provides nearly 20x 

speed up over evaluation using random gene order. More than twice as fast as the next best tool. 

Figure S2 replicates this performance on two additional real patient cohorts. 
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Figure 3. Investigating AMELIE’s gene ranking performance. 

(a) For each of the 175 patients with AMELIE causative gene rank 1, the 27 features to the 

AMELIE classifier were ranked by their contribution to the top-ranked article’s high score. The 

panels, left-to-right, show the fraction of patients for which certain features were ranked most, 

2nd most, or 3rd most contributing. (b) Re-training the AMELIE classifier in round-robin fashion, 

each time omitting one of AMELIE’s 6 feature groups, finds all feature groups aid performance. 

(c) Each blue dot represents one of 271 real patients in this log-log plot. The red line is a linear 

regression line between number of articles about causative gene (x-axis) and causative gene rank 

(y-axis), with red denoting the 95% confidence interval. The slope of the regression line is not 
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significantly different (Wald Test) from 0, suggesting AMELIE performs well independent of 

the number of papers it has read about a causative gene. 
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