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Abstract 

Background 

Gene fusion events are a significant source of somatic variation across adult and pediatric 

cancers and have provided some of the most effective clinically relevant therapeutic targets, yet 

computational algorithms for fusion detection from RNA sequencing data show low overlap of 

predictions across methods. In addition, events such as polymerase read-throughs, mis-mapping 

due to gene homology, and fusions occurring in healthy normal tissue require stringent filtering, 

making it difficult for researchers and clinicians to discern gene fusions that might be true 

underlying oncogenic drivers  of a tumor and in some cases, appropriate targets for therapy.  

Results 

Here, we present annoFuse, an R package developed to annotate and identify 

biologically-relevant expressed gene fusions, along with highlighting recurrent novel fusions in a 

given cohort. We applied annoFuse to STAR-Fusion and Arriba results for 1028 pediatric brain 

tumor samples provided as part of the Open Pediatric Brain Tumor Atlas (OpenPBTA) Project. 

First, we used FusionAnnotator to identify and filter “red flag” fusions found in healthy tissues or 

in gene homology databases. Using annoFuse, we filtered out fusions known to be artifactual and 

retained high-quality fusion calls using support of at least one junction read and if there is 

disproportionate spanning fragment support of more than 10 reads compared to the junction read 

count, we removed them to remove false positives from background noise. Second, we prioritized 

and captured known, as well as putative oncogenic driver, fusions previously reported in TCGA, 

or fusions containing gene partners that are known oncogenes, tumor suppressor genes, or 

COSMIC genes. Finally, using annoFuse, we determined recurrent fusions across the cohort and 

recurrently-fused genes within each histology.  

Conclusions 

annoFuse provides a standardized filtering and annotation method for gene fusion calls 

from STAR-Fusion and Arriba by merging, filtering and prioritizing putative oncogenic fusions 

across large cancer datasets, as demonstrated here with the OpenPBTA dataset. We are 
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expanding the package to be widely-applicable to other fusion algorithms, adding functionalities, 

and expect annoFuse to provide researchers a method for quickly evaluating and prioritizing 

fusions in patient tumors. 
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Background  

Gene fusions arise in cancer as a result of aberrant chromosomal rearrangements or 

defective splicing, which bring together two unrelated genes that are then expressed as a novel 

fusion transcript. Detection of therapeutically-targetable fusion calls is of clinical importance and 

computational methods are constantly being developed to detect these events in real-time. 

Recent comparative studies show low concordance of fusion predictions across methods (1), 

suggesting that many predictions may not represent true events. Additionally, transcriptional read-

throughs (2), in which the polymerase machinery skips a stop codon and reads through a 

neighbouring gene, as well as fusions that involve non-canonical transcripts or gene-homologs, 

are prevalent in disease datasets, yet the biological relevance of such events is still unclear. This 

makes it difficult for both researchers and clinicians to prioritize disease-relevant fusions and 

discern the underlying biological  mechanisms and thus, appropriate fusion-directed therapy. 

Gene fusion events leading to gain-of-function or loss-of-function in kinases and putative tumor 

suppressor genes, respectively,  have been shown to be oncogenic drivers with therapeutic 

potential, especially in pediatric tumors (3–5). For example, the recurrent fusion KIAA1549-BRAF 

is found in between 66-80% of low grade gliomas and results in a fusion transcript that has 

constitutive BRAF kinase activity (6).  EWSR1-FLI1 is found in nearly 100% of Ewing sarcoma 

and forms an oncogenic RNA complex, driving tumorigenesis (7). Thus, the fusion databases, 

ChimerDB (8) and TumorFusions (9), have been developed utilizing RNA fusions called in The 

Cancer Genome Atlas (TCGA) (10,11) samples. In such large-scale cancer studies, a single 

algorithm was routinely used to detect fusion calls because using multiple callers often adds 
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complexity of annotation and integration. However, it is now common practice to incorporate data 

from multiple algorithms to reliably define the fusion landscape of cancers. Recent efforts have 

reported the importance of using systematic filtering and aggregation of multiple fusion callers to 

expand the number of biologically-relevant fusions in adult cancers (11,12). However, to our 

knowledge there are no tools or packages developed to filter, aggregate, and detect recurrent 

and putative oncogenic fusions in a systematic, flexible, and reproducible manner. Despite the 

existence of a few tools with working open-source code which can assist in fusion annotation or 

prioritization, only three are algorithm-agnostic with the remaining tools relying on outdated fusion 

algorithms, rendering them unusable on current gold standard tools such as STAR-Fusion (13) 

and Arriba (14) (Table 1).   

Here, we developed and applied annoFuse to gene fusion results from STAR-Fusion and 

Arriba for 1,028 pediatric brain tumor samples provided as part of the Open Pediatric Brain Tumor 

Atlas (OpenPBTA) Project (15). First, we used FusionAnnotator to identify and filter red flag 

fusions, those found in healthy tissues or in gene homology databases. Using annoFuse, we 

remove fusions known or predicted to be artifactual and retain high-quality fusion calls. Second, 

for the fusions that pass quality checks, fusions are annotated if previously found within TCGA 

and each gene partner is annotated as an oncogene, tumor suppressor, kinase, transcription 

factor, and/or cosmic census genes. Finally, we determined recurrence pattern for fusions across 

the cohort and also recurrently-fused genes within each cancer histology.  

 

Implementation 

We implemented annoFuse using the R programming language (R version 3.5.1 (2018-

07-02). R packages used to create annoFuse are reshape2, dplyr, tidyr, ggplot2, and plotly, with 

optional packages: knitr and rmarkdown. 

R package overview 

The annoFuse package was developed to provide a standardized filtering and annotation 

method for fusion calls from Arriba and STAR-Fusion, first and second place winners of the 2017 
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DREAM SMC-RNA Challenge, respectively (16). In a 2019 assessment of 23 fusion algorithms 

for cancer biology, both Arriba and STAR-Fusion ranked in the top three fastest and most accurate 

tools (17). annoFuse utilizes a four-step process (Figure 1) that is  available with flexible functions 

to perform downstream functions such as merging, filtering, and prioritization of fusion calls from 

multiple fusion calling algorithms.  

RNA Expression and Fusion Calls 

Currently, annoFuse is compatible with fusion calls generated from Arriba v1.1.0 (18) 

and/or STAR-Fusion 1.5.0 (13). Both tools utilize aligned BAM and chimeric SAM files from STAR 

as inputs and STAR-Fusion calls are annotated with GRCh38_v27_CTAT_lib_Feb092018.plug-

n-play.tar.gz, which is provided in the STAR-fusion release. Arriba should be provided with 

strandedness information, or set to auto-detection for poly-A enriched libraries. Additionally, the 

blacklist file, blacklist_hg38_GRCh38_2018-11-04.tsv.gz contained in the Arriba release tarballs, 

should be used to remove recurrent fusion artifacts and transcripts present in healthy tissue. An 

expression matrix with FPKM or TPM values is also required; the matrix should have a column 

“GeneSymbol” following the same gene naming convention as found in fusion calls. 

Fusion Call Preprocessing 

We leveraged the fact that STARfusion uses FusionAnnotator as its final step and thus, 

require all fusion calls be annotated with FusionAnnotator v. 0.2.0 tol contain the additional 

column, “annots”. Finally, fusion calls for all samples should be merged into a single TSV file with 

an additional column, “tumor_id”, which will enable artifact filtering, annotation, fusion 

prioritization, and determination of recurrence. 

annoFuse Steps: 

Step 1: Fusion Standardization 

To obtain a standardized format for fusion calls from multiple fusion calls we use 

fusion_standardization function to format caller specific output files to a standardizedFusionCalls 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2019. ; https://doi.org/10.1101/839738doi: bioRxiv preprint 

https://doi.org/10.1101/839738
http://creativecommons.org/licenses/by/4.0/


 

 

format defined in the package README. fusion_standardization allows users to standardized 

fusion calls from multiple callers, users have the freedom to annotate their calls with other 

databases as annots column which can then be used for filtering. 

Step 2: Fusion Filtering 

Events such as polymerase read-throughs, mis-mapping due to gene homology, and 

fusions occurring in healthy normal tissue confound detection for true recurrent fusion calls and 

false positives for genes considered as oncogenic, tumor suppressor or kinases in some cases. 

In this step, we filter the standardized fusion calls to remove artifacts and false positives (Table 

2) using the function fusion_filtering_QC. The parameters are flexible to allow users to annotate 

and filter the fusions with a priori knowledge of their call set. For example, since the calls are pre-

annotated with FusionAnnotator, the user can remove fusions known to be red-flags as annotated 

with any of the following databases GTEx_recurrent_STARF2019, HGNC_GENEFAM, 

DGD_PARALOGS, Greger_Normal, Babiceanu_Normal, BodyMap, and ConjoinG. This is done 

using the parameter, artifact_filter = "GTEx_recurrent_STARF2019 | DGD_PARALOGS | Normal 

| BodyMap | ConjoinG". Of note, we decided not to remove genes annotated in 

HGNC_GENEFAM, as this database contains multiple oncogenes and their removal resulted in 

missed true fusions using our validation truth set. Read-throughs annotated by any algorithm can 

also be removed at this step by using parameter “readthroughFilter=TRUE”. During validation, we 

observed the real oncogenic fusion, P2RY8-CRLF2 (19,20), annotated as a read-through in acute 

lymphoblastic leukemia samples, therefore, we implemented a condition such that if a fusion is 

annotated as a read-through, but is present in the Mitelman cancer fusion database, we scavenge 

these fusions back as true positive calls.  

This function also allows users to flexibly filter out fusions predicted to be artifactual while 

retaining high-quality fusion calls using junction read support of ≥ 1 (default) and spanning 

fragment support of < 10 (default) reads compared to the junction read count, as disproportionate 
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spanning fragment support indicates false positive calls (18). Finally, if both genes of the fusion 

are deemed not expressed < 1 FPKM (default), the fusion transcript calls can be removed using 

function expressionFilterFusion.  

Step 3: Fusion Annotation 

The annotateFusionCalls function annotates standardized fusion calls and performs 

customizable fusion annotation based on user gene lists as input. As a default setting, we provide 

lists of, and annotate gene partners as, oncogenes, tumor suppressor genes, and oncogenic 

fusions.  

The optional ZscoredAnnotation function provides z-scored expression values from a 

user-supplied matrix such as GTEx or within cohort to compare samples with and without the 

fusion to look for over or under expression of fused genes compared to normal using a 

zscoreFilter. A cutoff of 2 (default) is set to annotate any score > 2 standard deviations away from 

the median as differentially-expressed. Researchers can then use this information to decide 

whether to perform additional downstream filtering. 

Step 4: Project-Specific Filtering 

 Each study often requires additional downstream analyses be performed once high-quality 

annotated fusion calls are obtained. We developed functions to enable analyses at a cohort (or 

project-level) and/or group-level (eg: histologies) designed to remove cohort-specific artifactual 

calls while retaining high-confidence fusion calls. The function called_by_n_callers  annotates the 

number of algorithms that detected each fusion. We retained  fusions with genes not annotated 

with the gene lists above (eg: oncogene, etc) that were detected by both algorithms as inframe or 

frameshift, as these could represent novel fusions. At the group-level, we add 

groupcount_fusion_calls (default  ≥ 1) to remove fusions that are present in more than one type 

of cancer. At the sample level, fusion_multifused detects fusions in which one gene partner is 
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detected with multiple partners (default ≥ 5), and we remove these as potential false positives. 

Separately, the function fusion_driver retains only fusions in which a gene partner was annotated 

as a tumor suppressor gene, oncogene, kinase, transcription factor, and/or the fusion was 

previously found in TCGA. This enables annoFuse to scavenge back potential oncogenic fusions 

which may have otherwise been filtered. Both sets of fusions are then merged into a final set of 

putative oncogenic fusions. Finally, samplecount_fusion_call identifies fusions recurrently called 

in (default ≥ 2) samples within each group. 

Visualization 

Quick visualization of filtered and annotated fusion calls can provide information useful for 

review and downstream analysis. We provide the function plotSummary which provides 

distribution of intra-chromosomal and inter-chromosomal fusions, number of in-frame and 

frameshift calls per algorithm, and distribution of gene biotypes, kinase group, and oncogenic 

annotation. If project-specific filtering is utilized, barplots displaying recurrent fusion and 

recurrently-fused genes can be generated using plotRecurrentFusion and 

plotRecurrentFusedGene, respectively.  

Results and Discussion 

Technical validation of annoFuse 

 Few gene fusion “truth” sets exist and they are comprised of simulated data or synthetic 

fusions spiked into breast cancer cell lines or total RNA (16,17,21). We therefore utilized a recent 

study in which fusions were called and high-confidence fusions reported in 244 patient-derived 

xenograft models from the Pediatric Preclinical Testing Consortium (PPTC) (22). A set of 27 

fusions were molecularly validated from acute lymphoblastic leukemia (ALL) models in the PPTC 

dataset and comprise of a “truth” set. Table 3 describes the performance of annoFuse, in which 

we achieved 100% accuracy in calling true positive fusions and an average 96% accuracy of high-

confidence fusions as defined in (22). Interestingly, only 114/166 total fusions were detected using 
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STAR-Fusion and Arriba (23/27 within the “truth” set), implying gold standard algorithms alone 

still fail to capture the full landscape of gene fusions and additional algorithms should be integrated 

into our workflow. Of the 114 fusions we detected, 110 were retained as putative oncogenic 

fusions using annoFuse. The four fusions annoFuse did not retain were removed with the “read-

through” filter, which can be turned off as an option.  

Case study with annoFuse using OpenPBTA 

As proof of concept, we utilized RNA expression generated by STAR-RSEM (23) and 

fusion calls generated by Arriba v1.1.0 (18) and/or STAR-Fusion 1.5.0 (13) which were released 

as part of the Pediatric Brain Tumor Atlas (24). The algorithms were run as described in RNA 

Expression and Fusion Calls. The RNA expression and fusion workflows are publicly available 

within the Gabriella Miller KidsFirst GitHub repository (25). 

Following fusion standardization, annotation, and filtering, we applied project-specific 

filtering to the OpenPBTA RNA-Seq cohort (n = 1,028 biospecimens from n = 943 patients).  

Figure 2 is a sample summary PDF designed to give the user an overall glance of the fusion 

annotations and fusion characteristics within the cohort. From the OpenPBTA cohort, it is clear 

that there were predominantly more intra-chromosomal fusions called than inter-chromosomal 

fusions, even after filtering for read-through events (Figure 2A). While a low-grade astrocytic 

tumors are the major pediatric brain tumor subtype known to be enriched for gene fusions, it was 

surprising to observe a large number of fusions in diffuse astrocytic and oligodendroglial tumors 

and the project-specific utility of annoFuse allows researchers to further prioritize fusions. 

Histologies within the OpenPBTA project were classified according to broad WHO 2016 subtypes 

(26).  

The number of in-frame and frameshift fusions per algorithm were roughly equivalent 

within each STAR-Fusion and Arriba fusion calls (Figure 2B). Figure 2C depicts the density of 

genes categorized by gene biotype (biological type), and as expected from biologically-functional 

fusions, the majority of gene partners are classified as protein-coding. The majority of gene 

partners were annotated as tyrosine kinase (TK) or tyrosine kinase-like (TKL) (Figure 2D). In 
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Figure 2E, the user can explore the biological and oncogenic relevance of the fusions across 

histologies. Here, we note that in most histologies, the most prevalent gene partners were 

classified as oncogenes and the least prevalent as tumor suppressor genes. Notably, many 3’ 

fusion partners within low-grade astrocytic tumors are kinases, which follows expectations listed 

below.  

Following project-specific filtering, we observed KIAA1549--BRAF fusions as the most 

recurrent in-frame fusion in our cohort (n = 109/943), which was expected as KIAA1549-BRAF 

expressing low-grade astrocytic tumors comprise the largest representative histology in the 

OpenPBTA cohort  (n = 504/943). C11orf95--RELA was predominant in ependymal tumors (n = 

25/173), as expected in supratentorial ependymomas (27). Other expected recurrent oncogenic 

fusions obtained through annoFuse were EWSR1-FLI1 in CNS Ewing sarcomas (28), and 

KANK1-NTRK2, MYB-QKI, and FAM131B-BRAF in low-grade astrocytic tumors (3,29) (Figure 

3A). In addition to recurrent fusions, we also detect recurrently-fused genes to account for partner 

promiscuity. This enables us to see a broader picture of gene fusions, specifically within diffuse 

astrocytic and oligodendroglial tumors, in which we see fusions prevalent in ST7, MET, FYN, 

REV3L, AUTS2, and ROS1, and meningiomas, in which NF2 fusions are common. (Figure 3B). 

 The few openly-available fusion annotation and prioritization tools (Table 1) each have 

specific annotation and/or prioritization functionalities, however, the majority are no longer 

maintained and only work on outdated fusion algorithms. Oncofuse (30), Pegasus (31), chimera 

(32), and co-Fuse (33) have not been updated in two or more years, and as a result, these tools 

lack compatibility with newer and improved fusion algorithms. The chimeraviz R package (34) is 

well-maintained and compatible with nine fusion algorithms, but only performs visualizations of 

fusions, thus prioritization is not possible using this tool. The remaining four tools are algorithm 

agnostic, yet perform only specific aspects of annotation and prioritization. FusionHub (35) is a 

web-based tool which enables annotation of fusions with 28 databases, however, is not 

programmatically scalable. FusionAnnotator (36) annotates fusions for presence in 15 cancer-

associated databases, oncogene lists, and seven databases for fusions not relevant in cancer. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2019. ; https://doi.org/10.1101/839738doi: bioRxiv preprint 

https://doi.org/10.1101/839738
http://creativecommons.org/licenses/by/4.0/


 

 

AGFusion (37) annotates protein domains, and Fusion Pathway (38) utilizes fusion and protein 

domain annotations in gene set enrichment analysis (GSEA) to infer oncogenic pathway 

association. When used alone, none of these tools flexibly perform fusion annotation and 

prioritization. Therefore, we leverage the algorithm agnostic capabilities of FusionAnnotator to 

pre-annotate fusion input from STAR-Fusion and Arriba.  

By integrating FusionAnnotator with functionality of the current gold standard algorithms 

STAR-Fusion and Arriba, we were able to improve the aforementioned tools’ capabilities by 

meeting the current demands of the research community. We provide the user with flexible 

filtering parameters and envision annoFuse will be used to quickly filter sequencing artifacts and 

false positives, as well as further annotate fusions for additional biologically functionality (eg: 

kinases, transcription factors, oncogenes, tumor suppressor genes) to increase the signal to noise 

ratio in a cohort of fusion calls. Users can opt to simply annotate and filter artifacts or use 

annoFuse to functionally prioritize fusions as putative oncogenic drivers. During the prioritization 

steps, we filter based on genes with cancer relevance (see biological functionality list above), 

perform analysis of fusion and fused-gene recurrence, to create a stringently-filtered, prioritized 

list of fusions likely to have oncogenic potential. 

As an additional feature, we plan to add expression-based comparison of genes between 

fused samples, normal, and within a histology or cohort. We acknowledge that protein domain 

annotation and retention is very important for prioritizing fusion calls and as such, we are working 

to add functionality from the algorithm-agnostic AGFusion tool in the near future. Likewise, we 

would like to integrate the recent FusionPathway tool, which is also algorithm agnostic, but 

depends on protein domain annotation to perform GSEA for oncogenic association. We plan to 

add additional fusion algorithms currently used by the community, such as deFuse, 

FusionCatcher, and SOAPfuse, to further increase the applicability of annoFuse. Future features 

could also include assessment of domain retention, combined with linkage to drug databases to 

predict fusion-directed targeting strategies. 
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Conclusions 

Gene fusions provide a unique mutational context in cancer in which two functionally-

distinct genes are combined to function as a new biological entity. Despite showing great promise 

as diagnostic, prognostic, and therapeutic targets, translation in the oncology clinic is not yet 

accelerated for gene fusions. This has been partly due to limited translation of the large number 

of bioinformatically-derived fusion results into biologically meaningful information. In our efforts to 

address this, we introduce annoFuse, an R Package to annotate and prioritize putative oncogenic 

RNA fusions, providing a range of functionalities to filter and annotate fusion calls from multiple 

algorithms. We include a cancer-specific workflow to find recurrent, oncogenic fusions from large 

cohorts containing multiple cancer histologies. The multi-algorithm filtering and annotation steps 

within annoFuse enable users to integrate calls from multiple algorithms to improve high-

confidence, consensus fusion calling. The lack of concordance among algorithms as well as 

variable accuracy with fusion truth sets (1,17) adds analytical complexity for researchers and 

clinicians aiming to prioritize research or therapies based on fusion findings. Through annoFuse, 

we add algorithm flexibility and integration, to identify recurrent fusions and/or recurrently-fused 

genes as novel oncogenic drivers. We expect annoFuse to be broadly applicable to cancer 

datasets and to facilitate researchers to better inform preclinical studies targeting novel, putative 

oncogenic fusions and ultimately, aid in the rational design of therapeutic modulators of gene 

fusions in cancer.  

Availability and requirements 

Project name: annoFuse: an R Package to annotate and prioritize putative oncogenic RNA 

fusions 

Project home page: https://github.com/d3b-center/annoFuse 

Operating system(s): Platform independent 

Programming language: R 3.5.1 

Other requirements: e.g. Java 1.3.1 or higher, Tomcat 4.0 or higher 

License: MIT 
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Figures, Tables, and Additional Files 

Figure 1. Graphical representation of pipeline. The fusion_standardization function 

standardizes calls from fusion callers to retain information regarding fused genes, breakpoints, 

reading frame information, as well as annotation from FusionAnnotator. Standardized fusion 

calls use fusion_filtering_QC to remove false positives such as fusions with low read support, 

annotated as read-throughs, found in normal and gene homolog databases and remove non-

expressed fusions. Calls are annotated with annotateFusionCalls to include useful biological 

features of interest (eg. Kinase, Tumor suppressor etc.) Project-specific filtering captures 

recurrent fused genes using functions to filter (shown in boxes) as well as putative driver fusion. 

Outputs available from annoFuse include TSV files of annotated and prioritized fusions, a PDF 

summary of fusions, and recurrently-fused gene/fusion plots. 

Figure 2. Fusion annotations generated by annoFuse (A) Distribution of intra- and inter-

chromosomal fusions across histologies. (B) Transcript frame distribution of fusions detected by 

Arriba and STARFusion algorithms. (C) Bubble plot of gene partner distribution with respect to 

ENSEMBL biotype annotation (Size of circle proportional to number of genes). (D) Barplots 

representing the distribution of kinase groups represented in the PBTA cohort annotated by 

gene partner. (AGC = Protein Kinases A, G, and C; Atypical = kinases with no structural 

similarity to ePKs; CAMK = Calcium/Calmodulin Kinases; CK1 = Cell Kinase; CMGC = CDK, 

MAPK, GSK3, and CLK kinases; Other = unique kinases not belonging to any other group; STE 

= STE7, STE11, and STE20 genes which form the MAPK cascade; TK = Tyrosine Kinases; TKL 

= Tyrosine Kinase-Line (TKL) (E) Bubble plot representing the distribution of fused genes as 

oncogenes, tumor suppressor genes, kinases, COSMIC, predicted and curated transcription 

factors (Size of circle proportional to number of genes). Genes belonging to more than one 
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category are represented in each. In all panels except for B, fusion calls were merged from both 

STAR-Fusion and Arriba.  

Figure 3. Recurrent fusion plots generated by annoFuse. Bar plots as representative of 

histology showing recurrent fusion calls by number of patients (A) and recurrently-fused genes 

by number of patients (B) after filtering and annotation. 

 

Table 1. Available fusion annotation and prioritization tools. List of nine openly-available 

fusion annotation and prioritization software tools. Only AGFusion, FusionAnnotator, Fusion 

Pathway, and certain functions of FusionHub are algorithm agnostic, and most algorithms 

require outdated fusion algorithm input.  

Table 2. Fusion filtering and annotation criteria. Fusion filtering criteria were developed to 

gather high quality recurrent fusion calls while retaining fusions containing oncogenes and/or 

tumor suppressor genes. Filtering is divided the filtering into 3 types 1) QC: filters known causes 

of  false positives. 2) Gene-list: retains additional fusions in genes and fusions of interest list. 3) 

Recurrence: filters out non-recurrent fusions in genes not annotated as putative oncogenic. 

Annotation lists are also described. 

Table 3. Validation of annoFuse prioritization using PPTC PDX fusion calls. Overlap and 

accuracy of high-confidence fusion calls from PPTC PDX dataset using the STAR-Fusion/Arriba 

annoFuse workflow. Retention accuracy of high-confidence calls averaged 96% across the 

entire dataset and was 100% for the ALL truth set (ALL = acute lymphoblastic leukemia). 
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